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ABSTRACT. The analysis and improvement of the river's change dynamics are critical to the global investigation of water 

quality issues. This study investigates the mathematical model representation of one dimension of a pair of advection-

dispersion equations. These equations pertain to the concentrations of both pollutants and dissolved oxygen. Certain 

terms, which demonstrate an increase in the decay rate of pollution through exponential sources and assume a 

decreasing river's cross-sectional measurement, lead to the diminished oxygen levels observed in this study. The crucial 

points are demonstrated using both analytical and numerical analysis of the steady-state model, which allows for 

examining multiple situations about the elimination of oxygen and aquatic survival in a river with severe pollution. 

 

 

1. Introduction 

Mathematical modelling is a crucial role in many real problems such as simulating, 

predicting, and others. The predicting water quality for effective water management globally is 

also popular. Thailand’s primary pollution sources include home sewage, industrial discharges, 

and agricultural effluents. An analysis of the main rivers has revealed concerns regarding water 

quality due to a decrease in dissolved oxygen (DO), the death of fish, increased levels of 

ammonium and nitrogen into the air, also known as increased coliform bacteria contamination, 

and instances of nutrient enrichment events.[1]. A significant water quality issue in Thailand is 

the presence of low dissolved oxygen levels, specifically at an amount of (12%). The Tha Chin 
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River is the specific river under investigation in this study. It was one of Thailand’s most 

extensively contaminated rivers. [2]. 

A state of the fluctuation in dissolved oxygen levels downstream of wastewater discharge 

points was conducted by Chapra [3], who outlined the fundamental equations of water 

contamination. This involved the utilization of advection-diffusion equations to determine the 

levels of contaminants and dissolved oxygen. This research presents a mathematical model 

focusing on aeration in rivers to address pollutions issues. The model utilizes coupled advection-

dispersion equations to represent the levels of pollutants and dissolved oxygen concentrations. 

This model builds upon previous research conducted in ([4, 5]). The model comprises two 

equations: one represents the rate at which pollutant concentration removed through aeration, 

and the other provides a oxygen mass flow analysis, which is consumed during the process of 

pollutant removal. The rate of added pollution is assumed as exponentially increasing forms. To 

simplify the problem, the river is conceptualized as one-dimensional, and a steady-state solution 

is assumed. This investigation aims to anticipate a river critical point allowing for analytical 

solutions and simulations to explore scenarios like oxygen depletion and fish survival in polluted 

rivers. Both analytical and numerical analysis have been developed to solve the model. 

 

2. The governing equations 

The dynamics of unsteady flow within the river are represented by the one dimension of 

the coupled model of advection-dispersion equations, which the spatial 𝑥 (km) and temporal 

variables 𝑡 (day) are incorporated through Equations 2.1 and 2.2 in ([4], [5]). 
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where 𝑣 represents the horizontal water velocity, 𝐷𝑝 represents the pollutant dispersal constant 

coefficient,  𝐷𝑥  represents the dissolved oxygen dispersal constant coefficient,  𝑆  represents the 

concentration of oxygen in saturation,  𝐾1 represents the constant coefficient that determines the 

rate at which the pollutant degrades, 𝐾2 represents the constant coefficient that determines the 

pace at which dissolved oxygen degrades, 𝛼 represents the process of oxygen transfer from air 

into water, 𝑞 represents the pollutant influx rate along the river, 𝑘 represents the concentration at 

which oxygen demand is half-saturated for pollutant decay, 𝐴 represents the river’s cross-

sectional measurement and 𝜆 represents a constant value of exponentially term of source [4]. The 

analysis focuses on the case where 𝑘 is no significant (𝑘 ≈ 0). In this scenario, Equations 2.1 and 

2.2 can be expressed as follows.  
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The temporal variation is zero and the steady-state conditions were considered. 

Consequently, Equations 2.3 and 2.4 can be simplified to the second-order ordinary differential 

equations Equations 2.5 and 2.6 , where pollution 𝑃(𝑥, 𝑡) denoted by 𝑃𝑠(𝑥) (the pollutant 

concentration at steady state (𝑘𝑔 𝑘𝑚−3)) and for dissolved oxygen 𝑋(𝑥, 𝑡) denoted by 𝑋𝑠(𝑥) 

(dissolved oxygen concentration at steady state (𝑘𝑔 𝑘𝑚−3)) [6].   
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Considering the actual conditions of the river, when the concentration of pollutants in the 

river exceeds the permissible limits, the concentration of dissolved oxygen levels may reach zero 

downstream, it is imperative to identify the river critical position (𝑥𝑐) where DO exhausts to zero 

𝑋𝑠(𝑥𝑐) = 0. Subsequently, the river is segmented into two parts to derive further insights: the first 

part is 0 ≤ 𝑥 < 𝑥𝑐 and the second part is 𝑥𝑐 ≤ 𝑥 < ∞. In order to ascertain the solution in the 

second section of the river, we need to measure the dissolved oxygen deficit at the transitional 

point where we have consumed all the substrate.  

When the period exceeds a certain point, there are no more substances available, resulting 

the parameter 𝐾1 in the pollution Equation 2.5 being assigned to zero under the assumption that 

the pollution level in this section exceeds the regulatory limits. Hence the Equation 2.5 is 

converted to  
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3. Results and interpretations 

3.1 Analytical Results 

A couple of linear second-order ordinary differential equations Equations 2.5, 2.6, and 2.7 

are solved by using the method of undetermined coefficients. Solve the corresponding 

homogeneous equation by setting the right-hand side to zero. This involves finding the roots of 

the characteristic equation. The form of particular solutions is based on the exponential term of 

pollution source. Start by finding the solution for pollution, then substitute the  particular solution 

of pollution to find the solution for dissolved oxygen in the same way. Through the utilization of 
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analytical methodology, we can derive the steady state solutions that lead to the division of the 

river into two parts as followed.  
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3.2 Analytical and Numerical Simulation 

In this model, 𝑃0 depicts the source concentration of pollution, while 𝑋0 represents the 

initial level of dissolved oxygen [4]. There are no point sources of pollutants, making 𝑃𝑠(𝑥) as 

continuous. The parameters in this study are taken as constants which their values are the same 

as [5], given by Table 3. The four constants values 𝐴1, 𝐴2, 𝐵1, and 𝑥𝑐 can be determined by the 

continuity’s conditions of 𝑃𝑠(𝑥) and 𝑋𝑠(𝑥) at 𝑥 = 𝑥𝑐 with applying boundary conditions 𝑃𝑠(0) =

𝑃0, 𝑋𝑠(0) = 𝑆, and 𝑃𝑠(∞) < ∞. Afterwards, three equations to compute for the three constant 𝐴1,

𝐴2, and 𝐵1 was used in Equations 3.6 and 3.7 are as follows:  
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When obtaining the analytical solutions, we use the bisection method to calculate the 

unknown parameter 𝑥𝑐 in Eqution 3.6. The bisection method is a systematic strategy used to locate 

the root of a continuous function. The method relies on identifying an interval where a zero is 
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already known to exist, splitting the interval into two equal subintervals, and detecting which 

subintervals contains the zero[7]. The critical point 𝑥𝑐 indicates the threshold at which dissolved 

oxygen is no longer present. Nevertheless, our attention is also directed towards the point where 

the oxygen concentration diminishes to a level unsuitable for sustaining fish life. 
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   To ensure fish survival, it is crucial to maintain dissolved oxygen concentrations at a 

minimum of 30% of the saturated value in aquatic ecosystems, denoted as 𝑥𝑓. By altering the 

saturated oxygen concentration 𝑆 by 30%, and evaluating the value of 𝑥𝑓undergoes the 

following modifications. 
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To investigate the factors that influence the location of the crucial value points 𝑥𝑐 and 𝑥𝑓. 

We have selected two primary constant variables: the rate at which pollutants are discharged into 

the river (𝑞) and the cross-sectional area of the river (𝐴). The solutions of performing numerical 

calculations for 𝑥𝑐 and 𝑥𝑓 across a range of 𝑞 and 𝐴 values, as depicted in Table 1 and in Table 2, 

respectively. 

 
Table 1:  Value of 𝑥𝑓 and 𝑥𝑐 by various value the pollutant influx rate along the river : 𝑞 with 

𝜆 = 0.06289 km −1 
 

q ( kg km-1 day-1) xf  (km) xc  (km) 

60 2483.40474 4007.62131 

70 2056.67252 3229.04290 

80 1757.04267 2709.87021 

90 1534.78669 2337.45003 

100 1363.23212 2056.67291 

 
 

Table  2:  Value of 𝑥𝑓 and 𝑥𝑐 by various of the river’s cross-sectional measurement : 𝐴  

   

A ( m2) xf  (km) xc  (km) 

2100 2483.40474 4007.62131 

1575 1867.841798 3011.010509 

1050 1252.287457 2014.408311 

525 636.7650940 1017.836521 

100 1363.23212 2056.67291 
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Table  3: Parameter Values 
     

 Parameters  
𝐿 is the distance from the source to the mouth of a river. (km)   325∗  

𝐷𝑝 is the pollutant dispersal constant coefficient   3.456∗  

in the 𝑥 direction. (km 2day −1) 

𝐷𝑥 is the dissolved oxygen dispersal constant coefficient   3.456∗  

in the 𝑥 direction. (km 2day −1)  

𝑣 is the horizontal water velocity. (km day −1)   43. 2∗  

𝐴 is the river’s cross-sectional measurement. (m 2)   2,100∗  

𝑞 is the pollutant influx rate along the river. (kg km −1 day −1)   60∗  

𝐾1 is the decay rate constant coefficient at 20∘ for pollutant. (day −1)   8.27∗∗∗  

for dissolved oxygen. (day −1)  

𝐾2 is the re-aeration rate constant coefficient at 20∘   44.10∗∗  

𝑘 is the oxygen demand concentration at half-saturation  0.007∗∗∗∗  

for pollutant degradation. (kg m −1)  

𝛼 is the oxygen transfer across the air-water interface. (m 2 day −1)   16.50∗∗  

𝑆 is the saturation level of oxygen. (mg L −1).   0.01∗  

 ∗ [2],  ∗∗ [8],  ∗∗∗∗estimated,  

 ∗∗∗ based on the molecular weights in the chemical reaction 𝐾1 = (
3

16
) 𝐾2  

 
 

 

Figure  1: Behaviors of pollutant concentration 𝑃𝑠 with 𝑞 = 60 kg km −1 day −1 and 𝜆 = 0.06289 

km −1 
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Figure  2: Behaviors of DO concentration 𝑋𝑠 with 𝑞 = 60 kg km −1 day −1 and 𝜆 = 0.06289 

km −1 

   

 

Figure  3: Log plot of pollutant concentrations against 𝑥 by various of the pollutant influx rate 

(𝑞) at 70 ≤ 𝑞 ≤ 100 kg km −1 day −1 and 𝜆 = 0.06289 km −1 
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Figure  4: DO concentrations against 𝑥 by various of the pollutant influx rate (𝑞) at 70 ≤ 𝑞 ≤

100 kg km −1 day −1 and 𝜆 = 0.06289 km −1 

   

 

Figure  5: Log plot of pollutant concentrations against 𝑥 by various of the river’s cross-sectional 

measurement (𝐴) at 525 ≤ 𝐴 ≤ 2100 m 2  
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Figure  6: DO concentrations against 𝑥 by various the river’s cross-sectional measurement (𝐴) at 

525 ≤ 𝐴 ≤ 2100 m 2  

   

Figure 1 and Figure 2 show pollutant concentration and the dissolved oxygen from the 

analytical and numerical computations with 𝑞 = 60 kg km −1 day −1 and 𝜆 = 0.06289 km −1, 

respectively. The illustration in Figure 3 presents the pollution concentration resulting from 

different rates of pollutant discharge (𝑞) at a value of 0.07 ≤ 𝑞 ≤ 0.10 and 𝜆 = 0.06289 km −1. It 

is evident that the concentrations exhibit variation with 𝑞, particularly in two distinct sections of 

the river. The depiction illustrates the location where the river exhibits an excessive number of 

contaminants at the crucial position 𝑥𝑐 . The concentrations increasingly vary obviously with 𝑞, 

an increase in the value of 𝑞 will lead to the critical point of the river becoming shorter. Figure 4 

illustrates the DO concentration depicting the point where the second section approaches zero 

downstream beyond the critical point 𝑥𝑐. As the parameter 𝑞 is increased, it is observable that the 

distances of both 𝑥𝑓 and 𝑥𝑐 decrease. The river has a cross-sectional area of 2100 square meters. 

To simplify the analysis, we are reducing the area by a quarter. Figure 5 displays the pollutant 

concentration that arises from varying the cross-sectional area of the river (A) by 525 ≤ 𝐴 ≤

2100 𝑚2 and 𝜆 = 0.06289 𝑘𝑚−1. The relationship between the cross-sectional area of the river and 

the critical distance is clear: as the river’s cross-sectional area declines, the critical distance also 

reduces due to the higher concentration of pollutants. Figure 6 exhibits the dissolved oxygen (DO) 

concentration, displaying the location where the second section reaches zero downstream after 

the critical point 𝑥𝑐 . As the value of A increases, it is evident that both the distances of 𝑥𝑓  and 𝑥𝑐 

diminish. The length of the river extends to 325 km, with 𝑞 = 60 𝑘𝑔 𝑘𝑚−1 𝑑𝑎𝑦−1, 𝐴 = 2100 m 2 

and 𝜆 = 0.06289 km −1. This demonstrates that for a river with approximately this length and 
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cross-sectional, the oxygen level is maintained above the critical threshold necessary for fish 

survival. The investigation highlights the importance of utilizing this specific model, which 

indicates that for a river of this value, the oxygen levels remain above both of 𝑥𝑓 and 𝑥𝑐. 

 

4. Conclusions 

 In conclusion, the main aim of this study is focused on the development of steady-state 

transport modeling by studied the one-dimensional advection-dispersion equations with sink 

and sources term. The model includes two equations, one describing the rate at which pollutant 

concentration is reduced using aeration and another representing the physical balance for oxygen 

consumption to eliminate the pollutant. This model is built by taking into account the exponential 

growth of pollutant discharge along the river. In this steady-state condition, we simulate from 

the idea, which the degradation rate coefficient for pollutant value as zero and vary 𝑞 between 70 

to 100  𝑘𝑔 𝑘𝑚−1 𝑑𝑎𝑦−1 and cross-section area of the river between between 525 to 2100 𝑚2, to 

observe the dissolved oxygen and pollutant behavior and where the critical points are reached. 

By the observation, the distance of 𝑥𝑓 and 𝑥𝑐 are proportional to the rate of increase of pollutants 

along the river and the cross-section area of the river. In future investigations, we may come 

across scenarios where the model has multiple parameters, either constant coefficients or variable 

coefficients. We can model pollutant insertion as a function of distance, which is similar to what 

happens in reality. These findings point to a decline in dissolved oxygen levels due to rising 

pollution levels without any remediation through water treatment or aeration. In future 

investigations, we may come across scenarios where the model has multiple parameters, either 

constant coefficients or variable coefficients. We can model pollutant insertion as a function of 

distance, which is similar to what happens in reality. Additionally, in order to gain a 

comprehensive understanding of the actual environmental condition, it would be beneficial to 

examine this model under non-steady state conditions. Finally, converting this deterministic 

model into its stochastic equivalent could provide additional insights into how to understand 

water pollution in practical situations. 
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