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Abstract. In this paper, we present a mathematical model that accounts for virus transmission through deceased

individuals to simulate the dynamics of COVID-19 spread in Burkina Faso. The existence and uniqueness of the model’s

solution have been proven. The basic reproduction number was calculated using the Jacobian determinant method.

The stability of the disease-free and endemic equilibrium points was studied. To estimate the model parameters, we

used African Vulture Optimization Algorithm (AVOA). We then used this algorithm to estimate the parameters of the

developed model using daily reported COVID-19 cases in Burkina Faso from March 11 to April 20, 2020. The results

obtained show that the proposed model is more realistic for simulating the spread of COVID-19 in Burkina Faso.

1. Introduction

The coronavirus disease that emerged in December 2019 in the city of Wuhan, Hubei Province,

China, highlighted the importance of mathematical modeling in the fight against infectious dis-

eases. Several models have been created and tested in various countries [1–5]. Lamia et al. [6]

developed two epidemiological models: one in 6D named SEIQRD (Susceptible-Exposed-Infected-

Quarantined-Recovered-Deceased) to predict and estimate the state of the COVID-19 pandemic,

and the other in 4D named SIRD (Susceptible-Infected-Recovered-Deceased) to analyze the long-

term behavior of the pandemic. For this study, they used the nested sampling algorithm and

the Extended Kalman Filter (EKF). H.B. Taboe and their collaborators [7] focused their study on

forecasting the spread of COVID-19 in West Africa while considering control measures. Their ap-

proach is based on the analysis of the basic and controlled reproduction numbers. Yvette M. and
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Robinah N. [8], proposed a mathematical model to evaluate the influence of vaccination programs

on reducing the burden of COVID-19 in certain African countries through numerical sensitivity

analysis. Aboudramane G. Et Al [9] developed a mathematical model to predict the spread of

COVID-19 in Burkina Faso. Their study incorporated public policies to reduce the contact rate,

allowing for better tracking of the evolution of these cases. But the parameters of the problem

were not estimated based on real data.

Many studies in the literature have reported the risk of virus transmission through cadavers

[10–13]. However, most of the models discussed do not account for this risk. This risk is not

negligible in Burkina Faso, given that not all cases have been detected. In this work, we propose

a variant of the SEIR model that incorporates virus transmission through corpses to simulate the

spread of COVID-19 in Burkina Faso. But the parameters of the problem were not estimated based

on real data.

The resulting mathematical model depends on several parameters that need to be identified. The

function thus defined has a complex structure concerning the parameters and suffers from a lack

of regularity. We propose using a metaheuristic method for solving it, as classical gradient-based

methods do not yield good results.

Numerous metaheuristic algorithms have been presented in the literature to solve optimization

problems [14–21]. In [23] Kiemtore et al. used the Grey Wolf Optimizer algorithm to estimate the

parameters of a model describing the dynamics of hepatitis B in Burkina Faso.

In this work, we used African Vulture Optimization Algorithm (AVOA) a metaheuristic algo-

rithm proposed by Benyamin Abdollahzadeh, Farhad Soleimanian Gharehchopogh, and Seyedali

Mirjalili [44, 45].

The remainder of this paper is structured as follows: Section 2 is devoted to the presentation of

the proposed mathematical model. Section 3 is devoted to the mathematical analysis of the model.

The proof of global existence, uniqueness, and boundedness of solutions for the normalized system

is presented. The basic reproduction number was calculated using the Jacobian method proposed

by Baba Seidu et al. [38]. The stability of equilibrium points has also been studied. The parameter

estimation problem has been formulated. In Section 4, we present the African Vulture Optimization

Algorithm (AVOA) and its use for solving the parameter estimation problem. In Section 5, we

present the results of the parameter estimation problem for the proposed model using reported

COVID-19 case data from Burkina Faso from March 11 to April 20, 2020. A brief discussion of

the obtained numerical results is provided. A sensitivity analysis was conducted to determine the

most influential parameters of COVID-19 spread in Burkina Faso. The results show the ability of

our model to simulate the real situation of COVID-19 in Burkina Faso. We conclude with Section

6.
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2. Model Formulation

In this paper, we do formulation of the transmission dynamics of COVID-19. The model

is given by five ordinary differential equations (ODEs) to illustrate the dynamic behavior of

COVID-19 virus. The cumulative human population at any instant of time t represented by

N(t) is categorized in five different classes, namely S(t) the susceptible individuals, E(t) the

exposed COVID-19 infected individuals, Id(t) the detected COVID-19 infected individuals, Iu(t)
the undetected COVID-19 infected individuals, R(t) the individuals that have been recovered.

Figure 1 represents the flow chart of the model which represents the flow compartments of all the

variables taken from the population and Table 1 describes the parameters used in the model.

S E

Iu

R

Id

λN
β

(1− α)η

α η γ1

γ2

µ µ
µ+ µ1

µ+ µ2

ω

µ

Figure 1. Diagram of the model of transmission of COVID-19
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Parameter description

λ recruitment rate which comprises new births and immigrants

ω losing immunity rate

σ base-transmission rate

β1 relative infectivity potential of detected infected

β2 relative infectivity potential of undetected infected

τ relative infectivity potential of dead undetected infected

α proportion of cases that goes to the symptomatic class after the latency period

η rate at which an exposed individual moves to the infectious class

µ natural death rate of the human population

µ1 mortality rate induced by COVID detected

µ2 undetected COVID-induced mortality rate

γ1 recovery rate of asymptomatic individuals

γ2 recovery rate of symptomatic individuals
Table 1. Description of parameters used in the model

We now make the following assumptions:

(H1) : The inflow of individuals into the population to enter the susceptible compartment is

defined by λN (i.e recruitment rate which comprises new births and immigrants) [27].

(H2) : In Burkina Faso, we divide infected individuals into two classes: detected or listed infected

individuals and undetected infected individuals, i.e. those not listed by the health services.

(H3) : In Burkina Faso, undetected dead infected individuals can transmit the virus during the

burial process.

(H4) : The force of new infection given by a standard incidence function and defines the following

quantity:

σ
β1Id + (β2 + τµ2) Iu

N
(H5) : The appropriate contact coefficient for a susceptible person to become infected with

COVID-19 depends on detected and undetected infected individuals (β1Id and β2Iu), as

well as the deaths of undetected infected individuals τµ2Iu.

(H5) : All individuals who do not die from COVID-19, i.e. individuals in compartments S, E
and R have the same natural mortality rate µ.

(H6) : At any time N(t) = S(t) +E(t) + Id(t) + Iu(t) +R(t) represents the total size of the human

population.

The susceptible population is generated by general recruitment λN and recovered individu-

als who become susceptible. This population is diminished by the newly infected individuals

σ
β1Id + (β2 + τµ2) Iu

N
and natural mortality µS. The following equation describes the dynamics

of the susceptible :
dS
dt

= λN +ωR− σ
β1Id + (β2 + τµ2) Iu

N
S− µS (2.1)
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The population of exposed compartment illustrates the susceptible individuals infection. This

population is diminished by the transfer of this class µE and natural mortality µE. The dynamics

of exposed individuals is given by the following equation:

dE
dt

= σ
β1Id + (β2 + τµ2) Iu

N
S− (η+ µ)E (2.2)

The exposed individuals move to the detected infected class with a rate αη. The number of the

population of the detected infected decreases by the mortalities (natural mortality µ and mortality

induced by the disease µ1) and also by the rate of recovered γ1. For the infected individuals

detected, we obtain the following equation:

dId

dt
= αηE− (γ1 + µ+ µ1) Id (2.3)

Thus, the exposed individuals move again to the undetected infected class with a rate (1−α)η. The

number of the population of the undetected infected decreases by death rates (natural mortality

µ and mortality induced by the disease µ2) and also by the rate of recovered γ2. For the infected

individuals undetected, we obtain the following equation:

dIu

dt
= (1− α) ηE− (γ2 + µ+ µ2) Iu (2.4)

Finally, the recovered class, caracterized by the recuperation rates γ1 and γ2, is reduced by the

natural mortality rate µ and the loss of immunity ω. The following differential equation expresses

these dynamics:
dR
dt

= γ1 Id + γ2 Iu − (µ+ω)R (2.5)

So combining all the differential equations formulated in (1)˘(5), we finally obtain the following

system of COVID-19 dynamics equations:

dS
dt

= λN +ωR− σ
β1Id + (β2 + τµ2) Iu

N
S− µS

dE
dt

= σ
β1Id + (β2 + τµ2) Iu

N
S− (η+ µ)E

dId

dt
= αηE− (γ1 + µ+ µ1) Id

dIu

dt
= (1− α) ηE− (γ2 + µ+ µ2) Iu

dR
dt

= γ1 Id + γ2 Iu − (µ+ω)R

(2.6)

Posing

s =
S
N

, e =
E
N

, id =
Id

N
, iu =

Iu

N
, r =

R
N



6 Int. J. Anal. Appl. (2024), 22:203

The normalized model of the model 2.6 is given by:

ds
dt

= λ+ω r− σ (β1id + β2iu + τµ2iu) s− µ s

de
dt

= σ (β1id + β2iu + τµ2iu) s− (η+ µ) e

did
dt

= αη e− (γ1 + µ+ µ1) id

diu
dt

= (1− α) η e− (γ2 + µ+ µ2) Iu

dr
dt

= γ1 id + γ2 iu − (µ+ω) r

s(0) = s0, e(0) = e0, id(0) = id,0, iu(0) = iu,0, r(0) = r0

(2.7)

3. Mathematical analysis of our Covid-19 model

3.1. Properties of positivity and boundness.

Theorem 3.1. Consider the initial value

(s0, e0, id,0, iu,0, r0) ∈ R5
+, such that s0 + e0 + id,0 + iu,0 + r0 = 1

and

0 ≤ λ, ω, σ, β1, β2, τ, θ, µ, µ1, µ2, η, α, γ1, γ2, ≤ 1

then there exists a unique, non negative, bounded global solution to system 3.1.
Moreover for all t ≥ 0

Γ =

{
(s(t), e(t), id(t), iu(t), r(t), d(t)) ∈ R5

+| 0 ≤ Q(t) ≤
λ
µ
+Q0

}
0 ≤ s(t) ≤

λ
µ

(3.1)

where

Q(t) = s(t) + e(t) + id(t) + iu(t) + r(t) and Q0 = s0 + e0 + id,0 + iu,0 + r0 = 1 (3.2)

Proof. To ensure local existence, all functions of system 3.1 must be locally Lipschitz continuous.

As a result, a unique local solution exists on the interval t ∈ [T0, Tmax), where Tmax represents the

divergence time. The study of this type of system relies on basic techniques of ordinary differential

equations. The assurance of unique solutions is obtained through various fixed point theorems on

a maximal interval [T0, Tmax) [23,24]. By demonstrating that the components of the solution vector

(s(t), e(t), id(t), iu(t), r(t) are uniformly bounded on any bounded interval [0, Tmax), it is ensured
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that Tmax = ∞. We remark that the components of the vector

U(s, e, id, iu, r) =



U1(s, e, id, iu, r)

U2(s, e, id, iu, r)

U3(s, e, id, iu, r)

U4(s, e, id, iu, r)

U5(s, e, id, iu, r)


(3.3)

Where

U1(s, e, id, iu, r) = λ+ω r− σ (β1id + β2iu + τµ2iu) s− µ s

U2(s, e, id, iu, r) = σ (β1id + β2iu + τµ2iu) s− (η+ µ) e

U3(s, e, id, iu, r) = αη e− (γ1 + µ+ µ1) id

U4(s, e, id, iu, r) = (1− α) η e− (γ2 + µ+ µ2) iu

U5(s, e, id, iu, r) = γ1 id + γ2 iu − (µ+ω) r

(3.4)

are almost positive. Therefore, since the starting conditions are not negative, it follows that the

solution components remain non-negative for each t ∈ [T0, Tmax). [22, 24]. Now, let the function Q

be defined as :

Q(t) = s(t) + e(t) + id(t) + iu(t) + r(t) (3.5)

By taking the sum of the first five equations in 3.1, one observes
dQ
dt
≤ λ− µQ(t)

Q(0) = s0 + e0 + id,0 + iu,0 + r0 = 1
(3.6)

Integrating the equation 3.6 over (0, t) for all t0 < t < T, one can get the following

Q(t)eµt
− 1 ≤

λ
µ
(eµt
− 1),

which implies that

Q(t) ≤ e−µt +
λ
µ
(1− e−µt).

Therefore

Q(t) ≤ (1−
λ
µ
)e−µt +

λ
µ

.
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Two distinct cases need to be examined here. If
λ
µ
< 1, then the following inequality is satisfied

Q(t) ≤ 1−
λ
µ
+
λ
µ
≤ 1,

otherwise, if
λ
µ
≥ 1

then

Q(t) ≤
λ
µ

.

In summary, we arrive at the following result, where Q(t) ≥ 0

0 ≤ Q(t) ≤
λ
µ
+Q0 (3.7)

As a result, Tmax = ∞ and it has been shown that a unique, non-negative, and bounded global

solution exists.

We remark that s(t) satisfies the following :
ds
dt
≤ λ− µ s(t)

s(0) = s0

(3.8)

By integrating 3.7 over [0, t] for all t > 0 , one obtains:∫ t

0

d
dp

(s(p)eµ p) ≤

∫ t

0
λ eµ p (3.9)

This implies that

s(t)eµt
≤
λ
µ

(
eµt
− 1

)
+ s0 (3.10)

With

s0 =
λ
µ

which implies that

0 ≤ s(t) ≤
λ
µ

(3.11)

One can conclude the proof of this theorem. �

3.2. Basic reproduction number and disease free-equilibrium E0.

3.2.1. Basic reproduction ratio.

Theorem 3.2. Consider the model 3.1 with the parameters specified in 3.1. Therefore,

(i) The equilibrium point in the absence of disease (DFE) is:

E
0 =

(
λ
µ

, 0, 0, 0, 0
)

(3.12)

(ii) The basic reproduction number R0 of model is:
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R0 =
λση [αβ1 (γ2 + µ+ µ2) + (γ1 + µ+ µ1) (β2 + τµ2 − αβ2 − ατµ2)]

µ (η+ µ) (γ1 + µ+ µ1) (γ2 + µ+ µ2)
(3.13)

Proof. Consider the model 3.1:

(i) To compute the equilibrium solutions, we set the right-hand-side of system to zero.

One then obtains the disease-free equilibrium as follows :

E
0 =

(
λ
µ

, 0, 0, 0, 0
)

(3.14)

(ii) The basic reproduction number R0, is calculated using the Jacobian-Determinant method

of Baba Seidu described in the following ALgorithm [38]:

Step 1 :Identify the infected compartments of the model.

Step 2 : Find the Jacobian J of the infected subsystem of the model.

Step 3 : Evaluate the Jacobian of the infected subsystem at the disease-free equilibrium, E0(
i.e J

(
E

0
))

.

Step 4 : Find the determinant,
∣∣∣∣J (
E

0
)∣∣∣∣

Step 5 : Express the determinant as
∣∣∣∣J (
E

0
)∣∣∣∣ = ξ

( B
D
− 1

)
Step 6 : Find R0 using R0 =

B
D

Thus let us consider only the infected compartments which satisfy the following third-order

system :

d
dt



e

id

iu


=



σ (β1id + β2iu + τµ2iu) s− (η+ µ) e

αη e− (γ1 + µ+ µ1) id

(1− α) η e− (γ2 + µ+ µ2) iu


(3.15)

Adopting the notation X = (e, id, iu) for the infected states of model 3.1, one obtains the

Jacobians:

J(X) =



− (η+ µ) σβ1s0 σ(β2 + µ2τ)s0

αη − (γ1 + µ+ µ1) 0

(1− α) η 0 − (γ2 + µ+ µ2)


(3.16)
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J

(
E

0
)
=



− (η+ µ) σβ1
λ
µ

σ(β2 + τµ2)
λ
µ

αη − (γ1 + µ+ µ1) 0

(1− α) η 0 − (γ2 + µ+ µ2)


(3.17)

Now,∣∣∣∣J (
E

0
)∣∣∣∣ = (η+ µ) (γ1 + µ+ µ1) (γ2 + µ+ µ2)[
λση [αβ1 (γ2 + µ+ µ2) + (γ1 + µ+ µ1) (β2 + τµ2 − αβ2 − ατµ2)]

µ (η+ µ) (γ1 + µ+ µ1) (γ2 + µ+ µ2)
− 1

]
(3.18)

Here we have,

ξ = (η+ µ) (γ1 + µ+ µ1) (γ2 + µ+ µ2)

�

Therefore,

R0 =
λση [αβ1 (γ2 + µ+ µ2) + (γ1 + µ+ µ1) (β2 + τµ2 − αβ2 − ατµ2)]

µ (η+ µ) (γ1 + µ+ µ1) (γ2 + µ+ µ2)
(3.19)

3.2.2. Global stability of disease-free equilibrium point E0.
This section presents the global stability analysis of the model at the disease-free equilibrium

point. Next, we aim to provide a concise overview of the Castillo-Chavez method [26, 29, 30] to

demonstrate the global stability of the system 2.7 at the disease-free equilibrium point. Thus,

by applying the Castillo-Chavez method [26, 30], the given problem 2.7 is reformulated into the

following sub-models: 

dX1

dt
= F(X1, X2),

dX2

dt
= G(X1, X2),

G(X1, 0) = 0

(3.20)

Where X1 and X2 represent respectively the population of uninfected individuals and infected

individuals.

The following conditions (C1) and (C2) must be satisfied to guarantee the local asymptotic stability.

(C1) If
dX1

dt
= F(X1, 0) then E0 is globally stable asymptotically.

(C2) G(X1, X2) = BX2 − Ĝ(X1, X2).

Where Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, the matrix A is an M-matrix with quasi-positive off-diagonal

elements. In the proposed model 3.1, X1 = (s, r) ∈ R2 and X1 = (e, id, iu) ∈ R3. According to the
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results obtained in Section 3.2.1 , The disease-free equilibrium point (DFE) is denoted by E0 and is

defined as follows:

E
0 =

(
λ
µ

, 0, 0, 0, 0
)

(3.21)

To ensure the global asymptotic stability of the disease-free equilibrium point, the results previ-

ously mentioned [26] were applied.

Theorem 3.3. If R0 < 1 and s(t) ≤
λ
µ

then the DFE point E0 of the model 3.1 is globally asymptotically

stable.

Proof. In System 3.1, one can set the following

F(X1, X2) =


λ+ω r− σ (β1id + β2iu + τµ2iu) s− µ s

γ1 id + γ2 iu − (µ+ω) r

 (3.22)

and

G(X1, X2) =



G1(X1, X2)

G2(X1, X2)

G3(X1, X2)


Where each part is described as follows:

G1(X1, X2) = σ (β1id + β2iu + τµ2iu) s− (η+ µ) e

G2(X1, X2) = αη e− (γ1 + µ+ µ1) id

G3(X1, X2) = (1− α) η e− (γ2 + µ+ µ2) iu

It is clear that G(X1, 0) = 0 at the disease-free equilibrium point. We now need to demonstrate

that (C1) is satisfied.

To this aim, one calculates the eigenvalues of the Jacobian associate to F(X1, X2) at E0.

Thus,

JF
(
E

0
)
=


−µ 0

0 0

 (3.23)

Since the only eigenvalue ς = −µ found of the jacobian matrix is negative, then the DFE point

E
0 is globally asymptotically stable. To derive the condition (C2), we first calculate the matrix
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B = JG(X1, X2) at the DFE point.

B =



− (η+ µ) σβ1
λ
µ

σβ2
λ
µ

αη − (γ1 + µ) 0

(1− α) η 0 − (γ2 + δ+ µ)


(3.24)

It is clear that the matrix B given above is an M−matrix with non-diagonal entries non-negative.
Now, one can calculate the following fonction : Ĝ(X1, X2) = BX2 −G(X1, X2) Then,

Ḡ(X1, X2) =



− (η+ µ) σβ1
λ
µ

σ(β2 + τµ2)
λ
µ

αη − (γ1 + µ+ µ1) 0

(1− α) η 0 − (γ2 + µ+ µ2)


×



e

id

iu


−



σ (β1id + β2iu + τµ2iu) s− (η+ µ) e

αη e− (γ1 + µ+ µ1) id

(1− α) η e− (γ2 + µ+ µ2) iu


(3.25)

Ḡ(X1, X2) =



σ β1id

(
λ
µ
− s

)
+ σ(β2 + τµ2)iu

(
λ
µ
− s

)

0

0


(3.26)

According to the theorem 3.1,

σ ≥ 0, β1 ≥ 0, β2 ≥ 0, λ ≥ 0, µ ≥ 0, µ1 ≥ 0, µ2 ≥ 0, τ ≥ 0

and

id(t) ≥ 0, iu(t) ≥ 0,
λ
µ
− s(t) ≥ 0

Then,

Ḡ(X1, X2) ≥ 0

Consequently, the hypothesis (C1) and (C2) are satisfied. In addition, the Castillo-Chavez method

( [26], [29], [37]) is used to establish that ifR0 < 1, the disease-free equilibrium point exhibits global

asymptotic stability. �

3.3. Computation of the endemic steady-state E∗.
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3.3.1. Endemic equilibia E∗.
In presence of infected individuals, model 2.7 is said to be exhibiting an endemic equilibrium

point

E
∗ =

(
s∗, e∗, i∗d, i∗u, r∗

)
where s∗, e∗, i∗d, i∗u, r∗ are given by :

s∗ =
λη (αγ1(γ2 + µ+ µ2) + γ2(1− α)(γ1 + µ+ µ1))

µ(γ1 + µ+ µ1)(γ2 + µ+ µ2)(µ+ω)R0
;

e∗ =
(γ1 + µ+ µ1)

αη
i∗d;

i∗u =
(1− α)(γ1 + µ+ µ1)

α(γ2 + µ+ µ2)
i∗d;

i∗d =
αλ (ηαγ1(γ2 + µ+ µ2) + ηγ2(1− α)(γ1 + µ+ µ1) − (γ1 + µ+ µ1)(γ2 + µ+ µ2)(µ+ω)R0)

(γ1 + µ+ µ1)R0 (αγ1(γ1 + µ+ µ1) + γ2(1− α)(γ1 + µ+ µ1)) (ω− (η+ µ))
;

r∗ =
αγ1(γ2 + µ+ µ2) + γ2(1− α)(γ1 + µ+ µ1)

α(γ2 + µ+ µ2)(µ+ω)
i∗d;

(3.27)

3.3.2. Global stability of endemic equilibrium point E∗.
In this section, by using a suitable Lyapunov function, we will show that the endemic equilibrium

point is globally asymptotically stable E∗.

Theorem 3.4. If R0 > 1, the endemic equilibrium point E∗ of system 2.7 is globally asymptotically stable.

Proof. When R0 > 1, one defines the following Lyapunov function as in [27, 28, 31, 32, 35]:

L = (s− s∗) + (e− e∗) +
(
id − i∗d

)
+ (iu − i∗u) + (r− r∗) −

(
s∗ + e∗ + i∗d + i∗u + r∗

)
× ln

(
s + e + id + iu + r

s∗ + e∗ + i∗d + i∗u + r∗

)
(3.28)

As Q = s + e + id + iu + r, one can set Q∗ = s∗ + e∗ + i∗d + i∗u + r∗ Subsequently, the Lyapunov

function can also be reformulated as follows

L = Q−Q∗ −Q∗ln
Q
Q∗

L = Q∗
(

Q
Q∗
− 1− ln

Q
Q∗

) (3.29)

We will use the family of Volterra-type Lyapunov functions given by g(x) = x− 1− ln(x), x ∈ R+,

which has a global minimum at x = 1 and satisfies g(1) = 0.

Since s(t) > 0, e(t) > 0, id(t) > 0, iu(t) > 0, r(t) > 0, , then one can obtain the following

L = Q−Q∗ −Q∗ln
Q
Q∗

> 0 (3.30)

Therefore, the Lyapunov function L derivative is given by the following sense

dL
dt

=

(
1−

Q∗

Q

)
dQ
dt

(3.31)
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Note that according to system 2.7

dQ
dt

= λ− µ1 id − µ2 iu − µQ (3.32)

As at the endemic equilibrium point
dQ
dt

= 0, then one obtains

λ = µ1 id + µ2 iu + µQ (3.33)

From 3.3.2, 3.3.2, and by assuming that

Q−Q∗ ≥ 0, id − i∗d ≥ 0, iu − i∗u ≥ 0 (3.34)

One has

dL
dt

=

(
1−

Q∗

Q

) (
µ1 id + µ2 iu + µQ− µ1 i∗d − µ2 i∗uµQ∗ − µQ

)
dL
dt

= −

(
Q−Q∗

Q

) [
µ1

(
id − i∗d

)
+ µ2 ( iu − i∗u) + µ (Q−Q∗)

]
dL
dt
≤ 0

(3.35)

From (3.2) and by using the fact that
dL
dt

= 0 if and only if

s = s∗, e = e∗, id = i∗d, iu = i∗u, r = r∗, then
dL
dt

converges in positive region Φ such as t −→ ∞ .

In accordance with LaSalle’s invariance principle theorem [35],the endemic equilibrium point E∗

is characterized by global asymptotic stability when R0 > 1 [32, 36]. �

3.4. Parameters estimation.
Let thus M observations of values of detected infected Iobs(t j) at the moments t j, j = 1, . . . , M.

At the problem 2.6, We assign the following definition to the functional J

J(U) =

∫ t f

ti

(Id(t) − Iobs(t))2dt (3.36)

U = (β1, β2, σ, η,α,γ1,γ2,µ1,µ2, τ) is the vector of parameters to determinate.

ti the initial time and t f the final time.

The parameters estimation problem consists in solving

min
U⊂D

J(U) (3.37)

whereD = [0, 1]10 a bounded subset of R10.

The problem defined by 3.36 has a unique solution.
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4. Presentation of African Vulture Optimization Algorithm (AVOA)

African Vulture Optimization Algorithm (AVOA) is a metaheuristic algorithm proposed by

Benyamin Abdollahzadeh Et al. [44, 45]. This algorithm was developed based on the modeling

and simulation of the life habits and foraging behavior of African vultures. The assumptions of

AVOA are as follows:

• The population consists of N vultures. This population can be divided into three groups

based on the vultures’ life habits.

• The position space of each vulture is indicated in d dimensions. It is determined by the

fitness value of the feasible solution. The first best vulture corresponds to the best solution,

the second vulture to the second-best solution, and the remaining vultures to the third

group of the population.

• The separation of the three groups is created to formulate the most crucial natural function

of vultures, which is living in groups to find food. Therefore, each group differs in its ability

to find and obtain food.

• The vultures’ habits and behavior, which involve searching for food for hours, allow them

to avoid the traps of hunger. The strongest and most efficient vultures correspond to the

best vultures, while the weakest and hungriest vultures correspond to the worst vultures.

In AVOA, vultures seek to approach the best vultures while avoiding the worst ones.

4.1. The Steps of AVOA.
The AVOA algorithm consists of four stages. [44, 45]

? Phase 1: Population Grouping

Once the initial population is generated, the fitness values of all solutions are calculated. The best

solution represents the best vulture of the first group, while the second-best solution represents

the best vulture of the second group. Based on equation (4.1), the other solutions are oriented

towards the best solutions of the first and second groups.

R(i) =

BestVulture1 if pi = L1

BestVulture2 if pi = L2

où i = 1, . . . , N. (4.1)

where R(i) : selected best vulture

BestVulture1: the best vulture of the first group

BestVulture2: the best vulture of the second group

L1 and L2: parameters to be measured before the operation, ranging from [0,1]

The probability of selecting the best solution from each group, pi, is determined according to the

roulette wheel mechanism by equation (4.2):

pi =
Fi∑n

i=1 Fi
(4.2)
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where Fi is the fitness of the vulture i and n is the total number of vultures in the two groups.

? Phase 2: The Rate of Starvation of Vultures F
When vultures are well-fed, they have high energy to search for food over long distances. On

the other hand, when they are hungry, they become aggressive and lack the energy to fly long

distances, staying close to the stronger vultures that have food. Equation (4.3) allows the transition

from the exploration phase to the exploitation phase, inspired by the vultures’ satiety or hunger

rate. The modeling of this behavior is given by equation (4.3). [44, 45]

F = (2× rand1 + 1) × z×
(
1−

iterationi

maxiterations

)
+ t (4.3)

where:

rand1: a random value between 0 and 1

z: a random value in the interval [-1, 1] that changes at each iteration

with:

t = h×
(
sin

(
ω×

π
2
×

iterationi

maxiterations

)
+ cos

(
π
2
×

iterationi

maxiterations

)
− 1

)
(4.4)

where:

h: a random number between [-2, 2]

w: a constant controlling the exploration phase

When the value |Fi| is greater than 1, the vultures enter the exploration phase and search for food

in different locations. Otherwise, they enter the exploitation phase, seeking food nearby.

? Phase 3: Exploration Phase

At this stage, the AVOA is examined. In nature, vultures have very good visual capabilities,

allowing them to efficiently find food and detect dying animals. In AVOA, vultures use two

strategies to explore randomly selected locations. Each strategy is chosen using a parameter P1

ranging from 0 to 1. The model is:

P(i + 1) =

equation (4.6) si P1 ≥ randP1

equation (4.8) si P1 < randP1

(4.5)

P(i + 1) = R(i) −D(i) × F (4.6)

D(i) = |X ×R(i) − P(i)| (4.7)

where:

R(i): one of the chosen best vultures

P(i): current position vector of the vulture

P(i + 1): position vector of the vulture at the next iteration

P(i + 1) = R(i) − F + rand2× ((ub− lb) × rand3 + lb) (4.8)
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with:

rand2: a random number between [0, 1]

D(i): distance between the vulture and the current optimum

rand3: used to provide a high random coefficient

lb and ub: lower and upper bounds

X: a random value between 0 and 2

? Phase 4: Exploitation Phase (First Step)

The first step of the exploitation phase begins when the value of |Fi| is between [0.5, 1]. In this phase,

two behaviors are performed: rotational flight and siege fighting. The parameter P2, ranging from

[0, 1], is chosen to allow the selection of each strategy, which must be chosen before each search

operation. At the start of each phase, a random number randp2 between 0 and 1 is generated. If

this number is less than P2, the rotational flight strategy is implemented. If this number is greater

than or equal to P2, the siege fighting is applied slowly. This step is simulated as follows: [44, 45]

P(i + 1) =

Eq.(4.10) si P2 ≥ randp2,

Eq.(4.12) si P2 < randp2,
i = 1, . . . , N. (4.9)

P(i + 1) = D(i) × (F + rand4) − d(t), i = 1, . . . , N. (4.10)

P(i + 1) = R(i) − (S1(i) + S2(i)), i = 1, . . . , N. (4.11)

where:

rand4: a random number in [0, 1]

d(i): distance between the i-th vulture and the current best vulture, calculated as follows:

d(i) = R(i) − P(i), i = 1, . . . , N. (4.12)

S1(i) and S2(i) are calculated in (4.13) and (4.14):

S1(i) = R(i) ×
(

rand5 × P(i)
2π

)
× cos(P(i)), i = 1, . . . , N. (4.13)

S2(i) = R(i) ×
(

rand6 × P(i)
2π

)
× sin(P(i)), i = 1, . . . , N. (4.14)

with: rand5 and rand6 are random numbers between 0 and 1.

? Phase 5: Exploitation Phase (Second Step)

This phase is initiated if |Fi| < 0.5. The movements of the two best vultures gather several

types of vultures around the same food source, but siege and aggressive fighting to find food are

performed. Before the vultures act, a random number randP3 between 0 and 1 is generated. There

is a parameter P3 such that if randP3 is greater than or equal to P3, multiple types of vultures gather
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around the same food source. If randP3 is less than P3, the aggressive fighting and siege strategy is

implemented. This phase is simulated as follows:

P(i + 1) =

Eq.(4.16) if P3 ≥ randp3

Eq.(4.17) if P3 < randp3

, i = 1, . . . , N. (4.15)

P(i + 1) =
A1(i) + A2(i)

2
, i = 1, . . . , N. (4.16)

P(i + 1) = R(i) − d(i) × F× Levy(d), i = 1, . . . , N. (4.17)

where: d is the dimension of the problem

A1 and A2 are calculated by (4.18)and (4.19), respectively

A1(i) =
Best Vulture1(i)

Best Vulture1(i) − (P(i))2 × P(i) × F, i = 1, . . . , N. (4.18)

A2(i) =
Best Vulture2(i)

Best Vulture2(i) − (P(i))2 × P(i) × F, i = 1, . . . , N. (4.19)

The Lévy flight mechanism increases the efficiency of AVOA. Its formula is:

Levy(d) = 0.01×
r1 × σ

r
1
β

2

(4.20)

where β is a fixed number equal to 1.5; r1 and r2 are random numbers between 0 and 1. σ can be

calculated as shown in equation (4.21)

σ =

 Γ(1 + β) × sin
(
πβ
2

)
Γ
( 1+β

2

)
× β× 2×

(
β−1

2

)
1
β

(4.21)

où Γ(x) = (x− 1)!

4.2. The pseudo-code of the AVOA.
The pseudo-code of the AVOA is described in following algorithm: [44, 45].
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Algorithm AVOA for parameter estimation problem

Inputs: Population dimension N and maximum number of iterations T
Outputs: The location of Vulture and its fitness value

Initialize the random population Pi(i = 1, 2, . . . , N)

while (stopping condition is not met) do
Solve the direct problem 2.6

Calculate the fitness values of Vulture using cost function 3.36

Set PBestVulture1 to represent the Vulture’s position (Best position for Vulture Category 1)

Set PBestVulture2 to represent the Vulture’s position (Second best location Best Vulture Category

2)

for (each Vulture (Pi)) do
Select R(i) Eq.(4.1)

Update the F) Eq. (4.3)

if (|F| ≥ 1) then
if (P1 < randP1) then

Update the location Vulture Eq. (4.6)

else
Update the location Vulture Eq. (4.8)

end if
else if (|F| < 1)) then

if (|F| ≥ 0.5) then
if (P2 < randP2) then

Update the location Vulture Eq. (4.10)

else
Update the location Vulture Eq. (4.11)

end if
else

if (P3 ≥ randP3) then
Update the location Vulture Eq. (4.16)

else
Update the location Vulture Eq. (4.17)

end if
end if

end if
end for

end while
return PBestVulture1
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5. Results and Discussion

5.1. Findings from parameter estimation.
The statistics we used are the daily COVID-19 cases reported in Burkina Faso from March 11 to

April 20, 2020.

The initial values used are S(0) = 20840800, E(0) = 131, Id(0) = 2, Iu(0) = 4, R(0) = 0

. You will find the parameter values used in the table below.

Parameters description Values references

λ recruitment rate 0.00075/day Assumed

µ natural mortality rate 0.0165 [34]

ω losing immunity rate 0.55 Assumed

The table presents the results of the parameter estimation problem using AVOA algorithm

Parameters ranges estimated values

β1 [0.4− 0.8] 0.5

β2 [0.4− 0.9] 0.8

σ [0.4− 0.8] 0.75

η [0.1− 0.3] 0.3

α [0.2− 0.4] 0.4

γ1 [0.1− 0.3] 0.15

γ2 [0.1− 0.2] 0.2

µ1 [0− 0.02] 0.008

µ2 [0− 0.02] 0.01

τ [0− 0.02] 0.0149

Table 2. Estimated parameters

The figure (2) presents both the observed data and the estimated data.
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Figure 2. The daily covid-19 cases time series in Burkina Faso from March 11 to

April 20, 2020 and the best-fitting curve of the proposed model

Figure 3. Evolution of population

After the numerical simulation with the estimated parameters, the figure (3) shows the evolution

of the number of exposed infected individuals, detected infected individuals, undetected infected

individuals, and recovered individuals in the population of Burkina Faso. Additionally, the

obtained value for the basic reproduction number is R0 = 1.0597 > 1.
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5.2. Sensitivity analysis.
Sensitivity analysis is a method used to determine how fluctuations in model parameters in-

fluence the results. The effect of each parameter on the endemic threshold has been described in

the sensitivity analysis for Covid-19 virus transmission. The parameter with the lowest sensitivity

index magnitude is less significant than the one with the highest sensitivity index magnitude.

Sensitivity indices of parameters can be either positive or negative. The sensitivity analysis that

we will perform will help us understand how variations in parameters influence our dynamic

model ( 2.7). The sensitivity index of the parameter Υ for R0 is calculated using the following

formula: [46, 47]:

χR0
Υ

=
∂R0

∂Υ
×
∂Υ
R0
≈

%∆R0

%∆p
(5.1)

From equation(3.13), we obtain:

χR0
µ1

= −
λσηαβ1

µ(η+ µ)(γ1 + µ+ µ1)2 (5.2)

χR0
µ2

=
λση [(τ− ατ) (γ2 + µ+ µ2) − (β2 + τµ2 − αβ2 − ατµ2)]

µ(η+ µ)(γ2 + µ+ µ2)2 (5.3)

χR0
β1

=
λσηα(γ2 + µ+ µ2)

µ(η+ µ)(γ1 + µ+ µ1)(γ2 + µ+ µ2)
(5.4)

χR0
β2

=
λση(γ1 + µ+ µ1)(1− α)

µ(η+ µ)(γ1 + µ+ µ1)(γ2 + µ+ µ2)
(5.5)

χR0
σ =

λη [αβ1(γ2 + µ+ µ2) + (γ1 + µ+ µ1)(β2 + τµ2 − αβ2 − ατµ2)]

µ(η+ µ)(γ1 + µ+ µ1)(γ2 + µ+ µ2)
(5.6)

χR0
α =

λση [β1(γ2 + µ+ µ2) − (γ1 + µ+ µ1)(β2 + τµ2)]

µ(η+ µ)(γ1 + µ+ µ1)(γ2 + µ+ µ2)
(5.7)

χR0
τ =

λσηµ2(γ1 + µ+ µ1)(1− α)
µ(η+ µ)(γ1 + µ+ µ1)(γ2 + µ+ µ2)

(5.8)

χR0
η =

λσ [αβ1(γ2 + µ+ µ2) + (γ1 + µ+ µ1)(β2 + τµ2 − αβ2 − ατµ2)]

(η+ µ)2(γ1 + µ+ µ1)(γ2 + µ+ µ2)
(5.9)

χR0
γ1

= −
λσηαβ1

µ(η+ µ)(γ1 + µ+ µ1)2 (5.10)

χR0
γ2

= −
λση (β2 + τµ2 − αβ2 − ατµ2)

µ(η+ µ)(γ2 + µ+ µ2)2 (5.11)

The table (3) gives the numerical values of the sensitivity:
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Sensitivity index Values

χR0
σ =

(
∂R0
∂σ

)
×

(
σ

R0

)
1.000000

χR0
β1

=
(
∂R0
∂β1

)
×

(
β1
R0

)
0.350957

χR0
β2

=
(
∂R0
∂β2

)
×

(
β2
R0

)
0.648922

χR0
α =

(
∂R0
∂α

)
×

(
α

R0

)
−0.081739

χR0
τ =

(
∂R0
∂τ

)
×

(
τ

R0

)
0.000122

χR0
η =

(
∂R0
∂η

)
×

(
η

R0

)
0.052133

χR0
γ1

=
(
∂R0
∂γ1

)
×

(
γ1
R0

)
−0.301682

χR0
γ2

=
(
∂R0
∂γ2

)
×

(
γ2
R0

)
−0.573107

χR0
µ1

=
(
∂R0
∂µ1

)
×

(
µ1
R0

)
−0.016090

χR0
µ2

=
(
∂R0
∂µ2

)
×

(
µ2
R0

)
−0.028534

Table 3. Sensitivity indices of the model parameters

Figure 4 explicitly shows the effect of each parameter on the endemic threshold. The parameters

χR0
β1

= 0.350957, χR0
β2

= 0.648922 and χR0
σ = 1.0 for R0 = 1.0597 are the most positively sensitives.

On one hand, the relative infectivity potential of detected infected individuals (β1), the relative

infectivity potential of undetected infected individuals (β2), and on the other hand, the base trans-

mission rate (σ) has a significant influence on the transmissibility of COVID-19. They contribute

to the increase of the endemic threshold and the spread of the epidemic. Furthermore, since β2 is

higher than β1, this indicates that undetected infected individuals play a greater role in the spread

of the epidemic.

The most negatively sensitive parameters are the recovery rate of asymptomatic individuals

(χR0
γ1

= −0.301682) and the recovery rate of symptomatic individuals (χR0
γ2

= −0.573107) for

R0 = 1.0597 . Increasing these recovery rates significantly reduces the number of infectious

individuals.

6. Conclusion

In this study, a mathematical model was developed to account for the transmission of COVID-19

through deceased bodies and was applied to Burkina Faso. This model considered susceptible

individuals, exposed infected individuals, detected infected individuals, undetected infected in-

dividuals, and recovered individuals. The mathematical analysis indicated that the progression of

the disease is governed by R0, the basic reproduction number. Specifically, if R0 < 1, the disease

will eventually disappear from the population, leading to a globally and asymptotically stable

disease-free equilibrium. Conversely, if R0 > 1, the disease will persist, resulting in a globally and

asymptotically stable endemic state.
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Figure 4. sensitivity indices of model parameters

Model parameters were estimated using the AVOA algorithm, based on reported COVID-19

cases in Burkina Faso from March 11 to April 20, 2020. The numerical simulations reveal a slight

increase in the number of infected individuals, with a basic reproduction number R0 = 1.0597 > 1,

which confirms the low endemicity of COVID-19 in Burkina Faso. Additionally, sensitivity analysis

of R0 highlighted the impact of various parameters on the dynamics of COVID-19 in Burkina Faso,

with the most sensitive parameters being the relative potential of detected infected individuals

(β1), the relative potential of undetected infected individuals (β2), and the transmission rate (σ).
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