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Abstract. The primary objective of this study is to present a novel form of generalised additive functional equation
¢( Z;Zl jv]-) = Z;Zl jo(vj), where I > 2 with each v; Lvj; i # j =1,2,--- 1, and derive its solution. Mainly, we examine
the Hyers-Ulam-Rassias orthogonal stability of this equation by utilizing two different approaches.

1. INTRODUCTION

The concept of orthogonal additivity emerged in the early 20th century. Readers interested
in a comprehensive review might consult the work of Paganoni and Ratz (see [22]). It is worth

noting that Birkhoff and James introduced a concept known as the Birkhoff-James orthogonality,
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which establishes a connection between orthogonality in normed linear spaces and inner product
spaces (see [3]). In the course of the research, various types of orthogonality on linear spaces
were introduced (see [13]). In 1975, researchers Gudder and Strawther [10] proposed an axiomatic
framework to describe the concept of orthogonality. This idea was further developed by Rétz and

Szabo [25,26]. The researchers proposed the following maxims.

Definition 1.1. [10] Take into consideration that A is a real vector space with dimensions equal to or
greater than two, and that L is a binary relation on A that possesses the following properties:
(G1) Totality of L for zero:
v10,0Lo for every v € A;
(G2) Independance:
Ifv,w € A —{0}, then v, w are linearly independent;
(G3) Homogeneity:
Ifv,we A viw, then avlfw ¥ a,p € R;
(G4) The Thalesian property:
Assuming that T is a subspace of A that is two-dimensional, v € T, a in R™, then there is wy € T
fulfills v Lwg and v 4 wo Lav — wy.

Such a pair (A, L) is referred to as an orthogonality space.

Felbin is the one who first introduced the idea of a fuzzy normed linear space. In a linear space
with a finite number of dimensions, it was proven to him that fuzzy norms are identical to fuzzy
proportionality up to a certain point. A fuzzy normed linear space’s finite-dimensional fuzzy
subspaces turned out to be essentially complete fuzzy normed linear spaces because of their basic
completeness. The notions of fuzy theory was investigated in breifly by many authors [2,4,8].

The following is an example of an important equation that is included in the functional equations
theory: Under what conditions does a function that approximately satisfies a functional equation
must approximate a precise solution of the problem?

We consider an equation to be stable as soon as it is possible to find a solution that is unique to the
situation. In the beginning, Ulam [28] brought up the major stability issue that pertains to group
homomorphisms, and Hyers [11] subsequently confirmed that this issue was indeed present.
Researchers have comprehensively examined the stability concerns associated with numerous
functional equations by employing fixed point methods. These investigations have been conducted
by multiple authors, as documented in references [5, 6,12,24]. In recent studies, researchers
Choonkil Park and Reza Saadati have shown the Hyers-Ulam stability of the orthogonally additive-
quadratic functional equation in orthogonality spaces using the fixed point method [18,23].

Initially, Gudder and Strawther [10] was examined the orthogonal Cauchy functional equation.
Then, Vajzovic [29] was investigated orthogonally quadratic equation. Afterward, Moslehian and
Rassias [20,21], Szabo [27], Moslehian [19], Fochi [9] and Drljevic [7] have examined the orthogonal
stability of functional equations. In their study, Ashish [1] examined the Hyers-Ulam-Rassias (H-
U-R) stability in the context of Ratz orthogonality for the orthogonally cubic and quartic functional
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equation. In recent years, there has been extensive research conducted by multiple researchers on
the stability issues of various functional equations [14,15,17].

Definition 1.2. [30] Consider A as a vector space over the field of real numbers. The function N is defined
as:
The function maps from the Cartesian product of A and the set of real numbers to the closed interval from 0
to 1. The symbol Ng is referred to as a fuzzy f-norm on A, where 0 < g <1, if forany k,w € Aandp,r € R,
(F1) Ng(k,r) =0V r<0;
(F2) k=0 Ng(k,r) =1V r>0;
(F3) Ng(ck,r) = Ng(k, ) if ¢ # 0;
(F4) Ng(k+w,p +r) = min{Ng(k,p), Ng(w,)};

(F5) Ng(k,-) is a monotonically increasing function on the real numbers R and

lim Ng(k,r) = 1;

r—00

(F6) for any non-zero value of k, the function Ng(k,-) is continuous on the set of real numbers, denoted
by R.

The pair (A, Ng) is referred to as a fuzzy p-normed vector space.

It is worth noting that when g = 1, the pair (A, Ng) represents a fuzzy normed space denoted
as (A,N).

Example 1.1. [30] Let a pair (A, || -||g) be a p-normed linear space with 0 < p < 1and c,y > 0. Then

_w .
g P> 0 ved;

0, p<0,veEA,

N,B (U/ p) =
is a fuzzy p-norm on A.

Definition 1.3. An odd function ¢ : A — B is called an orthogonally additive function if

Qb( Z JUJ) = ZN) vj)

1<j<i

for every vy, v, , v € Awithv;Lv; foreachi # j = 1,2,--- ,lin the sense of Ritz.

Theorem 1.1. [16] Consider a generalised complete metric space (A, d) and a strongly contractive mapping

C : A — A with a Lipschitz constant L < 1. For each element s in set A, one of the following conditions
holds:
d(C”s, C”+1s) = o0, ¥ 1 > ny;
or there is ng > 0 fulfills
(i) d(C"s,C"*1s) < 00, ¥ 1 2 np;
(ii) there is a fixed point s* of C where the sequence {C"s} converges;
(iil) s* is the only one fixed point of C in A* = {v € Ald(C"s,v) < oo};
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(iv) d(v,s) < £d(Co,v), Y v € A",

In this study, the additive functional equation is introduced and generalised for any positive
integer  in R*. The equation is of the form
o X i) = Y 9oy, 1)
1<) 1<j<l
where | > 2 with each v;1lv;; i # j = 1,2,---,], and derive its general solution. Mainly, we
examine the Hyers-Ulam-Rassias orthogonal stability of the above equation by direct and fixed-
point approaches.

In this case, the orthogonality in the Ratz sense is L.

2. GENERAL SOLUTION

Let A and B are any two real vector spaces.

Theorem 2.1. If a mapping ¢ : A — B satisfies the functional equation (1.1) for all v1,v2,--- ,v; € A, then
¢ is additive. i.e., the function ¢ satisfies

¢(s +k) = ¢(s) + (k)
forall s, k € A.

Proof. Consider the mapping ¢ : A — B fulfils the equation (1.1). Now, replacing (v,v,- -+, ;)
by (0,0,---,0) in (1.1), we have ¢(0) = 0. Next, we need to prove that the function ¢ is odd
function and which is additive. Setting (vq,v2,--- ,v;) by (v, -9,0,---,0) in equation (1.1), we get
¢(—v) = —¢(v) for all v € A, which shows that the function ¢ is odd. Switching v; = 0, v, =

v, v3 =---=1v; = 0in (1.1), we obtain

2¢(v) = ¢(20), (2.1)

for all v € A. Replacing v by 2v in (2.1), we obtain

22p(v) = ¢(2%0), (2.2)
for all v € A. Switching v by 2v in equation (2.2), we arrive

2¢(v) = ¢(2%), (2.3)
for all v € A. In this way, we can conclude that for any integer n € R, that

$(2"0) = 2"¢(v), (24)
for all v € A. Similarly, we have that

o42)- o
for all v € A. Replacing (v1,vy,---,v;) by (s, %, 0,---,0) in (1.1), we reach our needed outcome of

the function ¢ is additive. m]
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Define a difference operator A¢ : A' — B by
Aqb(Ul/vZ/' o /Ul) = ¢)( Z ]U]) - Z ](P(U]), v 01,02, ,0] € A/

1<j<I 1<j<l
witheachv;lv;;i#j=1,2,--- L
3. OrtHOGONAL H-U StaBILITY IN FUZZY f-NORMED SPACES

Here, we consider (B, Sp), (Z, S'ﬁ) and (A, 1) are complete fuzzy f-normed space, fuzzy p-normed
space and real orthogonality vector space, respectively, with 0 < < 1.

3.1. Stability Results Using Direct Approach.

Theorem 3.1. If mapping ¢ : A — B such that

Sp(AP(v1,v2,-++ , 1), €) > Slﬁ(gb(vl,vz,w- ,01),€), (3.1)
withviLv;;i#j=1,2,---,1, and a mapping ¢ : Al = 7 such that
’ 01 02 U] ’ €
s{vlar 3 ) )z Siluleven o) ﬁ)f k=0 (6.2

forallvy, vy, -+, v € A,e > Qwithv; Lv;;i# j=1,2,--- ,land for some constant p € Rwith 0 < p < %
Then there exists an unique orthogonal additive mapping Cy : A — B satisfying

Sp (¢(0) = C1(0),€) = Sy ((0,0,0,---,0), (pF = 2)e) (33)
forallve A,e>0.

Proof. Replacing (vq,v2,--+ ,v;) by (0,0,---,0) in (1.1), we have

55 (9(20) ~26(0),€) = S, ((0,0,0,---,0),¢), G4

forallv € A and € > 0. Replacing v by 7 in (3.4), we obtain

Sﬁ (¢(U> - Z(p (;),6) 2 S;ﬂ (Izb<01 gr O/ Tty O)/€)/ (35)
forallv € A and € > 0. Replacing v by 5 in (3.5), we obtain
v v , v
Sﬁ (¢ (E) - qu (?)’e) 2 S‘B (17[}(0/ ?/ 0/ Tty 0), 6), (36)
for allv € A and € > 0. It follows from the inequality (3.6), that
v v , v
5 (2¢(§) —22qb(§),2ﬁe) = (¢ (0, 0 ,0),e), (3.7)
forallv € A and € > 0. Replacing v by 7 in (3.7), we get
v v , v
S (22¢ (ﬁ) _ D3¢ (E),Zzﬁe) = (¢ (o, 0 ,0),(—:), VoeAe>0. (3.8)

In this way, we can generalize for any integer k € R™, that

S (chj)(%) —2"*%(%),2’%) >, (¢ (0, 21%0 ,o),e), (3.9)
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for all v € A and € > 0. Using the inequality (3.2), we obtain that

k(L) = 2kt (2 ok / e 0), —
Sﬁ(2 (j)(zk) 2 ¢(2k+1),2 e)zsﬁ(gb(o,v,o, 'O)Ipﬁ(k“) , (3.10)
forallv € A and € > 0. Replacing € by pf**Ve in (3.10), we have
v v ,
S (2k¢(§) - zk%(ﬁ),zkﬁpﬁ(k*”e) > S, (1 (0,0,0,--+,0),€), (3.11)

forallv € A and € > 0. Then

-1
Sp [zl(p (%) oy Z 2kﬁp(k+1)ﬁ€] > min Ui_:lo{sﬁ (2k+1¢ (2%)) 2k (%) zkﬁpﬁ(k-i-l)e}
k=0
2 S;g (’711 (0/ U,O,"' /0)/'5)/ (312)

this implies
-1
v v
Sﬁ(sz(P (21+m ) U (2_m) ) Z 2ﬁ(k+m)p(k+m+1)l3€)
k=0

>  min Uk:lo{sﬁ (2 g (2k+m+1 )) — pktm, (W) B +m)pﬁ( +m+1)€}

> S, (¥(0,0,0,-+,0),€), Yo Ae>0,

with [ > 0, m > 0. Therefore,

l+mL_m£)) / €
55(2 qb(gum) 2 q)(zm € Zsﬁ[w(o’v’o’ 'O)’Zi—_lozﬁ(m+k)pﬁ(m+k+l)) (313)

forallve A,e>0,and ! > 0, m > 0. With Z;{;lo Zﬁkpﬁk as its convergent series. In inequality (3.13),

we see that the sequence {ZIgi) (%)} is a Cauchy sequence in (B, Sg) as m — co. Thus, it converges

in B. Next, we can define a mapping C; : A — B by

>0

) v
C1(v) = S - lim 2@5(5),
for all v € A. Clearly,
. v
lim Sﬁ (C1 ('U) - 2I(P (ﬂ)le) = 1,

>0
forallv € Aand all € > 0. Replacing (v1, vy, - -+, v;) by (2"v1,2™vy,- -+ ,2™v;) in inequality (3.1), we

obtain
01 02 (%] ’ U1 U2 U]
(ool m) s m z 3 )

forall vy, vy, ,v,€ A,e >0, withv;Lvj; i#j=1,2,--- ,land m € N. As %J_%, we obtain

(%% (4] ’ U1 02 U] €
Sﬁ(zmqu(z_m,z_m,... z_m)e) > Sﬁ(lp(z_m,z_m,... 27)275)
forall vy, vy, ,v,€ A,e >0, withv;Lvj; i #j=1,2,--- ,land m € N. Since

€

(2p)"F

m—oco P

lim S, (1,[1 (01,02, ,01), ) =1, Yo,0,,0 EA€>0,
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withov;lo;; i#j=1,2,---,land m € N, we get

Sp (Cl( Z jv]-)— Z jC1(v]-),e] =1,VYou,00,--,0€A,€>0,

1<j<l 1<j<I

with v;Lvj; i#j=1,2,---,I. We can conclude that, the mapping C; : A — B is additive. Since,
the function ¢(v) is an odd, so that C;(v) is an odd function.

Therefore, the additive function C; : A — B is orthogonal. Putting m = 0 and taking limit as [

tends to oo in inequality (3.13), we get (3.3). Now, we want to prove that the uniqueness of C;.

Suppose an another additive mapping C, : A — B satisfying (3.3). Hence
s,;(cl(v) _ cz(v),e) - 5 (2"1c1 ( 2m) "C, ( 2m) )

. v €
>  min {Sﬁ(ZmCl(z—) 2" ( ) E)'
v\ €
$(2olz)-2el ) 3)
(o v (pP - 2/36)
= mm{sﬁ(l’b(o om0 ’0)’ 2078 )
(pf —2Pe
#0300} Sy )
, (pP-2%)e 1
> Sﬁ(ljb(olvlol /0)1 2 (2‘D)mﬁ — lasm — 0,
forallv € A,e > 0 and all m € IN. Therefore, the mapping C; : A — B is unique. m]

Theorem 3.2. Ifan odd mapping ¢ : A — Bsatisfying (3.1) withv;Lv;;i # j=1,2,--- 1, and a mapping
Y : A — Z such that

’ 4 Ul UZ vl
Sﬁ(w(vl,vz, e ,vl), pkﬁe) > Sﬁ(l,l}(?, ST ?), e), k>0 (3.14)

forallvy,va, -+ 0 € Aje > 0withv; Lvj;i# j=1,2,--- ,land for some constant p € Rwith0 < p < 2.
Then there exists an unique orthogonally additive mapping C; : A — B satisfying

Sp (¢(0) = C1(0),€) 2 Sy ((0,0,0,---,0), (2 = pF)e) (3.15)
forallve A,e>0.

Proof. Replacing (v1,v2,v3,--+,v;) by (0,9,0,---,0) in (1.1), we have
Sp (¢(20) = 2¢(v), €) 2 Sy (¥(0,0,0,---,0),€), (3.16)

for all v € A and all € > 0. It follows from (3.16) that

Sﬁ(¢( ) (P( ) ) > Sﬁ (1#(0”0,0/. .. /0)/€) , (3.17)
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forallv € A and all € > 0. Setting v = 2v in (3.17), we arrive

22
5 (222

for allv € A and all € > 0. Switching v by 2v in (3.18), we get

sﬁ@w ¢(2) «
5 23 -

for allv € A and all € > 0. In this way, we can generalize for any integer k € RT, that

¢ (2k+1v) ¢ (zkv) c
5 k+1

for allv € A and all € > 0. Using the inequality (3.14), we obtain that

2k+1

(cp(zwv) 9B s

for all v € A and all € > 0. Substituting € by p*fe in inequality (3.21), we have

0(2%1) _¢(2%) e
5 k+1

forallv € A and all € > 0. Hence

this implies

\%

=

¢ (20) e :
2 % = Sﬁ (¥(0,20,0,---,0),¢€), (3.18)
! 2
a7 27[3] > Sﬁ (1,0(0,2 0,0, ,0),6)’ (3.19)
! k
oF '2(k+1)ﬁ] > 5, ((0,2%,0,--,0) e), (3.20)
’ €
2k 7 2,3(k+1)J 2 Sﬁ (‘P (0/ 0,0, ,0) ,6) , (3.22)
-1
(3.23)

l—1{ ¢(2k+m+1v) ~

k=0\6 ok-+m+1
Sy (¥(0,0,0,---,0) €),

¢(2k+mv) pﬁ(k-l-m)e
k+m ’zﬁ(k+m+1)}

forallv € Aand all € > 0, with [ > 0, m > 0. Following this, the proof is similar to the proof of the

Theorem 3.1.

O

Corollary 3.1. Let A >0, w € RT withw > 1, (A, L) be a real orthogonality vector space with norm || - ||

with 0 < B < 1and (R,S") be a complete fuzzy p-normed space. If a mapping ¢ : A — B such that

Sg (Dp(v1, 02, ,v1),€) 2 S, [A[Z IIUjIIw],e],

(3.24)

1<j<l

with each viLvj; i # j = 1,2,--- 1, there exists an unique orthogonally additive mapping C; : A — B

satisfying

Sp (¢(0) = C1(v),€) = Sy (Alloll*, (2°F = 2)e),
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forallve Aandall e > 0.

Proof. From Theorem 3.1 by considering i(v1,v,--+ ,v;) = A Z;:o llvj|[” and choosing p = 27, we

get our needed outcome. m]

Corollary 3.2. Assume the same hypotheses as in Corollary 3.1 except that there exists an unique orthogo-
nally additive mapping C1 : A — B satisfying

Sg (¢(0) = C1(v),€) = S (Allell”, (2F —2F)e), Vv e A e > 0.

Proof. From Theorem 3.2 by considering ¢(vq,v2,- -+ ,v;) = A Z;:o lloj|| and choosing p = 2%, we

get our needed outcome. m]
3.2. Stability Results Using Fixed Point Approach.

Theorem 3.3. If a mapping 1 : A3 — [0, ), there exists a Lipschitz constant L(0 < L < 1) such that
1!1 (2k01,2k02, cee ,2k’01) < 2kﬁLkl,D (01,7]2, cee, Z)l) , Youq,0p,- - ,0] € A, (3.25)

with each v; Lvj; i # j=1,2,--- 1. Suppose an odd mapping ¢ : A — B such that

€
Sg (A (v1,v0,--- ,01) ,€) =
ﬁ( (1)( 1,02 l) ) 6—1—1,0(01,02,“-,01)

with every v; Lvj; i # j=1,2,--- 1, then there exists an unique additive mapping Cy : A — B satisfying

, Youq,0p,--,01 EA, (326)

2Pe(1-1L)
S - C1(v),€) 2 3.27
p(0(0) = Cu(0),€) 2 grorm o 627
forallve A,e>0.
Proof. Settingv; =0,v, =0, v3 = --- = vy = 01in (3.26), we obtain
€
S 20) =2 ,€) = , 3.28
g ((20) —2¢(0v),€) T 900,000 (3.28)
forallv € A and all € > 0. Using (F3), we get
P(20) € €
S - , == ,VoeA,e>0. 3.29
,3( 2 (P(v) 2[)7 €+l/}(0,'0,0,---,0) (/RS € > ( )

Suppose, we can define,
G={f:A—- B|f(0) =0}
and denotes a generalized metric on G as

(£,8) = inf{x & [0, ]IS (f(0) - g(0), 7€) >

€
e+1(0,0,0,---,0)

, veA,e>0}.

Then (G, d) is complete. Suppose a mapping T : G — G by

(Tg)(v) = @, Yov e A.
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Now, we want to show that T is strictly contractive on G. For all f, ¢ € G, consider d(f,g) = p.
Therefore,

€
e+v(0,9,0,---,0)

Sg(f(v) —g(v), pe) = ,YoeA,e>0.

Hence,

55 (TF)(0) — (T9)(0) pLe) = 5 (f ) &) oLe)

2 2

= Sp(f(20) - g(20),2%pLe)

. 2PLe

- 28Le +¢(0,20,0,---,0)

> c VoeAe>0.

e+¢(0,9,0,---,0)

We conclude that d(Tf, Tg) < pL. We obtain

d(Tf,Tg) <Ld(f,g),

for all f, g € V. Next, we show that d(T¢, ¢) < co. From (2.4), we have

€ €
%8 (<T¢>(v) ~ ), 2_ﬁ) Z e 9(0,0,0,-,0)’

= d(To,d) < 21—5 < oo,

forallv € A and all € > 0. By Theorem 1.1, there exists a fixed point C; of T satisfies qub — Cy,
namely,

Ci(0) = lim $(2'0)

k—o0 k

, Yu e A.

By using Theorem 1.1, we get

IA

A6,C) < Td(To,9)

A
|

forallv € A. So that,

€
>
= e+¢(0,0,0,---,0)

1 1
Sg (qb(v) _Cl(v)’z_ﬁl—Le) ,YoeA,e>0.

From the above, inequality (3.27) is holds for all v € A. From the inequality (3.25) and (3.26), we
obtain

€
€+ ¢(2kv1,2kvz, s ,2kvl)

1 k. ok Koy €
Slg (EAQIﬁ(Z 01,2 U, ,2 vl)'zTﬁ) >
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for all v1,v,,--- ,v; € A, € > 0 and k € N, with each ZkviJ_Zkvj,' i#j=12,---,I Using inequality
(3.25), we obtain

2kBe
>
N zkﬁe + ZkﬁLklP(Ul/ 02, ,Ul)
€
>
€+ LklP(UhUZr e /Ul)

1
Sﬂ (§A¢(2k01,2k02, ce ,2k01),€)

, Youy,0p,--- ,u,€A,€>0

with eachv;1v;; i#j=1,2,---,1,and k € N. Since,

€
lim
k—co € + LK (v1, 02, -+, 1))

=1, Vou,0p,--- ,0,€A,e>0 (3.30)

witheachv; Lv;; i #j=1,2,--- I, we get

Cl(Z]v]) Z]C1 v] Youi,02,-+- , 01 €A

with foreachv; Lv;; i # j = 1,2,--- 1. Suppose that the inequality (3.27) is also satisfies the another
additive mapping C> : A — B besides C;. C, fulfils C2(v) = 3C2(20) = (TC2)(v), C, is a fixed
point of T.

Using condition (3.27) and the definition of 4, we have

4(.C2) < 215 (1iL)<

Now,
d(Tp,C2)  <d(To,¢)+d(¢p,Ca)
L1
— 26 26\1-L
Thus, C2 € G = {s € G | d(T¢,s) < oo}. Again, by the sense of Theorem 1.1, implies that C; = C.

This shows the uniqueness of C;. m]

Theorem 3.4. If an odd mapping v : A> — [0,00) and there exists L(0 < L < 1) such that

U] U U Lk
—_ = L)< — 31
tp(zk,zk, ,zk)_zkﬁv,b(vl,vz, ;1) (3.31)
forallvy,va,- -+ ,v1 € A, witheach v Lvj; i # j=1,2,--- 1. Suppose an odd mapping ¢ : A — B satisfies
the inequality (3.26) with each v; Lvj; i # j =1,2,--- 1, then there exists an unique orthogonally additive

mapping Cy : A — B satisfying

Sp (¢(0) = Ci(v),€) 2

-1 _
Zﬁl((L) e (3.32)

26((L)"'-1)e+¢(0,9,0,---,0)
forallve A,e>0.
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Proof. Settingv, =0, v =v, v3 = --- = vy = 01in (3.26), we obtain

€
Sp (¢(20) ~20(v).€) = o5 0y

for allv € A and all € > 0. Switching v by 7 in (3.33), we arrive

s foo-20(3).

(3.33)

> €
e+9(0,3,0,--,0)
v 2:86
isﬁ((p(v)_w(i)’e) 22ﬁe+L1’b(0,0/01.../0)’

forallv € A and all € > 0. As is the case with the proof of Theorem 3.3, the other parts of the proof
are exactly the same. m]

Corollary 3.3. Let A > 0, w € R withw < 1, and (A, L) be a real orthogonality vector space with B-norm
Il llg with 0 < B < 1. Suppose that ¢ : A — B is an odd mapping satisfies

Sg (AP(v1,v2,--- , 1), €) = ; ,
e+ A (Zh Nyl

for all v1,v5,---,v1 € A,e > 0, with for each v;Lvj; i # j = 1,2,--- 1. Then there exists an unique

€

(3.34)

orthogonally additive mapping Cy : A — B satisfying

(2f —2vB)e

5 (9(0) =Crl0) ) = o Alfolly

forallve A,e>0.

2
we get our needed outcome. O

Proof. From Theorem 3.3 by considering (v1,va,--- ,v;) = A Zﬁ':o ||vj||g’ and choosing L = (2—w)ﬁ,

Corollary 3.4. Assume the same hypotheses as in Corollary 3.3 except that w > 1, and there exists an
unique orthogonally additive mapping C1 : A — B satisfying

(2P —2P)e
(29 = 2P)e + Aol

Sp (9(v) = Ci(v),€) 2
forallve A,e > 0.

Proof. From Theorem 3.4 by considering ¢ (v1,v2,-++ ,v1) = A Z;:o ||v]-||g’ and choosing L = (%,)ﬁ,
we get our needed outcome. m]

4. CONCLUSION

We found the general solution of a new finite-dimensional additive functional equation (1.1)
in this work. In order to investigate whether this quadratic functional equation is stable in both
fuzzy p-normed spaces, our study mostly used direct and fixed point approaches.

In addition, we demonstrated real-world examples where the stability of the additive functional

equation may be controlled by adding and multiplying norm powers.
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