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ABSTRACT. When used as light sources in modern fiber communication systems, the modulation bandwidth and chirp 

are crucial characteristics of high-speed quantum well (QW) lasers. These parameters are primarily constrained by two 

factors; namely, the transport of charge carriers in the separate confinement heterojunction (SCH) layer and their escape 

processes in the QW. To analyze the frequency chirp theoretically, a fourth rate equation is added to the existing system 

of three coupled rate equations, which describe the photon number in the QW and carrier numbers in both the QW 

and SCH layers. This study employs small-signal analysis to linearize these coupled equations and derives analytical 

expressions for both the intensity modulation (IM) response and its associated frequency chirp. The chirp is quantified 

using two metrics, first the chirp per modulated current (CCR), and second the chirp per modulated power (CPR). 

These analytical expressions are presented in a generalized form, making them applicable to any nonlinear gain 

mathematical formulation found in the literature. Through numerical calculations applied to high-speed QW lasers, 

we investigate the individual effects of transport and escape times on the frequency chirp. Our findings demonstrate 

that CCR reaches its minimum under two specific conditions: when the transport process is relaxed with a relatively 

long transport time, and when carrier escape in the QW occurs rapidly with a very short escape time. Notably, we 

found that CPR remains independent of the transport processes. 

 

1. INTRODUCTION 

Quantum-well (QW) lasers have become indispensable components in modern fiber 

communication systems, owing to their superior performance characteristics and potential for 
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high-speed modulation. Among the critical parameters that define the efficacy of these lasers in 

optical communication networks are the modulation bandwidth and frequency chirp [1], [2] . The 

performance of QW lasers is primarily constrained by two fundamental processes; namely, the 

transport of charge carriers within the separate confinement heterojunction (SCH) layer and the 

escape mechanisms of carriers from the quantum well [3]–[7]. These transport processes are 

influenced by two main factors: the ambipolar diffusion time and carrier capture in the SCH 

layers, and the thermionic emission (or carrier escape time) from the well. The transport time 

across the SCH layer significantly contributes to a low-frequency rolloff in the modulation 

response [8]–[10], substantially limiting the modulation bandwidth. In QW lasers, which typically 

have relatively small optical confinement factors, variations in carrier density and subsequent 

changes in refractive index introduce an additional chirp component [11]-[15]. Research by 

Ribeiro et al. [16] demonstrated that carrier transport effects can substantially alter both the 

frequency modulation pattern and frequency chirp characteristics. This chirp must be minimized 

for efficient laser applications, particularly in fiber links, to reduce the fiber dispersion effect on 

the transmitted signal [17]. The chirp per modulated power ratio (CPR) serves as an effective 

metric for evaluating the frequency chirp that accompanies intensity modulation [18]. 

Consequently, controlling and reducing frequency chirp in QW lasers necessitates a thorough 

understanding of how chirp depends on transport processes within the QW structure. While 

previous literature has addressed the impacts of SCH layer transport processes and QW carrier 

capture on frequency chirp in general [11]-[14], and on CPR  [19], in particular, the individual 

contributions of these processes to chirp behavior have not been thoroughly investigated. This 

gap in understanding warrants further research to optimize QW laser performance in optical 

communication systems. 

The analysis of intensity modulation properties in QW lasers typically employs a three-

coupled rate-equations model. This model describes the temporal evolution of photon density 

emitted in the QW and carrier densities in both the QW and barrier regions, while accounting for 

carrier transport effects [10]. These rate equations can be solved through various numerical 

integration techniques.  In recent work, the authors developed a small-signal modeling approach 

to analyze the intensity modulation (IM) response in QW lasers [20]. This approach linearizes the 

rate equations and enables investigation of how the escape and capture lifetimes between the 

SCH layer and QW affect laser performance. To analyze frequency chirp in QW lasers, an 

additional fourth equation is required to describe the rate of change in the optical phase of the 

oscillating mode. While necessary for comprehensive analysis, this additional equation increases 

both the complexity of the model and the coupling between rate equations. 



Int. J. Anal. Appl. (2024), 22:215 3 

 

In this study, we expand upon the model presented in [20] to incorporate the phase 

(frequency) variations associated with intensity modulation and develop analytical formulas for 

both the IM response and frequency chirp. The chirp is evaluated using both CCR and CPR. We 

apply these formulas to analyze a high-speed QW laser, investigating how transport processes in 

the SCH and QW layers affect the modulation bandwidth and frequency chirp. The transport 

processes in the SCH layer encompass both carrier capture by the QW and diffusion across the 

SCH. The total transport time in the SCH layer comprises both the capture time and diffusion 

periods for holes and electrons. We adjust the range of escape time in the QW according to its 

relationship with the SCH layer thickness. Gain suppression plays a crucial role in characterizing 

the relationship between intensity and frequency modulation behavior of laser diodes and is the 

primary effect causing damping in intensity modulation [21], [22]. Therefore, we derive 

expressions for the IM response and chirp that accommodate any form of nonlinear gain 

documented in the literature. These derived expressions enable a comparison of how different 

gain formulations influence the modulation characteristics of QW lasers. This approach ensures 

the broad applicability of our findings across different laser configurations and operating 

conditions Through detailed numerical calculations applied to high-speed QW lasers, we 

investigate the individual effects of transport and escape times on the frequency chirp. Our 

findings reveal that the chirp CCR reaches its minimum when two conditions are met: first, when 

the transport process is relaxed with a relatively long transport time, and second, when carrier 

escape in the QW occurs rapidly, resulting in a very short escape time. Conversely, the chirp CPR 

demonstrates independence from the transport processes. 

The findings of this research have significant implications for the design and optimization 

of QW lasers, potentially leading to improved performance in next-generation optical 

communication networks. By elucidating the intricate relationships between carrier transport 

processes, escape mechanisms and laser chirp, this study contributes to the ongoing efforts to 

push the boundaries of high-speed optical communications . 

 

2. RATE EQUATION MODEL OF QW LASER 

In the SCH-QW laser, charge neutrality is assumed to hold in the entire intrinsic SCH region and 

holes dominate the carrier dynamics. The exterior edges of the left and right SCH regions are 

used to inject the electrons and holes, respectively, into the QW. Before recombination by 

stimulated emission, the injected carriers diffuse into the SCH region and are captured in the 

QWs [23]. In addition, thermionic emission works against carrier capture and reduces the QW 

structure's total carrier capture efficiency [24]. That is, two terms that stand in for carrier transport 
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across the SCH (represented by transport time tr) and escape (represented by escape time esc) 

into or from the well, respectively, are used to model how the carrier density in the barrier states 

above the QW's and the carrier density in the QW couple to one another. The associated rate 

equations that describe the temporal changes in the carrier number N(t) and photon number S(t) 

in the QW, optical phase (t), and carrier number NB(t) in the SCH or barrier layer [25] are: 

𝑑𝑆

𝑑𝑡
= Γ𝐺(𝑁, 𝑆)𝑆 −

𝑆

𝜏𝑝
+ 𝛽𝑠𝑝

𝑁

𝜏𝑒
            (2.1)                    

𝑑𝑁𝐵

𝑑𝑡
=

𝐼

𝑒
−
𝑁𝐵

𝜏𝑡𝑟
+

𝑁

𝜏𝑒𝑠𝑐
            (2.2) 

𝑑𝑁

𝑑𝑡
=

𝑁𝐵

𝜏𝑡𝑟
−

𝑁

𝜏𝑒𝑠𝑐
−

𝑁

𝜏𝑒
− 𝐺(𝑁, 𝑆)𝑆                                                                                 (2.3)  

𝑑𝜃

𝑑𝑡
=

1

2𝜋
𝛥𝜈(𝑡) =

1

2𝜋
[𝜈 − 𝜈0 +

𝛼

2
(Γ𝐺(𝑁, 𝑆) −

1

𝜏𝑝
)]                                           (2.4) 

The function G(N,S) defines the optical gain. Since there are different forms of optical gain in 

literature, especially when including the nonlinear gain suppression, we are interested in this 

paper to introduce both the intensity modulation response and the associated frequency chirp in 

terms of the function G(N,S) in general. Therefore the results could be applied to any of the 

reported nonlinear gain forms, such as 

𝐺(𝑁. 𝑆) =

{
  
 

  
 
𝑔0

𝑉
(𝑁 − 𝑁𝑔) − 𝐵𝑆               (𝑎)

𝑔0
𝑉
(𝑁−𝑁𝑔)

1+𝜀𝑆
                                (𝑏)

𝑔0
𝑉
(𝑁−𝑁𝑔)

√1+𝜀𝑆
                               (𝑐)

𝑔0

𝑉
(𝑁 − 𝑁𝑔)(1 − 𝜀𝑆)         (𝑑)

                                                         (2.5) 

The term 
𝑔0

𝑉
(𝑁 − 𝑁𝑔) represents the linear gain, where g0 is the slope gain coefficient, and Ng is 

the carrier density at transparency. The gain form (5-a) was derived by Yamada and Suematsu 

[26] and Ahmed and Yamada [27] based on a third-order perturbation approach, with B 

representing the coefficient of gain suppression. The form (5-b) was originally suggested by 

Channin et al. [28] and is valid for S  0 to describe damping in the IM response of the diode laser, 

while the form (5-c) was suggested by Agrawal et al. [29]. These two forms were derived for the 

cases of homogeneous and inhomogeneous gain broadening by Ahmed and Yamada [27]. While 

the form (5-d) is an approximation to form (5-b) in the regime of weak output. The nonlinear gain 

is quantified by the coefficient  of gain suppression.  

Definitions of the parameters appearing in Eqs. (2.1) – (2.4) are as follows.  𝜏𝑝 is the photon 

lifetime, sp is the spontaneous emission factor, e is the spontaneous emission lifetime, I is the 

injection current, e is the electron charge, Γ is the confinement factor in the QW, 𝜈(t) is the 
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frequency chirp, 𝜈 is the frequency of the oscillating mode, 𝜈o is the frequency of the cold mode 

in the laser resonator, and  is the linewidth enhancement factor.   

Both the carrier transport time tr and escape time esc were found to be determined by the 

parameters of the SCH and well layers. The carrier transport across the SCH is characterized by 

the ambipolar diffusion time diff and the capture time cap in the QW [30], [31],  

𝜏𝑡𝑟 = 𝜏𝑑𝑖𝑓𝑓 + 𝜏𝑐𝑎𝑝                                                                             (2.6) 

The diffusion time is determined by the thickness LSCH of the SCH layer and the ambipolar 

diffusion coefficient Da as 

𝜏𝑑𝑖𝑓𝑓 =
𝜏𝑆𝐶𝐻,ℎ𝑜𝑙𝑒+𝜏𝑆𝐶𝐻,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

2
=

𝐿𝑆𝐶𝐻
2

2𝐷𝑎
                                                         (2.7) 

The carrier capture time cap is the duration of capturing carriers from the 3D states (SCH or the 

region above the well) to the 2D state (inside the well). Since the primary carrier type to be 

captured in the well is holes, the holes in the well attract more mobile electrons and increase the 

electron capture rate, simultaneously driving away other holes and reducing the hole capture 

rate. Therefore, the electron capture time is usually twice the hole capture  time.  Subpicosecond 

time-resolved measurements of the barrier luminescence decay in the GaAs-AlGaAs system, have 

determined the quantum carrier capture time to be 0.65ps for the holes and 1.2ps for the electrons 

and be independent of quantum-well width [32]. 

 The carrier escape (or thermionic emission) esc is the time that carriers escape from the 2D 

state (inside the well) to the 3D state (SCH layers). This time is an important parameter in 

determining the efficiency of QW lasers. If the carries obey Boltzmann statistics, the thermionic 

emission/escape time is determined by the thickness Lw of the QW as [33] 

𝜏𝑒𝑠𝑐 = (
2𝜋𝑚∗𝐿𝑤

2

𝑘𝐵𝑇
)

1

2
exp (

𝐸𝐵

𝑘𝐵𝑇
)                                                         (2.8) 

where m* is the effective electron mass, kB is the Boltzmann constant, T is the temperature in 

kelvin, and EB is the effective barrier height. 

The direct electrical current modulation of the QW laser is represented in Eq. (2.5) by 

combining both the biasing current Ib and the sinusoidal modulation component with amplitude 

Im and frequency fm, 

                                                              𝐼(𝑡) = 𝐼𝑏 + 𝐼𝑚 sin 2𝜋𝑓𝑚𝑡                                                           (2.9) 

The above rate equations are linearized for the case of small-signal modulation that 

corresponds to Im << Ib [34]. Under this approximation, the linearization is achieved by writing 

the current I(t), photon density S(t), carrier densities N(t) and NB(t) as  
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{
 

 
𝐼(𝑡) = 𝐼𝑏 + ∆𝐼𝑚(𝑡)

𝑆(𝑡) = 𝑆𝑏 + ∆𝑆(𝑡)

𝑁(𝑡) = 𝑁𝑏 + ∆𝑁(𝑡)

𝑁𝐵(𝑡) = 𝑁𝐵𝑏 + ∆𝑁𝐵𝑚(𝑡)

                                                        (2.10) 

and the gain G(N,S) is expanded by the Taylor expansion around the bias values Nb and Sb up to 

the second term as 

   𝐺(𝑁, 𝑆) = 𝐺𝑏(𝑁𝑏 , 𝑆𝑏) +
𝜕𝐺

𝜕𝑁
∆𝑁 +

𝜕𝐺

𝜕𝑆
∆𝑆                                         (2.11) 

By substituting Eqs. (2.9) and (2.10) into rate equations (2.1) – (2.4), and applying the Fourier 

transformation of the modulation amplitude:  

∆𝑋(𝑡) = ∫ 𝑋𝑚𝑒
𝑗Ω𝑚𝑡𝑑Ω𝑚

∞

−∞
                                         (2.12) 

where Xm applies for the modulation amplitudes Im, Sm, Nm, NBm, and 𝛥𝜈𝑚, and Ω𝑚 = 2𝜋𝑓𝑚 is the 

angular frequency, the following equations of the modulation components are derived: 

(𝑗Ω𝑚 − Γ𝑆𝑏
𝜕𝐺

𝜕𝑆
) 𝑆𝑚 = (Γ𝑆𝑏

𝜕𝐺

𝜕𝑁
)𝑁𝑚                                                                (2.13) 

[𝑗Ω𝑚 + (
1

𝜏𝑒𝑠𝑐
+

1

𝜏𝑒
+ 𝑆𝑏

𝜕𝐺

𝜕𝑁
)]𝑁𝑚 =

𝑁𝑏𝑚

𝜏𝑡𝑟
− (𝑆𝑏

𝜕𝐺

𝜕𝑆
+ 𝐺𝑏) 𝑆𝑚                                    (2.14) 

(𝑗Ω𝑚 +
1

𝜏𝑡𝑟
)𝑁𝐵𝑚 =

𝐼𝑚

𝑒
+

𝑁𝑚

𝜏𝑒𝑠𝑐
                                                                                                   (2.15) 

𝛥𝜈𝑚 =
𝛼

4𝜋
Γ
𝜕𝐺

𝜕𝑁
𝑁𝑚                                                                                                                          (2.16) 

The steady-state components of S, N, and NBb and the chirp are determined from the following 

equations: 

0 = ΓG(𝑁𝑏, 𝑆𝑏)𝑆𝑏 −
𝑆𝑏

𝜏𝑝
+ 𝛽𝑠𝑝

𝑁𝑏

𝜏𝑒
                                                              (2.17) 

0 =
𝐼𝑏

𝑒
−
𝑁𝑏

𝜏𝑒
− G(𝑁𝑏 , 𝑆𝑏)𝑆𝑏                                                                         (2.18) 

𝑁𝐵𝑏 = 𝜏𝑡𝑟 (𝐼𝑏 +
𝑁𝑏

𝜏𝑒𝑠𝑐
)                                                                                     (2.19) 

𝛥𝜈𝑏 =
𝛼

4𝜋
(Γ𝐺(𝑁𝑏) −

1

𝜏𝑝
)                                                                             (2.20) 

It is worth noting that Eq. (2.19) indicates that the values of tr should not increase the values of 

tr esc to keep the injected carrier number in the barrier smaller than the carrier number in the QW. 

 By ignoring the spontaneous emission as it has a negligible contribution to the modulation 

response, the modulated components Sm, Nm , NBm and m are derived as 

𝑆𝑚 =

Γ𝑆𝑏
𝜕𝐺
𝜕𝑁

𝑒𝜏𝑡𝑟
𝐼𝑚

−𝑗Ω𝑚(Ω𝑚
2 −𝑗Ω𝑚A−𝐵)+𝜏𝑡𝑟𝐶

                                      (2.21) 
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𝑁𝑚 =
𝑗Ω𝑚−ΓS𝑏

𝜕𝐺

𝜕𝑆
 

ΓS𝑏
𝜕𝐺

𝜕𝑁
 
𝑆𝑚                                                                       (2.22) 

𝑁𝐵𝑚 =

𝐼𝑚
𝑒
+
𝑁𝑚
𝜏𝑒𝑠𝑐

𝑗Ω𝑚+
1

𝜏𝑡𝑟

                                                             (2.23) 

𝛥𝜈𝑚 =
𝛼

4𝜋𝑆𝑏
(𝑗Ω − Γ𝑆𝑏

𝜕𝐺

𝜕𝑠
) 𝑆𝑚                                                  (2.24) 

where the frequency components Ω𝐴, Ω𝐵
2 , and Ω𝐶

3  are given by  

Ω𝐴 =
1

𝜏𝑒
+

1

𝜏𝑒𝑠𝑐
+

1

𝜏𝑡𝑟
+ 𝑆𝑏 (

𝜕𝐺

𝜕𝑁
− Γ

𝜕𝐺

𝜕𝑆
)                                                                                   (2.25) 

Ω𝐵
2 =

1

𝜏𝑒𝜏𝑡𝑟
+ 𝑆𝑏 (

1

𝜏𝑝

𝜕𝐺

𝜕𝑁
−

Γ

𝜏𝑒

𝜕𝐺

𝜕𝑆
) + 𝑆𝑏 [

1

𝜏𝑡𝑟
(
𝜕𝐺

𝜕𝑁
− Γ

𝜕𝐺

𝜕𝑆
) − Γ

𝜕𝐺

𝜕𝑆

1

𝜏𝑒𝑠𝑐
]                         (2.26) 

Ω𝐶
3 = 𝑆𝑏 (

1

𝜏𝑝

𝜕𝐺

𝜕𝑁
−

Γ

𝜏𝑒

𝜕𝐺

𝜕𝑆
)                                                                                                                (2.27) 

The intensity modulation (IM) response at a specific bias current Ib and modulation 

frequency m is defined as the ratio of the modulated photon number Sm(m) to its value in the 

low-frequency regime, 𝑆𝑚(Ω𝑚 → 0), 

𝐼𝑀(Ω𝑚) =
Ω𝐶
3

−𝑗Ω𝑚(Ω𝑚
2 −Ω𝐵

2 )−Ω𝐴Ω𝑚
2 +Ω𝐶

3                                                       (2.28) 

Using this form, analytical expressions cannot be derived for the resonance frequency and 

damping rate in this form. The denominator is a third-order polynomial and can be solved 

numerically to determine the poles of the response. The bandwidth is determined as the 3dB 

frequency f3dB, or the frequency at which the modulation response |IM()| drops to one-half of 

its value |IM(Ω𝑚 → 0)|. 

The chirp per modulated current ratio is then given in terms of 𝐼𝑀(Ω𝑚) as 

𝐶𝐶𝑅 =
𝛥𝜈𝑚

𝐼𝑚
=

𝛼

4𝜋

Γ
𝜕𝐺

𝜕𝑁

𝑒𝜏𝑡𝑟
(𝑗Ω𝑚 − Γ𝑆𝑏

𝜕𝐺

𝜕𝑠
)
𝐼𝑀(Ω𝑚)

𝐶
                           (2.29) 

The chirp is also characterized by the chirp-to-power ratio (CPR), which is a significant figure-of-

merit for the chirp and is defined as the ratio of lasing frequency deviation to power deviation 

[18], and is given in this model as 

    𝐶𝑃𝑅 =
𝛥𝜈𝑚

𝑃𝑚
=

𝛼

4𝜋𝑃𝑏 S𝑏
(𝑗Ω − ΓS𝑏

𝜕𝐺

𝜕𝑆
)                                        (2.30) 

CPR is then controlled by the -factor and varies linearly with the modulation frequency m. It is 

a complex quantity and its argument determines the phase shift of the frequency modulation 

from the intensit3y modulation. 
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3. NUMERICAL CALCULATION AND RESULTS: 

The nonlinear form (6) of the optical gain in Eq. (2.5) is followed. The model is applied to 

1.55m-InGaAsP QW lasers [20]. The applied ranges of the transport and escape times 

correspond to varied values of thicknesses of both the SCH and QW. The values of tr should not 

increase the values of tr esc to keep the injected carrier number in the barrier Nb smaller than the 

carrier number N in the QW. In our previous paper [20], the transport processes in the SCH layer 

were limited only to the capture of carriers by the QW, and wide ranges of values were assumed 

for the escape and capture times which could make Nb > N.  
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Figure 1. Plot of the steady state values of the photon density Sb, and the carrier densities Nb and 

NBb in the QW and SCH, respectively. 

 

Figure 1 plots variations of the steady state values of the photon density Sb, and the carrier 

densities Nb and NBb in the QW and SCH, respectively. The escape time is set to be as long as esc 

= 200ps to account for better modulation performance, while the transport time tr ranges between 

1 and 20ps. which could be controlled by controlling the thicknesses of the SCH layer and 

quantum well as given Eqs. (2.6) – (2.8) [10]. The figure shows a sudden change in the slope of 

the (Sb vs Ib), or the so-called “L-I” curve around the threshold level, which roots to the 

domination of the stimulated emission over the spontaneous emission. The threshold current of 

the QW laser under investigation is Ith = 63 mA. The variation of the carrier numbers Nb and NBb 

show that both of them are nearly constant in the above-threshold region and do not increase 

significantly with a further increase in Ib. The saturation of N corresponds to its value at the 

threshold, “threshold carrier number Nth”, and the corresponding gain level is the threshold gain 
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Gth = 1/p. The figure shows also that neither Sb nor Nb changes with the variation of the transport 

time, while the carrier number NBb in the barrier region increases with the increase of tr, as 

indicated in Eq. (2.19). This equation indicates also that NBb increases with decreasing the escape 

time esc. In the following section, this increase of NBb will be shown as a main contributor to the 

limitation of the modulation performance.  

In the following, the influence of the carrier transport phenomena on the modulation 

characteristics of the QW laser is investigated by varying the lifetimes esc and tr. Figures 2(a) and 

(b) plot the IM responses at different values of the transport time ranging between tr = 1ps and 

50ps under two extremes of the escape time; namely, the escape process is as slow as esc = 200ps 

and as fast as esc = 10ps, respectively. The bias current is set to be Ib = 2Ith. Both figures show the 

response is flat in the regime of low modulation frequencies, with increases of the modulation 

frequency in the regime of high frequencies attaining a maximum value at frequencies nearly 

equal to the resonance frequency of the laser. Then the response declines to much lower values 

beyond the response peak reaching a value of 3dB at the modulation bandwidth f3dB. Also, the 

figures indicate that the IM response spectrum, including the values of the characteristic 

frequencies f3dB and fpeak, changes with the variations of both tr and esc. 

In figure 2(a) of esc = 200ps, the IM response is lowered with the increase of tr. While the 

peak frequency decreases a little from fpeak = 11.8 to 11.6GHz, the bandwidth decreases from f3dB = 

20.4 to 11.6GHz when the transport time increases from tr = 1 to 50ps. On the other hand, figure 

3(b) of esc = 10ps indicates that the decrease of tr is associated with not only shifting the IM 

response and the bandwidth f3dB towards higher frequencies but also an increase in both the 

response peak and the peak frequency fpeak. As numeric examples, the characteristic frequencies 

are fpeak = 3GHz and f3dB = 14.1GHz when tr = 10ps, which increase to 16.5 and 19.5 GHz when tr 

= 5 and 1ps, respectively.  

Figures 3(a) and (b) plot the frequency spectra of the induced frequency chirp per 

modulated current ratio, CCR, as calculated via Eq. (2.29), which correspond to the transport and 

escape times in figure 2(a) and (b), respectively. Both figures show that the CCR spectrum 

increases with the increase of fm, and exhibits a peak at the peak frequency fpeak of the IM response. 

The low-frequency regime is independent of the value of either tr or esc. Figure 3(a) indicates 

that the increase in tr results in lowering the CCR spectrum, while the influence in figure 3(b) of 

shorter escape time esc = 10ps is not only to reduce the spectrum but also to shift it to lower 

frequencies. That is, lower values of the frequency chirp are predicted at larger values of the 

transport time, while the escape time seems to have a minor impact. These effects are similar to 
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the variations of the IM response in figure 2. Finally, the figures indicate that the chirp ranges up 

to CCR = 26GHz/mA.  
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Figure 2. Plot of the IM response spectra at different values of the transport time tr when the 

escape lifetime is (a) esc = 100ps and (b) esc = 10ps, with Ib = 2Ith. 
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Figure 3. Plot of the frequency spectra of CCR at different values of the transport time tr when 

the escape lifetime is (a) esc = 200ps and (b) esc = 10ps, with Ib = 3Ith. 

 

The parameter of the chirp to modulated power ratio, CPR, evaluates the amount of 

variation of the lasing frequency that is associated or induced by the intensity modulation. Figure 

4(a) plots the modulation spectrum of the magnitude of the complex CPR, as inferred from Eq. 

(2.30) over the relevant ranges of the lifetimes tr and esc using the same parameters of figures 2 

and 3. As shown in the figure, the CPR increases linearly with the increase of the modulation 

frequency and is independent of the values of tr and esc, as indicated in Eq. (2.30). The phase of 
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the CPR quantity determines the phase change of the frequency chirp from the IM response. 

Figure 4(b) plots the corresponding CPR phase, showing that the frequency chirp is almost 

synchronized with the intensity modulation in the low-frequency regime. With the increase of 

the modulation frequency fm, the figure shows that the phase changes to values around -1.5o 

(~0.48), indicating a little lagging of the frequency variation behind the corresponding intensity 

modulation. This value is equal to tan−1
1

ΓS𝑏𝜕𝐺 𝜕𝑆⁄
  as given in Eq. (2.30). 
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Figure 4. Plot of the frequency spectra of the frequency chirp CCR, (a) magnitude and (b) phase, 

over the entire ranges of the transport time tr and escape time esc.  

 

Influences of the transport and escape processes on CCR and CPR are more illustrated in 

Figures 5(a) and (b), which plot the chirp values CCRpeak and CPRpeak calculated at the peak 

frequency of the QW over the entire ranges of esc and tr in Figure 3. The figures indicate that 

CCRpeak ranges between 0.3 and 4.7 GHz/mA while CPRpeak varies between 5 and 46 GHz/mW. 

Both CCRpeak and CPRpeak change with the lifetimes almost in a similar fashion to the bandwidth 

f3dB in Figure 5. Both CCRpeak and CPRpeak decrease with the increase of tr but increase with the 

increase of esc up to tr=20ps. tr>20ps, CPRpeak is almost constant independent of the value of esc. 

That is, the chirp values increase almost in a similar fashion to the bandwidth and decrease the 

carrier transport times esc and tr work to lower the frequency chirp associated with the intensity 

modulation for the laser. It is worth noting that the change of CPRpeak with both tr and esc despite 

the independence of CPR of tr and esc in Figure 4(a) is attributed to the corresponding change of 

the peak frequency fpeak as shown in Figure 3. 
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Figure 5. Plot of (a) frequency chirp per current CCRpeak, and (b) chirp per power ratio CPRpeak 

versus the transport time tr at different values of the escape time esc. 

 

In Figure 6, the influence of the bias current Ib on the spectrum of CCR is illustrated. Figure 

6 plots the frequency spectra of the chirp CCR at various bias currents of Ib =1.5 – 7.0 times the 

threshold level Ith. The values of the escape and transport times are fixed at esc = 200ps and tr = 

2ps that correspond to high bandwidth f3dB. The figures show the common effects of the bias 

current to shift the peak frequency of CCR to higher frequencies and to suppress the peak value 

of the spectrum, which is attributed to the increase of the damping rate of the laser. The calculated 

values of the chirp CCRpeak at the peak frequency range between 4 and 41 GHz/mA.  
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Figure 6. Plot of frequency chirp CCR at different values of the bias current Ib. The transport 

lifetime is tr = 2ps and the escape lifetime is esc = 200ps. 

 

 



Int. J. Anal. Appl. (2024), 22:215 13 

 

 Figure 7(a) plots the magnitude of the complex CPR as a function of the modulation 

frequency fm as a function of the bias current Ib. As shown in the figure, the slope of the linear 

relation of CPR versus fm decreases with the increase of Ib, which is included in Eq. (2.30) as the 

slope is inversely proportional to Sb. Figure 7(b) plots the dependence of the phase of the CPR on 

current Ib. The figure shows that the phase change is negative; that is, the frequency chirp lags 

behind the intensity modulation. However, the magnitude of the phase change is less than 2o 

(0.63), which indicates that the chirp is almost synchronized with the intensity modulation for 

the considered QW laser. The Figure shows that the increase of the current Ib shifts the frequency 

range over which the frequency chirp changes from almost synchronization to lagging behind 

the intensity modulation to higher frequency values. This shift is associated with a decrease in 

the value of the phase at the low-frequency regime. for example the phase shift is -0.16o when Ib 

= 1.5Ith and decreases to -0.02o when Ib = 7Ith. 
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Figure 7. Influence of bias current Ib on (a) spectrum of CPR, and (b) phase of CPR, when tr = 

200ps with esc = 2ps. 

 

4. CONCLUSIONS 

We developed a small-signal analysis model to linearize the coupled rate equations of modulated QW 

lasers incorporating the frequency chirp and the transport processes of charge carriers. Analytical 

forms were derived for both CCR and CPR as functions of the transport time in the SCH layer and 

escape time in the QW. The transport and diffusion processes of the charge carriers in the QW 

structure were shown to have significant impacts on the modulation bandwidth and the frequency 

chirp. The results showed that when the escape process is as slow as esc = 200ps, the longer the 

transport time, the lower the bandwidth, and the higher the frequency chirp. When esc = 10ps, 
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the decrease of tr is associated with not only shifting the IM response and CCR spectrum and 

the bandwidth f3dB towards higher frequencies but also an increase in the peak frequency. CPR 

increases linearly with the increase in the modulation frequency and is independent of the values 

of tr and esc. In the low-frequency regime, the frequency chirp is almost synchronized with the 

intensity modulation, whereas in the high-frequency regime, the frequency variation lags a little 

behind the intensity modulation. The values CCR at the peak frequency of the CCR spectrum, 

CCRpeak, ranges between 0.3 and 4.7 GHz/mA while CPRpeak varies between 5 and 46 GHz/mW. 

These chirp values decrease with the increase of tr and decrease of tr due to the corresponding 

change in the peak frequency.  
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