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Abstract. Let H be a finite-dimentional complex Hilbert space and l2(H) is the space of square summable sequences in

H. We will give a new characterization of a frame for H, we give our definition of a frame for the Hilbert space l2(H),

we also define and give the properties of the frame operator. We equally show that our definition is equivalent to the

definition of a frame for the Hilbert space H. Finally, we give a way to construct frames for l2(Hn) from frames for

l2(Hp) such that p < n via fusion frame theory.

1. Introduction

One of the important concepts in the study of vector spaces is the concept of a basis for the

vector space, which allows every vector to be uniquely represented as a linear combination of the

basis elements. However, the linear independence property for a basis is restrictive; sometimes

it is impossible to find vectors which both fulfill the basis requirements and also satisfy external

conditions demanded by applied problems. For such purposes, we need to look for more flexible

types of spanning sets. Frames provide these alternatives. They not only have great variety for

use in applications, but also have a rich theory from a pure analysis point of view. A frame is

a set of vectors in a Hilbert space that can be used to reconstruct each vector in the space from

its inner products with the frame vectors. These inner products are generally called the frame

coeficients of the vector. But unlike an orthonormal basis each vector may have infinitely many

diferent representations in terms of its frame coeficients.

Frames is a notion that was introduced in 1952 by Duffin and Shaeffer [7] to study some deep

problems in nonharmonic Fourier series.This idea seemed to have been unnoticed outside this area

until Daubechies, Grossmann and Meyer [6] brought it into light in 1986. The latters’ showed that

Duffin and Schaeffer’s definition was an abstraction of the concept introduced by Gabor [8] in 1946
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for doing signal analysis. Recently, the frames that have been introduced by Gabor are referred to

as Gabor frames or Weyl-Heisenberg frames, and they play a vital role in signal analysis

Nowadays, frames have received great attention due to their wide range of applications in both

pure and applied mathematics, specially that it has been extensively used in many fields such as

filter bank theory, signal and image processing, coding and communication [10] and other areas.

We refer to [1, 4, 5, 9] for an introduction to frame theory and its applications.

Frames in finite dimensional spaces, (finite frames), are a very important class of frames due to

their significant relevance in applications. It makes the basic idea more transparent. It also gives

the right feeling about the infinite-dimensional setting. Moreover, every real application of frames

has to be performed in a finite-dimensional vector space. The book [3] is the first comprehensive

introduction to both the theory and applications of finite frames. For the above reasons, we are

motivated to contribute to this area.

This paper falls into 4 sections: Section 2 will be devoted to giving sufficient conditions for a

family (finite or infinite) of elements in H to be a frame for H. This will be illustrated by providing

many examples and counterexamples. In section 3, we define frames for l2(H) and we define and

give the properties of the frame operator. We equally show that they are also frames for the Hilbert

space H . Section 4 will tackle the construction of frames for l2(H) from smaller spaces. This of

course is owing to fusion frame theory introduced in [2] and [3]

Formally, a frame in a separable Hilbert space H is a sequence {xi}i∈I for which there exist positive

constants A, B > 0 such that:

A‖x‖2 ≤
∑

i∈I |〈x, xi〉|
2
≤ B‖x‖2, for all x ∈ H. The constants A, B are called lower and upper bounds,

respectively. If A = B, it is called a tight frame and it is said to be a normalized tight or Parseval

frame if A = B = 1. The collection {xi}i∈I ⊂ H is called Bessel if the above second inequality holds.

In this case, B is called the Bessel bound.

The largest number A > 0 and smallest number B > 0 satisfying the frame inequalities for all

x ∈ H are called the optimal frame bounds and they are noted Aop and Bop.

Throughout this paper, we will also adopt the following notations: H is a complex p-dimensional

Hilbert space with the inner product on H: 〈x, y〉 =
∑p

i=1 xiyi (every x ∈ H is denoted: x =

(x1, x2, ..., xp).

l2(C) = {λ = (λn)n∈N;
∑
n∈N

|λn|
2 < ∞}

with inner product: 〈λ,µ〉l2(C) =
∑

n∈N λnµn and the norm ‖λ‖ =
√
〈λ,λ〉;

l2
N2(C) = {{λn,m}n,m)∈N2 ;

∑
(n,m)∈N2

|λn,m|
2 < ∞}

l2(H) = {u = (un)n∈N; un ∈ H;
∑
n∈N

‖un‖
2 < ∞}

with inner product:

〈u, v〉l2(H) =
∑

n∈N〈un, vn〉H and the corresponding norm: ‖u‖l2(H) =
(∑

n∈N ‖un‖
2
H

) 1
2 .
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Remark 1.1. It is easy to verify that l2(H) endowed with the inner product defined above is a Hilbert space.

2. A characterization of frame for Hp

We begin with the following remarks:

The most important question in frames theory is: when is the lower frame bound condition

achived?.

As we are working with elements from the space l2(H) in which the upper frame bound is

always satisfied We will try to discus the lower frame condition.

l2(H) is the space of Bessel sequences in H.

We can see the space H as a subspace of l2(H) of sequences that has only the first term nonzero.

If u = {un}n∈N has only finite nonzero terms, then u is a finite sequence (u = {un}
N
n=1). In this

case, if N < p, {uu}
N
i=1 can’t be a frame, because N vectors can at most span N-dimensional space.

If N ≥ p, then {uu}
N
i=1 is a frame for Hp iff its associated analysis operator is injective iff its synthesis

operator is surjective iff {uu}
N
i=1 spans H. for more details about finite frame theory, we refer to [2]

and [5](chapter 1).

Definition 2.1. Let H be a complex finite-dimentional Hilbert space (dimH = p). A sequence u ∈ l2(H) is
called a (finite or infinite) frame for H if there exists A; B > 0 such that:

A‖x‖ ≤
∑
n∈N

|〈un, x〉|2 ≤ B‖x‖2, ∀x ∈ H.

In the following Theorem, we will give sufficient condition for a family in l2(H) to be a frame

for H.

Theorem 2.1. Let u ∈ l2(H), with

u = (u1, u2, ....., up) =



u1
1 u2

1 ... up
1

u1
2 u2

2 ... up
2

. . ... .

. . ... .

. . ... .

.


If

min(‖u1
‖

2, ..., ‖up
‖

2) >

j=p∑
1=i< j

|〈ui, u j
〉|;

then u is a frame for H.

Proof. It is easy to see that the right hand side of the inequality holds, by Cauchy-Schwartz

inequality and the fact that u is in l2(H).

For a fixed n ∈N and h ∈ H: 〈un, h〉 =
∑p

i=1 ui
nhi.

Then;

|〈un, h〉|2 =

p∑
i, j=1

ui
nhiu j

nh j =

p∑
i, j=1

ui
nu j

nh jhi.
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So: ∑
n∈N

|〈un, h〉|2 =
∑
n∈N

p∑
i, j=1

ui
nu j

nh jhi

=

p∑
i, j=1

∑
n∈N

ui
nu j

n

 h jhi

=

p∑
i, j=1

〈ui, u j
〉l2(C)h

jhi

=

p∑
i=1

‖ui
‖

2
|hi
|
2 + 2Re

j=k∑
1=i< j

〈ui, u j
〉l2(C)h

jhi

=

p∑
i=1

‖ui
‖

2
|hi
|
2
− 2Re

j=k∑
1=i< j

(−〈ui, u j
〉l2(C))h

jhi

≥ min(‖u1
‖

2, ..., ‖up
‖

2)

 p∑
i=1

|hi
|
2

− 2Re
j=k∑

1=i< j

(−〈ui, u j
〉l2(C))h

jhi

= min(‖u1
‖

2, ..., ‖up
‖

2)‖h‖2 − 2Re
j=k∑

1=i< j

(−〈ui, u j
〉l2(C))h

jhi

And for each i, j (i < j), we have:

2|Re(−〈ui, u j
〉l2(C))h

jhi| ≤ 2|(−〈ui, u j
〉l2(C))h

jhi| ≤ 2|〈ui, u j
〉l2(C)|.|h

i
||h j
| (2.1)

Then:

2|Re(−〈ui, u j
〉l2(C))h

jhi| ≤ |〈ui, u j
〉|(|hi
|
2 + |h j

|
2) ≤ |〈ui, u j

〉l2(C)|

 p∑
k=1

|hk
|
2


So:

2|Re(−〈ui, u j
〉l2(C))h

jhi| ≤ |〈ui, u j
〉l2(C)|‖h‖

2 (2.2)

It follows that: ∑
n∈N

|〈un, h〉|2 ≥

min(‖u1
‖

2, ..., ‖up
‖

2) −

j=p∑
1=i< j

|〈ui, u j
〉l2(C)|

 ‖h‖2
So, the left hand side of the inequality holds because:

min(‖u1
‖

2, ..., ‖up
‖

2) −

j=p∑
1=i< j

|〈ui, u j
〉l2(C)| > 0

�

Example 2.1. let f := { fn}n∈N ∈ l2(C).
We set:

u1 = ( f1, 0, ..., 0)

u2 = (0, f2, 0, ..., 0)
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...

up = (0, ..., 0, fp)

up+1 = ( fp+1, 0, ..., 0)

...

u2p = (0, ..., 0, f2p)

...

In other words:

ui
kp+i = fkp+i and ui

kp+ j = 0 (∀i , j)

Note that: u ∈ l2(Cp) and 〈ui, u j
〉 = 0 for all i , j, moreover:

‖u j
‖

2 =
∞∑

k=0

| fkp+ j|
2 , ∀ j ∈ {1, 2, ..., p}.

If min1≤ j≤p

(∑
∞

k=0 | fkp+ j|
2
)
> 0, then u = (u1, u2, ..., up) is a frame for Cp.

We will give an example in l2(C2) in which
∑ j=p

1=i< j |〈u
i, u j
〉l2(C)| , 0

Example 2.2. Let u = (u1
n, u2

n)n≥1 =

(
(−i)2

n
,

1
n

)
n≥1
∈ l2(C2).

We have

〈u1, u2
〉 =

∑
n∈N∗

(−i)n

n2

=
∑
k∈N∗

(−i)2k

(2k)2 +
∑
k∈N

(−i)2k+1

(2k + 1)2

=
∑
k∈N∗

(−1)k

(2k)2 − i
∑
k∈N

(−1)k

(2k + 1)2 .

Then

|〈u1, u2
〉| =

√√√√∑
k∈N∗

(−1)k

(2k)2


2

+

∑
k∈N

(−1)k

(2k + 1)2


2

≤

√
1

16
+ 1.

It follows that

|〈u1, u2
〉| < ‖u1

‖
2 = ‖u2

‖
2 =

π2

6
.

This means that u is frame.

We will see in the counterexample below that the condition of Theorem 2.1 is not satisfied and

hence it is not a frame.
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Counterexample 2.1. Let H = C2 and u = (u1, u2) = {( eiπn

n , −eiπn

n )}n∈N ∈ l2(H). We have

‖u1
‖

2 = ‖u2
‖

2 =
∑
n∈N

1
n2 =

π2

6
,

and

|〈u1, u2
〉| = |

∑
n∈N

−1
n2 | =

π2

6
.

So

min(‖u1
‖

2, ‖u2
‖

2) =
π2

6
and

j=p∑
1=i< j

|〈ui, u j
〉| = |〈u1, u2

〉| =
π2

6
;

We notice that the condition of Theorem 2.1 is not satisfied.
For x = (z, z) ∈ C2 ∑

n∈N

|〈un, x〉H|2 = ‖u1
‖

2
|z|2 + ‖u2

‖
2
|z|2 + 2Re〈u1, u2

〉zz

=
π2

6
(2|z|2) − 2

π2

6
zz

=
π2

3
(|z|2 − |z|2) = 0.

This implies that u is not a frame.

3. Frames for l2(H)

Definition 3.1. Let H be a complex p-dimentional Hilbert space. A sequence u ∈ l2(H) is called a frame
for l2(H) if there exists A; B > 0 such that:

A‖v‖ ≤
∑

(n,m)∈∈N2

|〈un, vm〉|
2
≤ B‖v‖2, ∀v ∈ l2(H)

The following theorem tells us that frames for l2(H) are frames for H.

Theorem 3.1. Let u ∈ l2(H).
u is a frame for H iff ∃A, B > 0 such that:

A‖v‖2 ≤
∑

n,m∈N

|〈un, vm〉|
2
≤ B‖v‖2,∀v ∈ l2(H)

Proof. (⇒): Suppose that
∑

n∈N |〈un, x〉|2 > 0,∀x ∈ H�{0}. Then∑
n,m∈N

|〈un, vm〉|
2 =

∑
m∈N

∑
n∈N

|〈un, vm〉|
2

 ,

so

A
∑
m∈N

‖vm‖
2
H ≤

∑
n,m∈N

|〈un, vm〉|
2
≤ B

∑
m∈N

‖vm‖
2
H,
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hence

A‖v‖2l2(H)
≤

∑
n,m∈N

|〈un, vm〉|
2
≤ B‖v‖2l2(H)

.

(⇐): Suppose that
∑

n,m∈N |〈un, vm〉|
2 > 0,∀v ∈ l2(H)�{0}.

For every x ∈ H, let v ∈ l2(H) such that vi
j = xiδ1 j, (δ is the chroniker symbol), ie ∀i ∈ {1, ..., p},

vi = (xi, 0, 0, 0, ...).

Then: ∑
n,m∈N

|〈un, vm〉|
2 =

∑
n∈N

|〈un, x〉|2 > 0.

�

Proposition 3.1. The operator T : l2(H) −→ l2
N2(C) defined by

T{vm}m∈N = {〈un, vm〉}(n,m)∈N2

is linear and bounded.

Proof. It is clear that T is linear.

‖T{vm}m∈N‖ =
∑

n,m∈N

|〈un, vm〉H|
2

≤

∑
n,m∈N

‖un‖
2
H‖vm‖

2
H

≤

∑
n∈N

‖un‖
2
H

∑
m∈N

‖vm‖
2
H


≤

∑
n∈N

(
‖un‖

2
H‖v‖

2
l2(H)

)
≤ ‖u‖2l2(H)

‖v‖2l2(H)
.

�

Definition 3.2. The operator T defined as follows:

T : l2(H) −→ l2
N2(C)

{vm}m∈N −→ {〈un, vm〉}(n,m)∈N2

is the analysis operator

Corollary 3.1. The adjoint of T is

T∗ : l2
N2(C) −→ l2(H)

{λn,m}n,m∈N2 −→ {

∑
n∈N

λn,mun}m∈N
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Proof.
〈T∗{λn,m}(n,m)∈N2 , {vm}m∈N〉l2(H) = 〈{λn,m}(n,m)∈N2 , T{vm}m∈N〉l2

N2 (C)

= 〈{λn,m}(n,m)∈N2 , {〈un, vm〉}(n,m)∈N2〉l2
N2 (C)

=
∑

(n,m)∈N2

λn,m〈vm, un〉H

=
∑
m∈N

〈

∑
n∈N

λn,mun, vm〉H.

Hence

T∗{λn,m}n,m∈N2 = {
∑
n∈N

λn,mun}m∈N.

�

The operator S = T∗T : l2(H) −→ l2(H) defined by

S({vm}m∈N) = {
∑
n∈N

〈un, vm〉un}m∈N

is the frame operator of u.

We have

〈Sv, v〉 =
∑

(n,m)∈N2

|〈un, vm〉|
2, ∀v ∈ l2(H).

Then

AI ≤ S ≤ BI.

This means that S is a bounded, positive and invertible operator.

We state here a lemma which we use in the following theorem.

Lemma 3.1. [5](Lemma 2.5.1)

Let H, K be Hilbert spaces, and suppose that U : K −→ H is a bounded operator with closed range RU.
Then there exists a bounded operator U† : H −→ K for which

UU†x = x,∀x ∈ RU. (3.1)

The operator U† is called the pseudo-inverse of U.

Proposition 3.2. u is a frame for l2(H) if and only if

T∗ : l2
N2(C) −→ l2(H)

is a well defined bounded and surjective operator.

Proof. If u is a frame, then S is inversible, so T∗ is surjective.

Convesely, suppose T∗ be well defined, bounded and onto. We have

T(v) = {〈un, vm〉}(n,m)∈N2 , ∀v ∈ l2(H),
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then

‖T(v)‖2 =
∑

(n,m)∈N2

|〈un, vm〉|
2
≤ B‖v‖2, ∀v ∈ l2(H).

T is onto, then there exists an operator (T∗)† : l2(H) −→ l2
N2(C) (the pseudo inverse of T∗), such

that T∗(T∗)†v = v, ∀v ∈ l2(H),(RT∗ = H),

then T∗(T†)∗v = v, ∀v ∈ l2(H). Thus, T†Tv = v, ∀v ∈ l2(H). It follows that

‖v‖2 ≤ ‖T†‖2‖Tv‖2, ∀v ∈ l2(H),

so
1
‖T†‖2

‖v‖2 ≤
∑

(n,m)∈N2

|〈un, vm〉|
2
≤ B‖v‖2, ∀v ∈ l2(H).

�

Proposition 3.3. If u ∈ l2(H) is a frame for l2(H) with lower and upper bounds A and B respectively, such
that 〈ui, u j

〉 = 0; ∀i , j, then Aop = min1≤i≤p‖ui
‖

2 and Bop = max1≤i≤p‖ui
‖

2.

Proof. By an analogous proof of theorem (2.2), we have∑
(n,m)∈N2

|〈un, vm〉|
2 =

p∑
i, j=1

〈ui, u j
〉l2(C)〈v

j, vi
〉l2(C)

≥

min(‖u1
‖

2, ..., ‖up
‖

2) −

j=p∑
1=i< j

|〈ui, u j
〉|

 ‖v‖2.

Since 〈ui, u j
〉 = 0; ∀i , j, we have:

∀v ∈ l2(H),
∑

(n,m)∈N2

|〈un, vm〉|
2
≥

(
min(‖u1

‖
2, ..., ‖up

‖
2)

)
‖v‖2.

let ‖ui0‖2 = min(‖u1
‖

2, ..., ‖up
‖

2), then
∑

(n,m)∈N2 |〈un, vm〉|
2
≥ ‖ui0‖2‖v‖2,

with: v = (a, ..., 0, vi0 , 0, ..., 0) we obtain;
∑

(n,m)∈N2 |〈un, vm〉|
2 = ‖ui0‖2‖v‖2,

so Aop = ‖ui0‖2, and we can get that: Bop = max1≤i≤p‖ui
‖

2 in the same way. �

Corollary 3.2. Let {un}n∈N ∈ l2(H) a frame for l2(H), such that 〈ui, u j
〉 = 0; ∀i , j and ‖ui

‖ = ‖u j
‖,∀i, j ∈

{1, 2, ..., p}, then u is a tight frame.
If furthermore ‖ui

‖ = 1,∀i ∈ {1, 2, ..., p}, then u is a normalized tight frame.

Proof. If 〈ui, u j
〉 = 0; ∀i , j, then:∑

(n,m)∈N2

|〈un, vm〉|
2 =

p∑
i=1

‖ui
‖

2
‖vi
‖

2, ∀v ∈ l2(H)

so: ∑
(n,m)∈N2

|〈un, vm〉|
2 = ‖u1

‖
2

 p∑
i=1

‖vi
‖

2

 = ‖u1
‖

2.‖v‖2

then, u is a tight frame , with A = B = ‖u1
‖

2. �
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Example 3.1. Let z ∈ C such that |z| = 1.
Let u ∈ l2(C3) defined as follows:

u1 =

(
z

√
1× 2

, 0, 0,
z

√
2× 3

, 0, 0,
z

√
3× 4

, 0, 0,
z

√
4× 5

, 0, ...
)

u2 =

(
0,

z
√

1× 2
, 0, 0,

z
√

2× 3
, 0, 0,

z
√

3× 4
, 0, 0,

z
√

4× 5
, 0, ...

)
u3 =

(
0, 0,

z
√

1× 2
, 0, 0,

z
√

2× 3
, 0, 0,

z
√

3× 4
, 0, 0,

z
√

4× 5
, 0, ...

)
ie

ui
3k+i =

z√
(k + 1)(k + 2)

and ui
3k+ j = 0 (∀i , j).

We have 〈ui, u j
〉 = 0; ∀i , j and for every i ∈ {1, 2, 3}:

‖ui
‖

2 =
∞∑

n=1

|
z√

n(n + 1)
|
2 =

∞∑
n=1

1
n(n + 1)

= 1,

then u is a normalized tight frame.

4. construction of frames for l2(H)

Let us recall the essential facts about fusion frames. Our references are: [2] and [3]

Definition 4.1. (Def 3.1 in [2]) Let H be a Hilbert space and I be some index set, let {υi}i∈I a family of
weights, i.e, υi > 0 for all i ∈ I and {Wi}i∈I be a family of closed subspaces of H. {(Wi, υi)}i∈I is said to be
a fusion frame or a frame of subspaces with respect to {υi}i∈I for H if there exist constants 0 < A ≤ B < ∞
such that

A‖x‖2 ≤
∑
i∈I

υ2
i ‖πWi(x)‖

2
≤ B‖x‖2 ∀x ∈ H

where PWi denotes the orthogonal projection onto Wi, for each i ∈ I. The fusion frame W = {(Wi, υi)}i∈I

is called tight if A = B and Parseval if A = B = 1. If υi = υ for all i ∈ I, then W is called υ-uniform.
Moreover, W is called an orthonormal fusion basis for H if H = ⊕i∈IHi . If W = {(Wi, υi)}i∈I possesses an
upper fusion frame bound but not necessarily a lower bound, we call it a Bessel fusion sequence with Bessel
fusion bound B. The normalized version of W is obtained when we choose υi = 1 for all i ∈ I.

Theorem 4.1. (Thm 3.2 in [2]) For each i ∈ I let υi > 0 and let { fi j} j∈Ji be a frame sequence in H with
frame bounds Ai and Bi. Define Wi = span j∈Ji{ fi j} for all i ∈ I and choose an orthonormal basis {ei j} j∈Ji

for each subspace Wi. Suppose that 0 < A = in fi∈IAi ≤ B = supi∈IBi < ∞. The following conditions are
equivalent.

(i) {υi fi j}i∈I, j∈Ji is a frame for H.
(ii) {υiei j}i∈I, j∈Ji is a frame for H.

(iii) {Wi}i∈i is a frame of subspaces with respect to {υi}i∈I for H .

In the following lemma, we will give an orthonormal basis of l2(H).
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Lemma 4.1. Let {ai}0≤i≤p−1 be an orthonormal basis of H. The family {en}n∈N defined by:
for each n ∈N such that n = kp + i ( for some k ∈N and 0 ≤ i ≤ p− 1);

en := ei
k = {δkjai} j∈N

is an orthonormal basis of l2(H).

Proof. Let n = jp + i and n, = kp + l, if n , n, then (i, j) , (k, l) so 〈en, en,〉 = 〈ei
j, ek

l 〉 = 0? This

implies that {en}n∈N is an orthonormal family.

Let u ∈ l2(H) ∑
n∈N

|〈u, en〉l2(H)|
2 =

∑
k∈N

p−1∑
i=0

|〈u, ei
k〉l2(H)|

2

=
∑
k∈N

p−1∑
i=0

|ui
k|

2
C

=
∑
k∈N

‖uk‖
2
H

= ‖u‖2l2(H)

so {en}n∈N satisfy Parseval’s identity, it is then an orthonormal basis of l2(H). �

Theorem 4.2. Let H be a complex finite-dimentional Hilbert space (dimH = p).
Then, there exist {Wi}i∈I a family of closed subspaces in l2(H) and {υi}i∈I a family of weights, i.e, υi > 0 for
all i ∈ I such that, {(Wi, υi)}i∈I is a fusion frame for H.

Proof. Let {ei}i∈{1,...,p} be an orthonormal basis of H, we set Vi = span{ei} and let Wi = l2(Vi), ( we

can identify l2(Vi) with l2(C)).

Let {υi}i∈I be a family of weights., the set I in this case is I = {1, ..., p}.
Let u ∈ l2(H), then ∑

i∈I

υ2
i ‖πWiu‖

2 =

p∑
i=1

υ2
i ‖ui‖

2.

Then

mini∈{1,...,p}(υ
2
i ).‖u‖

2
≤

∑
i∈I

υ2
i ‖πWiu‖

2
≤ maxi∈{1,...,p}(υ

2
i ).‖u‖

2.

Hence, {(Wi, υi)}i∈I is a fusion frame with fusion frame bounds A := mini∈{1,...,p}(υ2
i ) and B :=

maxi∈{1,...,p}(υ2
i ). �

Remark 4.1. If υi = υ for all i ∈ {1, ..., p} then {(Wi, υ)}i∈I is a υ-tight fusion frame.
If υi = 1 for all i ∈ {1, ..., p} then ∑

i∈I

υ2
i ‖πWiu‖

2 = ‖ui‖
2.

{(Wi, 1)}i∈I is a Parseval fusion frame, it is also an orthonormal fusion basis because l2(H) = ⊕i∈{1,...,p}Wi.
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Theorem 4.3. Let {Wi}i∈I a family of closed subspaces in l2(H) and {υi}i∈I a family of weights, i.e, υi > 0

for all i ∈ I such that {(Wi, υi)}i∈I is a fusion frame for H. If {ui j} j∈Ji is a frame for Wi for each i ∈ I, then
{υiui j}i∈I, j∈Ji is frame for l2(H).

Proof. This follows immediately from Theorem 4.2 above and Theorem 3.2 in [2]. �

Example 4.1. Let {ai}0≤i≤p−1 be an orthonormal basis of H, and Vi = span{ai}. by lemma 4.1 {ei
j} j∈N is an

orthonormal basis of Wi = l2(Vi), let {υi}i∈{0,...p−1} be any family of wights.
{υiei

n}i∈{0,...,p−1},n∈N is a frame for l2(H). Indeed, we set (υ0e0
n, ...., υp−1ep−1

n ) := υen.
Let f ∈ l2(H) ∑

(n,m)∈∈N2

|〈υen, fm〉|2 =
∑

(n,m)∈∈N2

p−1∑
i=0

|〈υiei
n, f i

m〉|
2

=

p−1∑
i=0

υ2
i

∑
(n,m)∈∈N2

|〈ei
n, f i

m〉|
2

=

p−1∑
i=0

υ2
i

∑
n∈N

| f i
n|

2

=

p−1∑
i=0

υ2
i ‖ f i
‖

2.

Then
A‖ f ‖2 ≤

∑
(n,m)∈∈N2

|〈υen, fm〉|2 ≤ B‖ f ‖2

with A := mini∈{1,...,p}(υ2
i ) and B := maxi∈{1,...,p}(υ2

i ).

Example 4.2. Let f = ( f 1, f 2, f 3) be the sequence in l2(C3) defined by:

{( f 1
n , f 2

n , f 3
n )}n∈N = {(

eiαπn

n
,

eiβπn

n
,

eiγπn

n
)}n∈N

such that α+ β , 2k and β+ γ , 2k for every k ∈ Z.
Let {ei}1≤i≤3 be the standard orthonormal basis of C3. We set V1 = span{e1, e2}, V2 = span{e2, e3}, let
Wi = l2(Vi), i ∈ {1, 2}

‖ f 1
‖

2 = ‖ f 2
‖

2 = ‖ f 3
‖

2 =
π2

6
.

|〈 f 1, f 2
〉| = |

∑
n∈N

1
n2 eiπ(α+β)n

| <
∑
n∈N

1
n2 = ‖ f 1

‖
2 = ‖ f 2

‖
2

|〈 f 2, f 3
〉| = |

∑
n∈N

1
n2 eiπ(β+γ)n

| <
∑
n∈N

1
n2 = ‖ f 2

‖
2 = ‖ f 3

‖
2

by Theorem 2.1 {( f 1
n , f 2

n )}n∈N is frame for W1 and {( f 2
n , f 3

n )}n∈N is a frame for W2.
Let υ1,υ2 be two weights (we assume that υ1 ≤ υ2). Let g ∈ l2(C3)

υ1‖πW1 g‖2 + υ2‖πW2 g‖2 = υ1(‖g1
‖

2 + ‖g2
‖

2) + υ2(‖g2
‖

2 + ‖g3
‖

2)

= υ1‖g1
‖

2 + (υ1 + υ2)‖g2
‖

2 + υ2‖g3
‖

2.
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Then

υ1‖g‖2 ≤
2∑

i=1

υi‖πWi g‖
2
≤ (υ1 + υ2)‖g‖2.

This means that (Wi, υi)i=1,2 is a fusion frame for l2(C3).
Lel f1 = { f1n}n∈N := {( f 1

n , f 2
n )}n∈N and f2 = { f2n}n∈N := {( f 2

n , f 3
n )}n∈N, if A1, B1 are frame bounds of f1

and A2, B2 are frame bounds of f2. We set A = min(A1, A2) and B = max(B1, B1). For g = (g1, g2, g3) ∈

l2(C3) ∑
n,m∈N

|〈υ1 f1n, gm〉|
2 +

∑
n,m∈N

|〈υ2 f2n, gm〉|
2 = υ2

1

∑
n,m∈N

|〈 f1n, gm〉|
2 + υ2

2

∑
n,m∈N

|〈 f2n, gm〉|
2.

As each element h ∈ W1 can be writen in the form h = (h1, h2, 0) as an element of l2(C3) and if h ∈ W2 it
can be writen h = (0, h2, h3) and the fact that each fi is a frame for Wi, i ∈ {1, 2}, we get

A(‖g1
‖

2 + ‖g2
‖

2) ≤
∑

n,m∈N

|〈 f1n, gm〉|
2
≤ B(‖g1

‖
2 + ‖g2

‖
2)

and

A(‖g2
‖

3 + ‖g2
‖

2) ≤
∑

n,m∈N

|〈 f2n, gm〉|
2
≤ B(‖g2

‖
2 + ‖g3

‖
2).

Thus

Aυ2
1‖g‖

2
≤ Aυ2

1‖g
1
‖

2 + A(υ2
1 + υ2

2)‖g
2
‖

2 + Aυ2
2‖g

3
‖

2
≤

2∑
i=1

∑
n,m∈N

|〈 fin, gm〉|
2

and
2∑

i=1

∑
n,m∈N

|〈 fin, gm〉|
2
≤ Bυ2

1‖g
1
‖

2 + B(υ2
1 + υ2

2)‖g
2
‖

2 + Bυ2
2‖g

3
‖

2
≤ B(υ2

1 + υ2
2)‖g‖

2.

This means that {υi fin}i∈{1,2},n∈N is a frame for l2(C3)
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