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Abstract. This work introduces the concept of f -derivations in Hilbert algebras, exploring its theoretical foundation

alongside a series of illustrative examples. We examine fundamental properties associated with f -derivations through

rigorous analysis, shedding light on their algebraic structure and behaviour. In particular, we demonstrate that the

kernel Kerd f
(A) constitutes a near filter (subalgebra), while the fixed set Fixd f

( f ) forms a subalgebra within the Hilbert

algebra A. These results provide new insights into the interaction between derivations and substructures in Hilbert

algebras, offering potential avenues for further exploration in algebraic logic and related fields.

1. Introduction

The notion of Hilbert algebras was first introduced by Henkin in the early 1950s as a formal

framework for studying implications within intuitionistic and other non-classical logics [9]. These

algebras provided an algebraic approach to capture the behaviour of implication in systems that

deviate from classical logic, thereby offering new tools for understanding logical reasoning in such

settings. By the 1960s, the foundational importance of Hilbert algebras was solidified, largely

due to the work of Diego [7], who established that Hilbert algebras form a locally finite variety.

Diego’s results played a pivotal role in embedding these algebras within the broader landscape of

algebraic logic, offering a rigorous foundation for their study.
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Building on these early developments, subsequent research expanded the algebraic and logical

dimensions of Hilbert algebras. Busneag [4, 5] and Jun [13] explored the role of filters in these

algebras, demonstrating that they form deductive systems and play a crucial role in the logical

structure of Hilbert algebras. Their contributions revealed deeper connections between the al-

gebraic properties of these systems and their logical interpretations. Dudek [8] also expanded

the use of Hilbert algebras by adding the idea of fuzzification and studying how subalgebras

and deductive systems work in fuzzy logic settings. This approach enriched the study of Hilbert

algebras, broadening their relevance to areas dealing with uncertainty and graded truth values.

The study of derivations has seen significant advancements in recent years, with notable

contributions across various algebraic structures. In 2021, Muangkarn et al. [16] investigated

fq-derivations, while Bantaojai et al. [3] examined derivations induced by endomorphisms in

B-algebras, revealing new perspectives on the interaction between derivations and algebraic mor-

phisms. Building on this work, in 2022, Bantaojai et al. [1,2] extended their study to derivations on

d-algebras and B-algebras, further enriching the theoretical landscape. During the same period,

Muangkarn et al. [15, 17] focused on derivations induced by endomorphisms in BG-algebras and

d-algebras, offering new insights into the structural implications of these operations. Additionally,

Iampan et al. [10, 18, 19] contributed to this growing body of research by exploring derivations

on UP-algebras, highlighting the versatility of derivation theory across diverse algebraic systems.

These studies collectively enhance our understanding of the role of derivations in algebraic struc-

tures, providing a foundation for future explorations in both classical and non-classical algebraic

settings.

This paper delves into the introduction and exploration of (l, r)- f -derivations, (r, l)- f -derivations,

and f -derivations within the framework of Hilbert algebras. We investigate the fundamental prop-

erties of these derivations, providing new insights into their structural roles and interactions. In

particular, we demonstrate that the kernel of an f -derivation, denoted Kerd f (A), constitutes a near

filter, effectively functioning as a subalgebra of the Hilbert algebra A. Additionally, we show that

the fixed set Fixd f ( f ) similarly forms a subalgebra. These findings not only enhance the under-

standing of the algebraic structure of Hilbert algebras but also open new directions for further

research in the field of algebraic logic and its applications.

2. Preliminaries

Let’s review the idea of Hilbert algebras as Diego first introduced it in 1966 [7] before we start.

Definition 2.1. [7] A Hilbert algebra is a triplet with the formula A = (A, ·, 1), where A is a nonempty
set, · is a binary operation, and 1 is a fixed member of A that is true according to the axioms stated below:

(∀x, y ∈ A)(x · (y · x) = 1) (2.1)

(∀x, y, z ∈ A)((x · (y · z)) · ((x · y) · (x · z)) = 1) (2.2)

(∀x, y ∈ A)(x · y = 1, y · x = 1⇒ x = y) (2.3)
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In [8], the following conclusion was established.

Lemma 2.1. Let A = (A, ·, 1) be a Hilbert algebra. Then

(1) (∀x ∈ A)(x · x = 1),
(2) (∀x ∈ A)(1 · x = x),
(3) (∀x ∈ A)(x · 1 = 1),
(4) (∀x, y, z ∈ A)(x · (y · z) = y · (x · z)),
(5) (∀x, y, z ∈ A)((x · z) · ((z · y) · (x · y)) = 1).

In a Hilbert algebra A = (A, ·, 1), the binary relation ≤ is defined by

(∀x, y ∈ A)(x ≤ y⇔ x · y = 1),

which is a partial order on A with 1 as the largest element.

Definition 2.2. [14] A nonempty subset D of a Hilbert algebra A = (A, ·, 1) is called a subalgebra of A if
x · y ∈ D for all x, y ∈ D.

Definition 2.3. [6] A nonempty subset D of a Hilbert algebra A = (A, ·, 1) is called an ideal of A if the
following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ A)(y ∈ D⇒ x · y ∈ D),
(3) (∀x, y1, y2 ∈ A)(y1, y2 ∈ D⇒ (y1 · (y2 · x)) · x ∈ D).

Definition 2.4. [11] A nonempty subset D of a Hilbert algebra A = (A, ·, 1) is called a near filter of A if
the following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ A)(y ∈ D⇒ x · y ∈ D).

Definition 2.5. [11] A nonempty subset D of a Hilbert algebra A = (A, ·, 1) is called a filter of A if the
following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ A)(x · y, x ∈ D⇒ y ∈ D).

Definition 2.6. Let A = (A, ·, 1A) and B = (B,?, 1B) be Hilbert algebras. A function f : A→ B is called
a homomorphism if f (x · y) = f (x)? f (y) for all x, y ∈ A. Now, f (1A) = f (1A · 1A) = f (1A)? f (1A) =

1B. A homomorphism f : A→ A is said to be an endomorphism.

For any x, y in a Hilbert algebra A = (A, ·, 1), we define x∨ y by (y · x) · x. By Lemma 2.1 (4), we

can prove that x∨ y is an upper bound of x and y. That is,

(∀x, y ∈ A)(x · (x∨ y) = 1), (2.4)

(∀x, y ∈ A)(y · (x∨ y) = 1). (2.5)
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A Hilbert algebra A = (A, ·, 1) is said to be∨-commutative [12] if for all x, y ∈ A, (y · x) · x = (x · y) · y,

that is, x∨ y = y∨ x. From [12], we know that

(∀x ∈ A)(x∨ x = x), (2.6)

(∀x ∈ A)(x∨ 1 = 1∨ x = 1). (2.7)

3. Main Results

In this section, we introduce and explore the concepts of (l, r)- f -derivations, (r, l)- f -derivations,

and general f -derivations within the framework of Hilbert algebras. We examine their founda-

tional properties, establishing a theoretical basis for their further study. Additionally, we define

two significant subsets associated with an f -derivation d f of a Hilbert algebra A: the kernel,

Kerd f (A), and the fixed set, Fixd f ( f ). We then investigate the key properties of these subsets, high-

lighting their roles within the broader algebraic structure. The insights gained from these analyses

contribute to a deeper understanding of the interaction between derivations and substructures in

Hilbert algebras.

Definition 3.1. Let f be an endomorphism of a Hilbert algebra A = (A, ·, 1). A self-map d f : A → A is
called an (l, r)- f -derivation of A if it satisfies the identity

(∀x, y ∈ A)(d f (x · y) = (d f (x) · f (y))∨ ( f (x) · d f (y))).

Similarly, a self-map d f : A→ A is called an (r, l)- f -derivation of A if it satisfies the identity

(∀x, y ∈ A)(d f (x · y) = ( f (x) · d f (y))∨ (d f (x) · f (y))).

Moreover, if d f is both an (l, r)- f -derivation and an (r, l)- f -derivation of A, it is called an f -derivation of A.

Example 3.1. Let A = {1, 2, 3, 4} be a Hilbert algebra with a fixed element 1 and a binary operation · defined
by the following Cayley table:

· 1 2 3 4

1 1 2 3 4

2 1 1 3 4

3 1 2 1 4

4 1 2 3 1

Then (A, ·, 1) is a Hilbert algebra. We define an endomorphism f on A as follows:

f =
(1
1

2
1

3
3

4
4

)
Define a self-map d f : A→ A as follows:

d f =
(1
1

2
1

3
3

4
1

)
Hence, d f is an f -derivation of A.

Definition 3.2. An (l, r)- f -derivation (resp., (r, l)- f -derivation, f -derivation) d f of a Hilbert algebra
A = (A, ·, 1) is called regular if d f (1) = 1.
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Theorem 3.1. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) every (l, r)- f -derivation of A is regular,
(2) every (r, l)- f -derivation of A is regular.

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Then

d f (1) = d f (1 · 1) Lemma 2.1 (1)

= (d f (1) · f (1))∨ ( f (1) · d f (1))

= (d f (1) · 1)∨ (1 · d f (1))

= 1∨ d f (1) Lemma 2.1 (2) and (3)

= 1. (2.7)

Hence, d f is regular.

(2) Assume that d f is an (r, l)- f -derivation of A. Then

d f (1) = d f (1 · 1) Lemma 2.1 (1)

= ( f (1) · d f (1))∨ (d f (1) · f (1))

= (1 · d f (1))∨ (d f (1) · 1)

= d f (1)∨ 1 Lemma 2.1 (2) and (3)

= 1. (2.7)

Hence, d f is regular. �

Corollary 3.1. Every f -derivation of a Hilbert algebra A is regular.

Theorem 3.2. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then d f (x) = f (x)∨ d f (x) for all x ∈ A,
(2) if d f is an (r, l)- f -derivation of A, then d f (x) = d f (x)∨ f (x) for all x ∈ A.

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Then, for all x ∈ A,

d f (x) = d f (1 · x) Lemma 2.1 (2)

= (d f (1) · f (x))∨ ( f (1) · d f (x))

= (1 · f (x))∨ (1 · d f (x)) regular

= f (x)∨ d f (x). Lemma 2.1 (2)

(2) Assume that d f is an (r, l)- f -derivation of A. Then, for all x ∈ A,

d f (x) = d f (1 · x) Lemma 2.1 (2)

= ( f (1) · d f (x))∨ (d f (1) · f (x))

= (1 · d f (x))∨ (1 · f (x)) regular

= d f (x)∨ f (x). Lemma 2.1 (2)
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�

Corollary 3.2. If d f is an f -derivation of a Hilbert algebra A, then d f (x) ∨ f (x) = f (x) ∨ d f (x) for all
x ∈ A.

Proposition 3.1. Let d f be an (l, r)- f -derivation of a Hilbert algebra A = (A, ·, 1). Then the following
properties hold: for any x, y ∈ A,

(1) f (x) ≤ d f (x),
(2) d f (x) · f (y) ≤ d f (x · y),
(3) f (x) · d f (y) ≤ d f (x · y),
(4) if f (d f (x)) = d f (x) or d f (d f (x)) = f (x), then d f (x · d f (x)) = 1,
(5) if f (d f (x)) = d f (x) or d f (d f (x)) = f (x), then d f (d f (x) · x) = 1,
(6) if f ( f (x)) = d f (x) or d f ( f (x)) = f (x), then d f ( f (x) · x) = 1,
(7) if f ( f (x)) = d f (x) or d f ( f (x)) = f (x), then d f ( f (x) · x) = 1.

Proof. (1) For all x ∈ A,

f (x) · d f (x) = f (x) · ( f (x)∨ d f (x)) Theorem 3.2 (1)

= 1. (2.4)

Hence, f (x) ≤ d f (x) for all x ∈ A.

(2) For all x, y ∈ A,

(d f (x) · f (y)) · d f (x · y) = (d f (x) · f (y)) · ((d f (x) · f (y))∨ ( f (x) · d f (y)))

= 1. (2.4)

Hence, d f (x) · f (y) ≤ d f (x · y) for all x, y ∈ A.

(3) For all x, y ∈ A,

( f (x) · d f (y)) · d f (x · y) = ( f (x) · d f (y)) · ((d f (x) · f (y))∨ ( f (x) · d f (y)))

= 1. (2.5)

Hence, f (x) · d f (y) ≤ d f (x · y) for all x, y ∈ A.

(4) For all x ∈ A, if f (d f (x)) = d f (x), then

d f (x · d f (x)) = (d f (x) · f (d f (x)))∨ ( f (x) · d f (d f (x)))

= (d f (x) · d f (x))∨ ( f (x) · d f (d f (x)))

= 1∨ ( f (x) · d f (d f (x))) Lemma 2.1 (1)

= 1. (2.7)
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For all x ∈ A, if d f (d f (x)) = f (x), then

d f (x · d f (x)) = (d f (x) · f (d f (x)))∨ ( f (x) · d f (d f (x)))

= (d f (x) · f (d f (x)))∨ ( f (x) · f (x))

= (d f (x) · f (d f (x)))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

(5) For all x ∈ A, if f (d f (x)) = d f (x), then

d f (d f (x) · x) = (d f (d f (x)) · f (x))∨ ( f (d f (x)) · d f (x))

= (d f (d f (x)) · f (x))∨ (d f (x) · d f (x))

= (d f (d f (x)) · f (x))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

For all x ∈ A, if d f (d f (x)) = f (x), then

d f (d f (x) · x) = (d f (d f (x)) · f (x))∨ ( f (d f (x)) · d f (x))

= ( f (x) · f (x))∨ ( f (d f (x)) · d f (x))

= 1∨ ( f (d f (x)) · d f (x)) Lemma 2.1 (1)

= 1. (2.7)

(6) For all x ∈ A, if f ( f (x)) = d f (x), then

d f (x · f (x)) = (d f (x) · f ( f (x)))∨ ( f (x) · d f ( f (x)))

= (d f (x) · d f (x))∨ ( f (x) · d f ( f (x)))

= 1∨ ( f (x) · d f ( f (x))) Lemma 2.1 (1)

= 1. (2.7)

For all x ∈ A, if d f ( f (x)) = f (x), then

d f (x · f (x)) = (d f (x) · f ( f (x)))∨ ( f (x) · d f ( f (x)))

= (d f (x) · f ( f (x)))∨ ( f (x) · f (x))

= (d f (x) · f ( f (x)))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

(7) For all x ∈ A, if f ( f (x)) = d f (x), then

d f ( f (x) · x) = (d f ( f (x)) · f (x))∨ ( f ( f (x)) · d f (x))

= (d f ( f (x)) · f (x))∨ (d f (x) · d f (x))

= (d f ( f (x)) · f (x))∨ 1 Lemma 2.1 (1)

= 1. (2.7)
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For all x ∈ A, if d f ( f (x)) = f (x), then

d f ( f (x) · x) = (d f ( f (x)) · f (x))∨ ( f ( f (x)) · d f (x))

= ( f (x) · f (x))∨ ( f ( f (x)) · d f (x))

= 1∨ ( f ( f (x)) · d f (x)) Lemma 2.1 (1)

= 1. (2.7)

�

Proposition 3.2. Let d f be an (r, l)- f -derivation of a Hilbert algebra A = (A, ·, 1). Then the following
properties hold: for any x, y ∈ A,

(1) f (x) ≤ d f (x),
(2) f (x) · d f (y) ≤ d f (x · y),
(3) d f (x) · f (y) ≤ d f (x · y),
(4) if f (d f (x)) = d f (x) or d f (d f (x)) = f (x), then d f (x · d f (x)) = 1,
(5) if f (d f (x)) = d f (x) or d f (d f (x)) = f (x), then d f (d f (x) · x) = 1,
(6) if f ( f (x)) = d f (x) or d f ( f (x)) = f (x), then d f (x · f (x)) = 1,
(7) if f ( f (x)) = d f (x) or d f ( f (x)) = f (x), then d f ( f (x) · x) = 1.

Proof. (1) For all x ∈ A,

f (x) · d f (x) = f (x) · (d f (x)∨ f (x)) Theorem 3.2 (2)

= 1. (2.5)

Hence, f (x) ≤ d f (x) for all x ∈ A.

(2) For all x, y ∈ A,

( f (x) · d f (y)) · d f (x · y) = ( f (x) · d f (y)) · (( f (x) · d f (y))∨ (d f (x) · f (y)))

= 1. (2.4)

Hence, f (x) · d f (y) ≤ d f (x · y) for all x, y ∈ A.

(3) For all x, y ∈ A,

(d f (x) · f (y)) · d f (x · y) = (d f (x) · f (y)) · (( f (x) · d f (y))∨ (d f (x) · f (y)))

= 1. (2.5)

Hence, d f (x) · f (y) ≤ d f (x · y) for all x, y ∈ A.

(4) For all x ∈ A, if f (d f (x)) = d f (x), then

d f (x · d f (x)) = ( f (x) · d f (d f (x)))∨ (d f (x) · f (d f (x)))

= ( f (x) · d f (d f (x)))∨ (d f (x) · d f (x))

= ( f (x) · d f (d f (x)))∨ 1 Lemma 2.1 (1)

= 1. (2.7)
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For all x ∈ A, if d f (d f (x)) = f (x), then

d f (x · d f (x)) = ( f (x) · d f (d f (x)))∨ (d f (x) · f (d f (x)))

= ( f (x) · f (x))∨ (d f (x) · f (d f (x)))

= 1∨ (d f (x) · f (d f (x))) Lemma 2.1 (1)

= 1. (2.7)

(5) For all x ∈ A, if f (d f (x)) = d f (x), then

d f (d f (x) · x) = ( f (d f (x)) · d f (x))∨ (d f (d f (x)) · f (x))

= (d f (x) · d f (x))∨ (d f (d f (x)) · f (x))

= 1∨ (d f (d f (x)) · f (x)) Lemma 2.1 (1)

= 1. (2.7)

For all x ∈ A, if d f (d f (x)) = f (x), then

d f (d f (x) · x) = ( f (d f (x)) · d f (x))∨ (d f (d f (x)) · f (x))

= ( f (d f (x)) · d f (x))∨ ( f (x) · f (x))

= ( f (d f (x)) · d f (x))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

(6) For all x ∈ A, if f ( f (x)) = d f (x), then

d f (x · f (x)) = ( f (x) · d f ( f (x)))∨ (d f (x) · f ( f (x)))

= ( f (x) · d f ( f (x)))∨ (d f (x) · d f (x))

= ( f (x) · d f ( f (x)))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

For all x ∈ A, if d f ( f (x)) = f (x), then

d f (x · f (x)) = ( f (x) · d f ( f (x)))∨ (d f (x) · f ( f (x))

= ( f (x) · f (x))∨ (d f (x) · f ( f (x)))

= 1∨ (d f (x) · f ( f (x))) Lemma 2.1 (1)

= 1. (2.7)

(7) For all x ∈ A, if f ( f (x)) = d f (x), then

d f ( f (x) · x) = ( f ( f (x)) · d f (x))∨ (d f ( f (x)) · f (x))

= (d f (x) · d f (x))∨ (d f ( f (x)) · f (x))

= 1∨ (d f ( f (x)) · f (x)) Lemma 2.1 (1)

= 1. (2.7)
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For all x ∈ A, if d f ( f (x)) = f (x), then

d f ( f (x) · x) = ( f ( f (x)) · d f (x))∨ (d f ( f (x)) · f (x))

= ( f ( f (x)) · d f (x))∨ ( f (x) · f (x))

= ( f ( f (x)) · d f (x))∨ 1 Lemma 2.1 (1)

= 1. (2.7)

�

Definition 3.3. A non-empty subset B of a Hilbert algebra A = (A, ·, 1) is called f -invariant (with respect
to an (l, r)- f -derivation (resp., (r, l)- f -derivation, f -derivation)) d f of A if d f (B) ⊆ B.

Theorem 3.3. Every filter of a Hilbert algebra A = (A, ·, 1) containing the endomorphic image of f is
f -invariant with respect to any (l, r)- f -derivation of A.

Proof. Let B be a filter of A. Let y ∈ d f (B). Then y = d f (x) for some x ∈ B. It follows from

Proposition 3.1 (1) that f (x) · y = f (x) · d f (x) = 1 ∈ B. Since f (A) ⊆ B, we have f (x) ∈ B. Since B
is a filter of A, we have y ∈ B. Thus, d f (B) ⊆ B. Hence, B is f -invariant. �

Definition 3.4. Let d f be an (l, r)- f -derivation (resp., (r, l)- f -derivation, f -derivation) of a Hilbert algebra
A = (A, ·, 1). We define the kernel Kerd f (A) of A as follows:

Kerd f (A) = {x ∈ A : d f (x) = 1}

Example 3.2. Let A = {1, 2, 3, 4} be a Hilbert algebra with a fixed element 1 and a binary operation · defined
by the following Cayley table:

· 1 2 3 4

1 1 2 3 4

2 1 1 3 3

3 1 2 1 2

4 1 1 1 1

Then (A, ·, 1) is a Hilbert algebra. We define an endomorphism f on A as follows:

f =
(1
1

2
4

3
1

4
4

)
Define a self-map d f : A→ A as follows:

d f =
(1
1

2
2

3
1

4
2

)
Hence, d f is an f -derivation of A and so Kerd f (A) = {1, 3}.

Theorem 3.4. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then y∨ x ∈ Kerd f (A) for all y ∈ Kerd f (A) and x ∈ A,
(2) if d f is an (r, l)- f -derivation of A, then y∨ x ∈ Kerd f (A) for all y ∈ Kerd f (A) and x ∈ A.
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Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Let y ∈ Kerd f (A) and x ∈ A. Then d f (y) = 1.

Thus,

d f (y∨ x) = d f ((x · y) · y)

= (d f (x · y) · f (y))∨ ( f (x · y) · d f (y))

= (d f (x · y) · f (y))∨ ( f (x · y) · 1)

= (d f (x · y) · f (y))∨ 1 Lemma 2.1 (3)

= 1. (2.7)

Hence, y∨ x ∈ Kerd f (A).

(2) Assume that d f is an (r, l)- f -derivation of A. Let y ∈ Kerd f (A) and x ∈ A. Then d f (y) = 1.

Thus,

d f (y∨ x) = d f ((x · y) · y)

= ( f (x · y) · d f (y))∨ (d f (x · y) · f (y))

= ( f (x · y) · 1)∨ (d f (x · y) · f (y))

= 1∨ (d f (x · y) · f (y)) Lemma 2.1 (3)

= 1. (2.7)

Hence, y∨ x ∈ Kerd f (A). �

Corollary 3.3. If d f is an f -derivation of a Hilbert algebra A, then y∨ x ∈ Kerd f (A) for all y ∈ Kerd f (A)

and x ∈ A.

Theorem 3.5. In a ∨-commutative Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A and for any x, y ∈ A is such that y ≤ x and y ∈ Kerd f (A), then
x ∈ Kerd f (A),

(2) if d f is an (r, l)- f -derivation of A and for any x, y ∈ A is such that y ≤ x and y ∈ Kerd f (A), then
x ∈ Kerd f (A).

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Let x, y ∈ A be such that y ≤ x and

y ∈ Kerd f (A). Then y · x = 1 and d f (y) = 1. Thus,

d f (x) = d f (1 · x) Lemma 2.1 (2)

= d f ((y · x) · x)

= d f ((x · y) · y) ∨-commutative

= (d f (x · y) · f (y))∨ ( f (x · y) · d f (y))

= (d f (x · y) · f (y))∨ ( f (x · y) · 1)

= (d f (x · y) · f (y))∨ 1 Lemma 2.1 (3)

= 1. (2.7)
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Hence, x ∈ Kerd f (A).

(2) Assume that d f is an (r, l)- f -derivation of A. Let x, y ∈ A be such that y ≤ x and y ∈ Kerd f (A).

Then y · x = 1 and d f (y) = 1. Thus,

d f (x) = d f (1 · x) Lemma 2.1 (2)

= d f ((y · x) · x)

= d f ((x · y) · y) ∨-commutative

= ( f (x · y) · d f (y))∨ (d f (x · y) · f (y))

= ( f (x · y) · 1)∨ (d f (x · y) · f (y))

= 1∨ (d f (x · y) · f (y)) Lemma 2.1 (3)

= 1. (2.7)

Hence, x ∈ Kerd f (A). �

Corollary 3.4. If d f is an f -derivation of a ∨-commutative Hilbert algebra A and for any x, y ∈ A is such
that y ≤ x and y ∈ Kerd f (A), then x ∈ Kerd f (A).

Theorem 3.6. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then y · x ∈ Kerd f (A) for all x ∈ Kerd f (A) and y ∈ A,
(2) if d f is an (r, l)- f -derivation of A, then y · x ∈ Kerd f (A) for all x ∈ Kerd f (A) and y ∈ A.

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Let x ∈ Kerd f (A) and y ∈ A. Then d f (x) = 1.

Thus,

d f (y · x) = (d f (y) · f (x))∨ ( f (y) · d f (x))

= (d f (y) · f (x))∨ ( f (y) · 1)

= (d f (y) · f (x))∨ 1 Lemma 2.1 (3)

= 1. (2.7)

Hence, y · x ∈ Kerd f (A).

(2) Assume that d f is an (r, l)- f -derivation of A. Let x ∈ Kerd f (A) and y ∈ A. Then d f (x) = 1.

Thus,

d f (y · x) = ( f (y) · d f (x))∨ (d f (y) · f (x))

= ( f (y) · 1)∨ (d f (y) · f (x))

= 1∨ (d f (y) · f (x)) Lemma 2.1 (3)

= 1. (2.7)

Hence, y · x ∈ Kerd f (A). �

Corollary 3.5. If d f is an f -derivation of a Hilbert algebra A = (A, ·, 1), then y · x ∈ Kerd f (A) for all
x ∈ Kerd f (A) and y ∈ A.
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Theorem 3.7. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then Kerd f (A) is a near filter (subalgebra) of A,
(2) if d f is an (r, l)- f -derivation of A, then Kerd f (A) is a near filter (subalgebra) of A.

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Since d f is regular, we have d f (1) = 1 and

so 1 ∈ Kerd f (A) , ∅. Let x ∈ A and y ∈ Kerd f (A). Then d f (y) = 1. Thus,

d f (x · y) = (d f (x) · f (y))∨ ( f (x) · d f (y))

= (d f (x) · f (y))∨ ( f (x) · 1)

= f (y)∨ 1 Lemma 2.1 (3)

= 1. (2.7)

Hence, x · y ∈ Kerd f (A), so Kerd f (A) is a near filter of A.

(2) Assume that d f is an (r, l)- f -derivation of A. Since d f is regular, we have d f (1) = 1 and so

1 ∈ Kerd f (A) , ∅. Let x ∈ A and y ∈ Kerd f (A). Then d f (y) = 1. Thus,

d f (x · y) = ( f (x) · d f (y))∨ (d f (x) · f (y))

= ( f (x) · 1)∨ (d f (x) · f (y))

= 1∨ f (y) Lemma 2.1 (3)

= 1. (2.7)

Hence, x · y ∈ Kerd f (A), so Kerd f (A) is a near filter of A. �

Corollary 3.6. If d f is an f -derivation of a Hilbert algebra A, then Kerd f (A) is a near filter (subalgebra) of
A.

Definition 3.5. Let d f be an (l, r)- f -derivation (resp., (r, l)- f -derivation, f -derivation) of a Hilbert algebra
A = (A, ·, 1). We define the fixed set Fixd f ( f ) of A as follows:

Fixd f ( f ) = {x ∈ A : d f (x) = f (x)}

Example 3.3. Let A = {1, 2, 3, 4} be a Hilbert algebra with a fixed element 1 and a binary operation · defined
by the following Cayley table:

· 1 2 3 4

1 1 2 3 4

2 1 1 3 4

3 1 2 1 4

4 1 1 3 1

Then (A, ·, 1) is a Hilbert algebra. We define an endomorphism f on A as follows:

f =
(1
1

2
1

3
1

4
4

)
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Define a self-map d f : A→ A as follows:

d f =
(1
1

2
1

3
1

4
1

)
Hence, d f is an f -derivation of A and so Fixd f ( f ) = {1, 2, 3}.

Theorem 3.8. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then Fixd f ( f ) is a subalgebra of A,
(2) if d f is an (r, l)- f -derivation of A, then Fixd f ( f ) is a subalgebra of A.

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Since d f is regular, we have d f (1) = 1 = f (1)
and so 1 ∈ Fixd f ( f ) , ∅. Let x, y ∈ Fixd f ( f ). Then d f (x) = f (x) and d f (y) = f (y). Thus,

d f (x · y) = (d f (x) · f (y))∨ ( f (x) · d f (y))

= ( f (x) · f (y))∨ ( f (x) · f (y))

= f (x) · f (y) (2.6)

= f (x · y).

Hence, x · y ∈ Fixd f ( f ), so Fixd f ( f ) is a subalgebra of A.

(2) Assume that d f is an (r, l)- f -derivation of A. Since d f is regular, we have d f (1) = 1 = f (1)
and so 1 ∈ Fixd f ( f ) , ∅. Let x, y ∈ Fixd f ( f ). Then d f (x) = f (x) and d f (y) = f (y). Thus,

d f (x · y) = ( f (x) · d f (y))∨ (d f (x) · f (y))

= ( f (x) · f (y))∨ ( f (x) · f (y))

= f (x) · f (y) (2.6)

= f (x · y).

Hence, x · y ∈ Fixd f ( f ), so Fixd f ( f ) is a subalgebra of A. �

Corollary 3.7. If d f is an f -derivation of a Hilbert algebra A, then Fixd f ( f ) is a subalgebra of A.

Theorem 3.9. In a Hilbert algebra A = (A, ·, 1), the following statements hold:

(1) if d f is an (l, r)- f -derivation of A, then x∨ y ∈ Fixd f ( f ) for all x, y ∈ Fixd f ( f ),
(2) if d f is an (r, l)- f -derivation of A, then x∨ y ∈ Fixd f ( f ) for all x, y ∈ Fixd f ( f ).

Proof. (1) Assume that d f is an (l, r)- f -derivation of A. Let x, y ∈ Fixd f ( f ). Then d f (x) = f (x) and

d f (y) = f (y). By Theorem 3.8 (1), we get d f (y · x) = f (y · x). Thus,
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d f (x∨ y) = d f ((y · x) · x)

= (d f (y · x) · f (x))∨ ( f (y · x) · d f (x))

= ( f (y · x) · f (x))∨ ( f (y · x) · f (x))

= f (y · x) · f (x) (2.6)

= f ((y · x) · x)

= f (x∨ y).

Hence, x∨ y ∈ Fixd f ( f ).
(2) Assume that d f is an (r, l)- f -derivation of A. Let x, y ∈ Fixd f ( f ). Then d f (x) = f (x) and

d f (y) = f (y). By Theorem 3.8 (2), we get d f (y · x) = f (y · x). Thus,

d f (x∨ y) = d f ((y · x) · x)

= ( f (y · x) · d f (x))∨ (d f (y · x) · f (x))

= ( f (y · x) · f (x))∨ ( f (y · x) · f (x))

= f (y · x) · f (x) (2.6)

= f ((y · x) · x)

= f (x∨ y).

Hence, x∨ y ∈ Fixd f ( f ). �

Corollary 3.8. If d f is an f -derivation of a Hilbert algebra A, then x∨ y ∈ Fixd f ( f ) for all x, y ∈ Fixd f ( f ).

4. Conclusion

This study introduces the notions of (l, r)- f -derivations, (r, l)- f -derivations, and f -derivations

in Hilbert algebras, offering a comprehensive theoretical framework supported by key examples.

We investigate the fundamental properties of f -derivations through detailed analysis, revealing

significant aspects of their algebraic structure and behaviour. Notably, we establish that the kernel

of an f -derivation, Kerd f (A), forms a near filter, while the fixed set, Fixd f ( f ), is identified as a

subalgebra within the Hilbert algebra A. These findings illuminate the intricate relationships

between derivations and substructures in Hilbert algebras, providing valuable insights that open

new directions for research in algebraic logic and the broader study of non-classical algebraic

systems.

In the future, the ideas presented in this paper can be extended and applied to studying other

algebraic systems. By leveraging the foundational concepts of f -derivations and their properties,

it is possible to explore analogous structures in different algebraic frameworks. Such applications

could provide deeper insights into various mathematical systems, paving the way for further

advancements in algebraic theory, non-classical logic, and beyond.
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