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Abstract. In the present paper we explore the localization properties of the Weinstein continuous wavelet transform via

entropy and we introduce a version of L? local uncertainty inequalities.

1. INTRODUCTION

Uncertainty principles are fundamental concepts in physics and signal processing that describe
limitations on the precision with which certain pairs of properties of a system can be simultaneously
known. The most famous example of an uncertainty principle is the Heisenberg Uncertainty
Principle in quantum mechanics, but similar principles exist in various fields. These principles
arise from the mathematical relationships between conjugate variables or transform pairs, such as
time and frequency or position and momentum.

In the context of transform, an uncertainty principle refers to the trade-off between the precision
in time and frequency localization of a signal. This principle arises due to the nature of analysis,
where a signal’s time and frequency characteristics are analyzed simultaneously. The uncertainty
principle in transform emphasizes the inherent compromise between time and frequency localiza-
tion, playing a pivotal role in selecting functions and scales that suit the characteristics of the signals
under analysis. It enables efficient representation and extraction of information from signals with
diverse time and frequency components.

The uncertainty principle for wavelet transforms is an extension of the classical uncertainty
principle in signal processing, which states that a function cannot be both time-localized and
frequency-localized beyond a certain limit. In other words, there is a trade-off between how

precisely a signal can be localized in time and how precisely it can be localized in frequency.
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Our main objective, in the present paper is to investigate the localization properties of the
Weinstein continuous wavelet transform using entropy, and we present a version of local L?
uncertainty inequalities.

Recently, many authors have been studying the behavior of the Weinstein operator in relation
to different problems already studied in classical Fourier transform. For instance, we refer the
reader to see Wigner and Weyl transform [10, 16], wavelet transform [12,13], pseudo differential
operators [1,20], inequalities, uncertainty principles [4,8,9,11,15] and others [2,17,19]. In the same
context of investigating uncertainty principles, the second author has studied the Hardy theorem
for the linear canonical Dunkl transform [14] and several uncertainty inequalities of the linear
canonical Fourier-Bessel wavelet transform [6].

The layout of this article is as follows. Section 2 is dedicated to providing a concise summary
of the Weinstein continuous wavelet transform and its basic properties. In section 3, we explore
the localization properties of the Weinstein continuous wavelet transform via entropy. Finally,
we introduce a version of L” local uncertainty inequalities of the Weinstein continuous wavelet

transform in Section 4.

2. PRELIMINAIRES
2.1. Weinstein transform. The Weinstein operator A}, defined on ]R’}:“l =R" X (0, ), by
A=Ay + By, a>-1/2,

where A, is the Laplacian operator on R" and B, is the Bessel operator for the last variable given

on (0, ) by
g — *g +2a—|—1 g .
OxZ.|  Xup1 OXnpy
Forall C = (y, ..., Cut1) € €™, the below system
g

ﬁ(x) = —Cjz.g(x), ifl<j<n
j

Lag(x) = =Cp118(x),

d d
£ 0)=0 =
Xy 11 ox;

(0) =—-iCj, ifl1<j<n

has a unique solution denoted by ®,/((, .), and given by

(Da(C/ X) = e—i<x’,C’>]'a (xn+1Cn+l) (2-1)
where C = (U, Cy41), x = (X', x44+1) and j, is the normalized Bessel function given by
0 (_1)kx2k

jolx) =T(a+1) )

k=0
(C,x) b ®4(C, x) is the Weinstein kernel and satisfies for all (C,x) € R"*! x R"+!

KT (a +k+1)

|©a(Cx)| < 1. (2.2)



Int. J. Anal. Appl. (2024), 22:211 3

Along this article, we note by L, (R"""), 1 < p < oo, the space of all measurable functions g on
R"*! such that

1/p
ol = [, e don)] <o peinom,

FE——
erRf’jl

where do,(x) denote measure on IR’rrl = R" x (0, o) defined by

x2a+1

dog(x) = - nil dx.
(2n)22%a2(a + 1)

If ¢ € L} (R""") is radial function then § defined on R by g(x) = &([xl), for all x € R"*!, is

integrable function with respect to 724" *1dr, and we have the equality
g f () lgy = g(x)doa(x), (2.3)
0 R1+1

where 4, is a constant given by
1
S 2etira+ i)

The Weinstein transform is defined for g € Lg((IR’fl) by

(2.4)

g

VCERY, L)@ = [ sl@aln o).

We present the following properties, which will be useful throughout the remainder of this

paper (see [11,12])
o If g € LL(R™™), then %,(g) is continuous on R"*! such that
[7a (@)l < sl 25)
e Forall g € L2(R"*"), we have
[7a (@, = lsll.- (2.6)

e Forallg € Lﬂ(lR’f’]), 1 < p <2, the function 7, (g) belongs to LZ(RTl),whereq =p/(p-1),

and we have

“7’-06(8)”(1,(4 < ||g||a,p ' (2'7)
o If g LL(R"™) forall 1 <p <2, then Fa(g) € LY (R"*"),g =p/(p—1), and we have

|7asll,,, < lsll.,, - (2.8)

For g € S.(R"*!) and y € R the Weinstein translation 7¢g is defined by [7]

Fa(158)(y) = Pa(x, y)Fa(8)(y)- (2.9)

Proposition 2.1. (see [7]) The translation operator 15, x € ]Riﬂ satisfies the following properties.



4 Int. . Anal. Appl. (2024), 22:211

(1) For g € C.(R"*Y), we have for all x,yy € R"

o

+8(y) = 1y8(x) and 758 = g. (2.10)

(2) Let g € LE(R"™), 1 < p < coand x € R". Then 1$g belongs to LL(R"™) and we have

=58l < llsll., (211)

T

Forg, heL) (IRiH), the Weinstein convolution product g * /i is given by (see [7])
goh(x) = [ wg-poion(y) 12)
+

Proposition 2.2. (1) Forall g, h € LL(R"™), (resp. g, h € S.(R"1)), then g« h € LL(R"™), (resp.
g*h € S.(R"1)) and we have

Fa(g+h) = Fa(g)Fa(h). (2.13)
(2) Let p,q,r € [1,00], such that % + % —L = 1. Then for all g € LL(R"™) and h € LI(R"™) the

;=

function g+ h belongs to LI, (R"™") and we have

g =l < llell, Mellog- (214)
(3) Let g, h € LZ(R*1). Then
g+h=F;" (Fa(g)Falh)). (215)
(4) Let g h € L2(R"*Y). Then g+ h belongs to L2(R"*") if and only if Fo(g)Fa(h) belongs to
L2 (R"*) and we have
Fa(g+h) = Fu()Falh). (2.16)
(5) Let g, h € LZ(R"*). Then

g *hllaz = 1Fa (&) Fa(h)lla2, (2.17)

where both sides are finite or infinite.

2.2. Weinstein continuous wavelet transform. Along this paper, we denoteby Y = {(t,x) tX € ]R’i+l and t > 0}

and L} (Y), p € [1, ] the space of measurable functions g on Y such that

1

P
s = ([ st paonttn) <o 15p<en

Igllieyy = esssuplg(t x)| < oo,
(tx)eYy
where 0,(t, x) is the measure on Y defined by:
doy(x)da
th+1 :
For the simplicity of the parameters, let us consider in the rest of the paper

doa(t,x) =

fi=20+d+2. (2.18)
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Let t > 0, we define the dilatation operator 6; of a measurable function g as below

1 x
Vx € IRi+1, 6,}(X) = iﬁ?g(?), (219)

which satisfies the below properties:
Proposition 2.3. (1) For everys,t € (0, ), we have
050t = Ost. (2.20)

() Ift > 0and g a function in L2(R"), then 648 is also in L(R"*") and we have

o]l = llsll..» (221)
and
Fa(00) (£) = tF/2F (w) (tE). (2.22)
(3) Forall t > 0, we have
Vg h e (R, (0 ez = (8,01 M)ap. (2.23)

Definition 2.1. [3] A Weinstein wavelet on ]R’jr+1 is a measurable function g on lR’f1 satisfying for almost
all & e lR’fl, the admissibility condition

* dt
0<Cy= f m,(h)(tg)FT < o0, (2.24)
0
Let t > 0 and g be a Weinstein wavelet on 1.2 (]R’j:“l). Let us consider the Weinstein-type family
8ty y € R of function on R”™ in L2(R" ") defined by:
Sry(x) = 15(0:8)(x), Vxe R, (2.25)
where, 79, y € IRTrl is the Weinstein translation operator given by (2.9).

Definition 2.2. [5] Let g bea Weinstein wavelet on R"" in L2 (R'™"). The Weinstein continuous wavelet
transform ¥ 4 on ]R’jfl is defined for regular functions h on ]R’jr+1 by

W) <Y, Fty) = [ 0o x) = o)z 2.26)
R
Weinstein continuous wavelet transform can be written as below:

Yo(h)(ty) =h*5g(y). (2.27)

Lemma 2.1. Let g be a Weinstein wavelet on R""" in L2(R"™). For all h € LZ(R"*") and for all p > Om
we have
by €Y, Teloh)(ty) =¥y, 2). (2.28)

Lemma 2.2. (see [13]) Let g be a Weinstein wavelet on lR’jfl in
he L3R

2(R%Y). Then we have for all

¥ (Ml ) < Nhlla2lI8lla2- (2.29)
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Using the Riesz-Thorin interpolation theorem, we derive the following result.

Lemma 2.3. Let g be a Weinstein wavelet on R in L2(R"™), h € L2(R™), and 2 < p < oo, the we

have

1 P2
¥ e (Mllpp () < (Cg)p ||8||a72 IIFlla2- (2.30)
3. HUP via WEINSTEIN CONTINUOUS WAVELET TRANSFORM ENTROPY

A probability density function D on the space Y is a measurable, non-negative function on Y

that satisfies the normalization condition:

LD(t, y)dos(t,y) = 1.
Shannon’s definition [18] allows us to express the Weinstein continuous wavelet transform
entropy of a probability density function D on the space Y as

£0(D) = - fE In(D(t, 1)) D(t, y)doa(t, ),

assuming that the integral on the right-hand side is well-defined.
The primary aim of this section is to explore the localization properties of the Weinstein contin-

uous wavelet transform entropy within the space Y.

Proposition 3.1. Let g and h be two functions in L2 (]R:’L“) such that h is nonzero function. Then we have
the following logarithmic inequality:

Eu¥g(M)P) = =2C I, (8]l o Whla2)- (3.1)
Proof. We assume that [|g]|s2//#lle2 = 1, then by using the inequality (2.29), we get

V(Ly) e, [F(n)(ty)] < 8], Mhllaz = 1.

In particular &,(|¥¢(h)?) > 0. If the entropy &,(|¥¢(h)[*) = oo, then the inequality (3.1) holds.
Now, we suppose that the entropy &, (|'¥(h)[?) < c0. Now, we assume that g and / be two functions
in L(ZX(]RZH) such that g is nonzero function and let

_ g _h
L T e

Hence, v and w belong to Li(IRTl) and [[v]|o2llwlla2 = 1, and we have

0

Ex([¥o(w)?) = 0.

However,
1

1'% - -
I T

Tg(h)/

and
1

sl i,

2C
Ea(1Fg(m)P) + 10 (|]],., Wlle2)-

éaa(P{jv(w)lz) || ||2
8 a2



Int. J. Anal. Appl. (2024), 22:211 7

Therefore, it follows that
Eu[¥g(M)P) = =2C I 5 (8]l Mhla2)-
O

By utilizing the entropy of the Weinstein continuous wavelet transform, we derive a Heisenberg

uncertainty principle for ¥,. Now, we state the main result of this section.

Theorem 3.1. Let a and b two positive real numbers. Then, there exists a positive constant K, () such
that for all function g and h in Li(R’fl), we have the following inequality:

b
atb
IIhlli,z < —C X (f ly|” |11fg (t,y) | doy(t, y))

u (3.2)
b 2 ath
X(Lt |‘Yg(h)(t,y)| doa(t,y))
where
Kyp(a) = bﬁ - etab) (3.3)
aatb hato
with
In (aarqs/?ff (ﬁ/b))
u(a,b) = ab (3.4)

plat+b)
here a, is given by the identity (2.4).

Proof. Assume that [|glls2llilla2 = 1. For every positive real numbers a,b, ¢, we put the function
¢, defined on Y by:

et
abe™ <

T(B/a)T(B/b)c" "

IPZ,b(t, y) =

Thus, by simple calculus, it becomes that

[ wat ot =1,
Y

in particular the measure dm; (t,y) = ¢ (t,y)doa(t, y) is a probability measure on the space
Y. According to the convexity of the function w(t) = tIn(t) over (0,00) and by using Jensen’s

inequality for convex functions, we obtain

2
[¥s () (1, )]
In dm“(t,y) >0,
fy %b ( (5 Y) ] (L Y)
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which implies, in terms of Weinstein continuous wavelet transform entropy, that for any positive

real numbers g, b, c, we have the following inequality

ab
(B/a)L(B/b)

Bla+b)

)Cg||h||§,zgln(c z )c7g||h||§2

Eu([¥g(h)) +ln(a -

41 f (gl + 7)1 ¥ g () (1, y)Pdoa(t, y).
cJy

Next, according to Proposition 3.1, we get

C[ln(aar<ﬁ/zl;r(ﬁ/b>) o (CM)] ¥

< f (1" + ) (h) (t, y)Pdoa(t, y).
Yy

L3 (Y)

However, the below expression

ab pla+b)

C[ln(aar(ﬁ/a)F(ﬁ/b))_ln(c . )]||‘Yg(h)||L3(y),

1(a,b)

reaches its maximum value at c) = e . Therefore, we have

Cop(@)C MR, < fy Iy + £ () (1, y)Pdoa(t, ),

where

B(a+Db) Ju(ah)
ab '

Now, by substituting g by g/ H g”mz and h by h/ ||kl . Thus, for all g and h in L[ZX(]RZH), we have

Ca,b(a) =

Cap(a)CgllHll?, < fy i [Eg (1) (¢, )| doa(t,y)
Xfyt_b |‘I’g(h)(t,y)|2d0a(t,y).

In other hand, we have for all p > 0, the dilated function 61/ belongs to Li(lR’fl). Moreover,
P

01h is a nonzero function. Hence, according to the above inequality, we obtain
p

2
doy(t,y)

2

Conl@)CelloghiE < [ 9P [¥5,0) 1)

doy(t,y).

x fy b "I’g((S%h)(t, y)

Furthermore, we have
2 2
|I5%hlla,2 = Il -

Thus, according to relation (2.27), we get
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Cor(@)Ce M < 97 [ 1o 150t ) ot

Xprt_b|‘Fg(h)(t,y)| do(t,y).

In particular, the inequality is valid at the critical point

1

a+b

a fy ¥ () (8, ) doalt,y)

p =
b [ eI e doatey)

This implies that
b
2 . 2 a+b
Kas(wICo I < [[ 1 006, ot
_b 2 ’ﬁ
X(Lt |‘Pg(h)(t,y)| daa(t,y)) ,
where
a b
qa+b hatd B
K —C _ u(ab)
u,b(a) a,b(a) a+b gﬁbbbui_be

Remark 3.1. In particular case when a = b = 2, we have

I

>zl

4. L? UP ror WEINSTEIN CONTINUOUS WAVELET TRANSFORM

Y1 g ()2 o) 1 g (I)lp2 Cellnll% 5 -

For s > 0, let us consider the following function
Eilt,y) = IV, () e V.
A straightforward calculation allows us to obtain the following lemma.

Lemma4.1. For1 < g < coand s > 0, there exists a positive constant K, such that the following inequality
holds:

_8
HSSHLZ(J/) = Ke 7.

Proposition 4.1. Let 1 <p <2and 0 < r < /2p. Then, there exists a positive constant K such that for
all h € LZ(R"™) and s > 0, the following inequality holds:

-2

1 Pz
e EEE ()l < K(Co) Nlglls 57 (Myl Bllaz + Tl 2p) (4.1)

where p’ is the conjugate of p.
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Proof. The result is trivial if the expression |||yl"kllx2 + [lly["%lla,2p is infinite. Next, we suppose that
is finite.

For € > 0, we denote by B(0, €) the ball of ]R'jfl with center zero and radius € > 0, h, = hXB(o,e)
and i = h —he.

Now, according to inequality (2.30) in Lemma 2.3, we obtain
()l < e iy (y)].

Hence, we get

A

(2 —sll(7
eI (g0l oy < eI e ) 1¥ g (rge(.0)ll 7 o
p-2

l ey
(Co)” gl Wacseoe)llaz

IA

p-2

L v
()" llsll ol -

On other hand, using inequality (2.29) and Holder’s inequality, we obtain

IA

—sll(L)IP
eI (g6l

[le=sIG P, 7y ||‘P (hxB(0,0))lle ()

IA

IA

18]l x50 ||a2||€_s|| 2oL
v I (¥)

1y ||2||

1511 o 1091 X009l 2 1 Tl 2 e~

A straightforward calculation shows that there exists a positive constant K, such that

Iy X500l = Ke ™%
So it follows that
lleslE )||2xyg(h)”m,(y)
< e MG (o)l ) + eI E Gy
& ke Ll (CelSI2) I+ 8 )
Finally, by choosing

=IN

e = (Cllell) <

we get the desired result.
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Theorem 4.1. Let 1 <p <2,0 <r < B/2p" and € > 0. Then, there exists a positive constant K such that
for all h € L2(R™*), the following inequality holds:

2\ 7 :
< K[ IE ) Ol + o) W oz, . a2

Proof. Let1 <p <2and 0 < r < /2p. Firstly we suppose that € < 1/2. According to Lemma 4.1
we have for all s > 0
—sl(L IR
()l yy < NN (1))l

K(cg)’? _2 2 (Y Rl + Myl Ml 2p)
—sll(L )12
+ =TI (1)l -

—sll(L )2
yy HI = EIEE (1))

IA

Moreover we have
—all(L )2
N1 =Yg )l

€ 1 —2e —s||(1 1 €
SN, y)P) (1= e NI () FE g (1))l -

Now according to the boundedness of u +— (1 —e™)u~2¢, for all u > 0, when € < 1/2, we deduce
that

1
MMy, < K(Co)

p -
D:j2 572 (M Plla2 + My Flla,2p)
1
—2e 4e
+ KT 9 ()l o)
by optimizing with respect to s, we obtain equation (4.2) forall 0 <r < /2p"’ and e <1/2

Now, we suppose thate > 1/2and lete’ < 1/2. Forallu > 0 wehave u*’ < 1+ u*. In particular
if

y), forall n>0,

(l(%,yn]“ - +(|<%,y>|)4€
U B no)

1 4 ’ 4 ’ 4 ’_ 1

we have following inequality

Hence, it follows that

4
/]/)l e‘Fg(h)”Li'(y)'

By optimizing with respect to 17, we obtain

1 4¢e’ % (1 ) de %
(¥l < IS ()Pl
Combining this with equation (4.2) for €’, we obtain the result for € > 5
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Note that a particular case for p = 2 in the previous Theorem, gives the following result.

Corollary 4.1. Let 0 < r < /4 and € > 0. Then, there exists a positive constant K such that for all
h € L2(R™), the following inequality holds:

€
+€

Il < K(Ci lgl,z) ™ (

r r ﬁ 1 ﬁ
]|, + My Tl a) ™ MG ) E (I, - (4.3)
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