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Abstract. The main purpose of this paper is to establish some results on positive solutions for a p-Laplacian elliptic

system with strongly coupled critical terms and concave nonlinearities. With the technique of variational method,

namely Nehari manifold and Palais-Smale condition we show that there are at least two nontrivial solutions for our

problem.

1. Introduction andMain Results

In this paper we consider the existence and multiplicity of nonnegative solutions to
−∆pu =

η1α1

p∗
|u|α1−2

|v|β1u +
η2α2

p∗
|u|α2−2

|v|β2u + λ
|u|q−2u
|x|γ

, x ∈ Ω,

−∆pv =
η1β1

p∗
|u|α1 |v|β1−2v +

η2β2

p∗
|u|α2 |v|β2−2v + µ

|v|q−2v
|x|γ

, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω is an open bounded set of RN with Lipschitz boundary such that 0 ∈ Ω, η1, η2, λ,µ, are

positive parameters, p∗ := pN
N−p denotes the critical Sobolev exponent and ∆p = div(|∇u|p−2

∇u) is

the p-Laplacien operator. The coefficients α1,α2, β1, and β2 > 1, satisfy α1 + β1 = p∗, α2 + β2 = p∗.
Set η1 = η2 = 1, α1 = α2 = α, β1 = β2 = β, and γ = 0. Then problem (1.1) becomes the

following elliptic system with concave–convex nonlinearities:
−∆pu = λ|u|q−2u +

2α
α+ β

|u|α−2u|v|β in Ω,

−∆pv = µ|v|q−2v +
2β
α+ β

|u|α|v|β−2v in Ω,

u = v = 0 on ∂Ω,

(1.2)
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Tsing-San Hsu [8] proved the existence of multiple positive solutions to (1.2). There are other mul-

tiplicity results for critical elliptic systems involving concave-convex nonlinearities. For example,

see [1]. Following this work, the existence of possibly multiple solutions of systems involving the

strongly-coupled critical terms has been extensively investigated. See, for example, [4,5,7,10–12].

In the literature [14], the authors studied the problem (1.1) for the case when p = 2. They obtained

the existence and multiplicity of positive solutions using the fibering method and the technique

of Nehari manifold decomposition. To the best of our knowledge, there are no results concerning

the existence and multiplicity of positive solutions for (1.1).

We assume that

(H1) : 1 < q < p < N and 0 ≤ γ < N + q−
qN
p

.

(H2) : 1 < q < p < N and N −
(N − p)q
(p− 1)2 ≤ γ < N + q−

qN
p

.

Our main results are

Theorem 1.1. Assume (H1) holds. Then for any (λ,µ) ∈ SΘ1 system (1.1) has a positive ground state
solution, where SΘ1 is defined by (2.9).

Theorem 1.2. Assume (H2) holds. Then there exists Λ > 0 such that for any (λ,µ) ∈ SΛ, system (1.1)
admits at least two positive solutions, one of which is a positive ground state solution.

This paper is divided into four sections. The properties of the Nehari manifold are provided in

the next section and the formulation of the variational method. The proof of Theorem 1.1 is in the

third section, and, finally, by Palais-Smale condition, we prove in the last section Theorem 1.2.

2. Analysis of FiberingMaps

We define the functional space as follows:

X := W1,p(Ω)

the usual Sobolev space endowed with the norm

‖u‖X := ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

The space Z is defined as Z = W1,p
0 (Ω) := {u ∈ X : u = 0 on ∂Ω}, endowed with the norm

‖u‖Z :=
(∫

Ω
|∇u|pdx

) 1
p

.

We set E := Z×Z, with the norm

‖(u, v)‖ :=
(
‖u‖pZ + ‖v‖pZ

) 1
p =

(∫
Ω
|∇u|pdx +

∫
Ω
|∇v|pdx

) 1
p

.
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We say that (u, v) ∈ E is a weak solution of problem (1.1) if (u, v) ∈ E, one has∫
Ω

(
|∇u|p−2

∇uφ+ |∇v|p−2
∇vψ

)
dx

=

∫
Ω

(
η1α1

p∗
|u|α1−2

|v|β1uφ+
η2α2

p∗
|u|α2−2

|v|β2uφ
)

dx

+

∫
Ω

(
η1β1

p∗
|u|α1 |v|β1−2vψ+

η2β2

p∗
|u|α2 |v|β2−2vψ

)
dx

+

∫
Ω

(
λ
|u|q−2u
|x|γ

φ+ µ
|v|q−2v
|x|γ

ψ

)
dx for all (φ,ψ) ∈ E.

(2.1)

Thus, the corresponding energy functional of (1.1) is defined by

Jλ,µ(u, v) =
1
p

∫
Ω
(|∇u|p + |∇v|p) dx−

1
p∗

Q(u, v) −
1
q

Kλ,µ(u, v), (2.2)

where

Q(u, v) :=
∫

Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx

and

Kλ,µ(u, v) :=
∫

Ω

(
λ
|u|q

|x|γ
+ µ
|v|q

|x|γ

)
dx.

We can clearly observe that Jλ,µ ∈ C1(E, R) and〈
J
′

λ,µ(u, v), (φ,ψ)
〉
=

∫
Ω

(
|∇u|p−2

∇uφ+ |∇v|p−2
∇vψ

)
dx

−

∫
Ω

(
η1α1

p∗
|u|α1−2

|v|β1uφ+
η2α2

p∗
|u|α2−2

|v|β2uφ
)

dx

−

∫
Ω

(
η1β1

p∗
|u|α1 |v|β1−2vψ+

η2β2

p∗
|u|α2 |v|β2−2vψ

)
dx

−

∫
Ω

(
λ
|u|q−2u
|x|γ

φ+ µ
|v|q−2v
|x|γ

ψ

)
dx.

Let S denote the best Sobolev embedding constant defined by

S := inf
u∈Z\{0}

∫
Ω
|∇u|pdx(∫

Ω
|u|p

∗

dx
)p/p∗

(2.3)

and

Sη,α,β := inf
(u,v)∈E\{0}

∫
Ω
|∇u|pdx +

∫
Ω
|∇v|pdx(∫

Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx

)p/p∗

= inf
(u,v)∈E\{0}

‖(u, v)‖p
(∫

Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx

)−p/p∗

,

(2.4)
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Then it is easy to get that∫
Ω

(
η1|u|α1 |v|β1 + η2|u|α2 |v|β2

)
dx ≤ (Sη,α,β)

−p∗/p
‖(u, v)‖p

∗

. (2.5)

This is achieved if and only if Ω = RN by the function (see [2])

Uε(x) := CN,p

 ε
1

p−1

ε
p

p−1 + |x|
p

p−1


N−p

p

, ε > 0. (2.6)

is an extremal function for the minimization problem (2.3), that is, it is a positive solution to the

following problem

−∆pu = |u|p
∗
−1, in RN.

Moreover, ∫
Ω
|∇Uε|

pdx =

∫
RN
|Uε|

p∗dx = S
N
p .

Let R0 > 0 be a constant such that Ω ⊂ B (0, R0), where B (0, R0) = {x ∈ RN : |x| < R0

}
. By Hölder’s

inequality and (2.3), for all (u, v) ∈ E and 1 < q < p, 0 ≤ γ < N + q− qN
p , we get

∫
Ω

uq

|x|γ
dx ≤

(∫
Ω
|u|q·

p∗

q dx
) q

p∗
∫

Ω

( 1
|x|γ

) p∗

p∗−q
dx


p∗−q

p∗

≤ S−
q
p ‖u‖qZ

∫
B(0,R0)

( 1
|x|γ

) p∗

p∗−q
dx


p∗−q

p∗

≤ S−
q
p ‖u‖qZ


∫ R0

0

rN−1

|r|
p∗γ

p∗−q

dr


p∗−q

p∗

= S−
q
p ‖u‖qZ

 pN − qN + pq

pN
(
N − γ− qN

p + q
)

p∗−q
p∗

R
N−γ− qN

p +q

0 ,

(2.7)

∫
Ω

vq

|x|γ
dx ≤ S−

q
p ‖v‖qZ

 pN − qN + pq

pN
(
N − γ− qN

p + q
)

p∗−q
p∗

R
N−γ− qN

p +q

0 . (2.8)

Set

Θ :=

 pN − qN + pq

pN
(
N − γ− qN

p + q
)

p∗−q
p∗

R
N−γ− qN

p +q

0 S−
q
p ,

Θ1 :=
[

p∗ − p
Θ (p∗ − q)

] p
p−q

(
p− q
p∗ − q

)N−p
p (

Sη,α,β

)N
p ,

SΘ := {(λ,µ) ∈ R2
\{(0, 0)} : 0 < λ

p
p−q + µ

p
p−q < Θ}.

(2.9)
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We consider the Nehari manifold

Nλ,µ := {(u, v) ∈ E\{(0, 0)} :
〈
J
′

λ,µ(u, v), (u, v)
〉
= 0}.

Thus, (u, v) ∈ Nλ,µ if and only if

‖(u, v)‖p −Q(u, v) −Kλ,µ(u, v) = 0. (2.10)

Let z = (u, v), then ‖z‖E = ‖(u, v)‖ =
(
‖u‖pZ + ‖v‖pZ

) 1
p . Note that Nλ,µ contains every nonzero

solution of (1.1). Define Φ(z) :=
〈
J
′

λ,µ(z), z
〉
, then for all z = (u, v) ∈ Nλ,µ, we have〈

Φ′(z), z
〉
= p‖z‖pE − p∗Q(z) − qKλ,µ(z)

= (p− q)‖z‖pE − (p
∗
− q)Q(z)

= (p− p∗) ‖z‖pE + (p∗ − q)Kλ,µ(z).

(2.11)

Now, following the approach in [13], we divideNλ,µ into three separate parts:

N
+
λ,µ :=

{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
> 0

}
,

N
0
λ,µ :=

{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
= 0

}
,

N
−

λ,µ :=
{
z ∈ Nλ,µ :

〈
Φ′(z), z

〉
< 0

}
.

(2.12)

To present our main result, we will outline some important properties ofN+
λ,µ,N0

λ,µ andN−λ,µ.

Lemma 2.1. The functional Jλ,µ is coercive and bounded from below onNλ,µ.

Proof. If z ∈ Nλ,µ. From (2.10), (2.7) and (2.8), by applying the Hölder inequality, we obtain

Jλ,µ(z) =
(

1
p
−

1
p∗

)
‖z‖pE −

(
1
q
−

1
p∗

)
Kλ,µ(z)

≥
1
N
‖z‖pE −

(
1
q
−

1
p∗

) (
λ‖u‖qZ + µ‖v‖qZ

)
Θ

≥
1
N
‖z‖pE −

(
1
q
−

1
p∗

) (
λ

p
p−q + µ

p
p−q

) p−q
p
‖z‖qEΘ,

(2.13)

where Θ is as in (2.9). Thus, Jλ,µ is coercive and bounded from below on Nλ,µ. The proof is

complete. �

Lemma 2.2. Suppose that z0 ∈ E is a local minimizer of Jλ,µ on Nλ,µ and z0 < N0
λ,µ, then z0 is a critical

point of the Jλ,µ.

Proof. If z0 ∈ E is a local minimizer ofJλ,µ onNλ,µ, thenJλ,µ (z0) = min
z∈Nλ,µ

Jλ,µ(z) and (2.11) holds.

By applying the theory of Lagrange multipliers, we can assert that there exists θ ∈ R such that

J
′

λ,µ (z0) = θΦ′ (z0). As z0 ∈ Nλ,µ, we get

0 =
〈
J
′

λ,µ (z0) , z0

〉
= θ

〈
Φ′ (z0) , z0

〉
.
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As (λ,µ) ∈ SΘ1 and z0 < N0
λ,µ. Then,

〈
Φ′ (z0) , z0

〉
, 0. Consequently, θ = 0 and J ′λ,µ (z0) = 0 in

E−1. �

When (λ,µ) ∈ SΘ1 , we will prove thatN±λ,µ , ∅ andN0
λ,µ = ∅.

Lemma 2.3. Assume that (λ,µ) ∈ SΘ1 , then for every z ∈ E with Q(z) > 0, there exist unique 0 < t+ <
t̄max < t− such that t+z ∈ N+

λ,µ, t−z ∈ N−λ,µand

Jλ,µ

(
t+z

)
= inf

0≤t≤t̄max
Jλ,µ(tz), Jλ,µ (t−z) = sup

t≥t̄max

Jλ,µ(tz),

that is,N±λ,µ , ∅;

Proof. For every z ∈ E where Q(z) > 0, and for any t ≥ 0, we have〈
J
′

λ,µ(tz), tz
〉
= tp
‖z‖pE − tp∗Q(z) − tqKλ,µ(z).

We define g, h : R+
→ R by

g(t) := tp−q
‖z‖pE − tp∗−qQ(z) −Kλ,µ(z),

h(t) := tp−q
‖z‖pE − tp∗−qQ(z).

Clearly, we obtain h(0) = 0, and h(t)→ −∞ as t→∞. Sinse

h′(t) = tp−q−1
[
(p− q)‖z‖pE − (p

∗
− q) tp∗−pQ(z)

]
, for all t > 0,

there exists a unique t̄max > 0 such that h(t) achieves its maximum at t̄max > 0, increasing for

t ∈ [0; t̄max ) and decreasing for t ∈ (t̄max ; 1). solving h′(t) = 0, we obtain

t̄max =

 (p− q)‖z‖pE
(p∗ − q)Q(z)


1

p∗−p

> 0.

Moreover,

h (t̄max) =

 (p− q)‖z‖pE
(p∗ − q)Q(z)


p−q

p∗−p p∗ − p
p∗ − q

‖z‖pE.

Then from, (2.7), (2.8) and (2.9) by the Holder inequality, we obtain

g (t̄max) = h (t̄max) −Kλ,µ(u, v)

=

 (p− q)‖z‖pE
(p∗ − q)Q(z)


p−q

p∗−p p∗ − p
p∗ − q

‖z‖pE −
∫

Ω

(
λ

uq

|x|γ
+ µ

vq

|x|γ

)
dx

≥

 (p− q)‖z‖pE

(p∗ − q) ‖z‖p
∗

E

(
Sη,α,β

)− p∗
p


p−q

p∗−p

p∗ − p
p∗ − q

‖z‖pE −
(
λ‖u‖qZ + µ‖v‖qZ

)
Θ

≥

(
p− q
p∗ − q

) p−q
p∗−p (

Sη,α,β

) p∗(p−q)
p(p∗−p) p∗ − p

p∗ − q
‖z‖qE −

(
λ

p
p−q + µ

p
p−q

) p−q
p
‖z‖qEΘ

> 0,

(2.14)
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where Θ is as in (2.9) and the last inequality valid for all (λ,µ) ∈ SΘ1 . Consequently, there exist

t+and t−such that

g
(
t+

)
= g (t−) and g′

(
t+

)
> 0 > g′ (t−) ,

for 0 < t+ < t̄max < t−. We have t+z ∈ N+
λ,µ, t−z ∈ N−λ,µand

Jλ,µ (t−z) ≥ Jλ,µ(tz) ≥ Jλ,µ

(
t+z

)
,

for each t ∈ [t+, t−], and Jλ,µ (t+z) ≤ Jλ,µ(tz) for each t ∈ [0, t+]. Thus

Jλ,µ

(
t+z

)
= inf

0≤t≤t̄max
Jλ,µ(tz), Jλ,µ (t−z) = sup

t≥t̄max

Jλ,µ(tz).

�

Lemma 2.4. For (λ,µ) ∈ SΘ1 , we haveN0
λ,µ = ∅ andN−λ,µis a closed set.

Proof. From Lemma 2.3 we have that there exist exactly two numbers t+ and t− such that 0 < t+ < t−

and g (t+) = g (t−) = 0. Furthermore, g′ (t+) > 0 > g′ (t−) , If, by contradiction, z ∈ N0
λ,µ, then we

have that g (1) = 0 with g′ (1) = 0. Then, either t+ = 1 or t− = 1. In turn, either g′ (1) > 0 or

g′ (1) < 0, which is a contradiction. Thus,N0
λ,µ = ∅ for all (λ,µ) ∈ SΘ1 .

Finally, we demonstrate that N−λ,µis a closed set for all (λ,µ) ∈ SΘ1 . Assume that {zn} ⊂ N
−

λ,µsuch

that zn → z in E as n → +∞, then we must demonstrate that z ∈ N−λ,µ. As zn ∈ N
−

λ,µ, from the

definition ofN−λ,µ, one has

(p− q) ‖zn‖
p
E − (p

∗
− q)Q (zn) < 0. (2.15)

Consequently, as zn → z in E as n→ +∞, it follows from (2.15) that

(p− q)‖z‖pE − (p
∗
− q)Q(z) ≤ 0,

thus z ∈ N−λ,µ ∪N
0
λ,µ, then z ∈ N−λ,µ becauseN0

λ,µ = ∅ for all (λ,µ) ∈ SΘ1 . Therefore,N−λ,µis a closed

set in E for all (λ,µ) ∈ SΘ1 . �

Lemma 2.5. For each z ∈ E such that Kλ,µ(z) > 0, if (λ,µ) ∈ SΘ1 , where SΘ1 is defined as in (2.9), then
there exist t+, t− with 0 < t+ < tmax < t− such that t+z ∈ N+

λ,µ and t−z ∈ N−λ,µ. We have

tmax =

 (p∗ − q)Kλ,µ(z)

(p∗ − p) ‖z‖pE


1

p−q

> 0,

Jλ,µ

(
t+z

)
= inf

0≤t≤tmax
Jλ,µ(tz), Jλ,µ (t−z) = sup

t≥tmax

Jλ,µ(tz).

Proof. The proof is almost the same as that Lemma 2.3 and is omitted here. �

Since Nλ,µ = N+
λ,µ ∪N

−

λ,µ, then from Lemma 2.1 and Lemma 2.3, the following quantities are

well defined

θλ,µ = inf
z∈Nλ,µ

Jλ,µ(z), θ+
λ,µ = inf

z∈N+
λ,µ

Jλ,µ(z), θ−λ,µ = inf
z∈N−

λ,µ

Jλ,µ(z).

Lemma 2.6.
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(i) if (λ,µ) ∈ SΘ1 , then θλ,µ ≤ θ
+
λ,µ < 0;

(ii) if (λ,µ) ∈ S( q
p

) p
p−q Θ1

, then there exists a positive constant

d0 = d0(λ,µ, p, q, N, Sη,α,β, Θ),

such that θ−λ,µ > d0.

Proof. (i) For z = (u, v) ∈ N+
λ,µ. By (2.10), (2.11) and (2.12), we have

p− q
p∗ − q

‖z‖pE > Q(z). (2.16)

Based on (2.10) and (2.16), we have

Jλ,µ(z) =
(

1
p
−

1
q

)
‖z‖pE +

(
1
q
−

1
p∗

)
Q(z)

<

[(
1
p
−

1
q

)
+

(
1
q
−

1
p∗

)
p− q
p∗ − q

]
‖z‖pE

= −
p− q
qN
‖z‖pE < 0,

Therefore, using the definition of θλ,µ and θ+
λ,µ, we can deduce that θλ,µ ≤ θ

+
λ,µ < 0.

(ii) Suppose that (λ,µ) ∈ S( q
p

) p
p−q Θ1

and z = (u, v) ∈ N−λ,µ. By (2.9), (2.11) and (2.12), one has

p− q
p∗ − q

‖z‖pE < Q(z) ≤ S
−

p∗

p

η,α,β‖z‖
p∗

E ,

which implies that

‖z‖E >
(

p− q
p∗ − q

) 1
p∗−p

S
p∗

p(p∗−p)

η,α,β . (2.17)

Based on (2.13) and (2.17), we can deduce that

Jλ,µ(z) ≥ ‖z‖
q
E

 1
N
‖z‖p−q

E −

(
p∗ − q

p∗q

) (
λ

p
p−q + µ

p
p−q

) p−q
p

Θ

 ≥ d0,

where d0 = d0

(
λ,µ, q, p, N, Sη,α,β, Θ

)
is a positive constant. �

3. Proof of Theorem 1.1

First, we introduce the following definitions related to the (PS)c-sequence.

Definition 3.1. Let c ∈ R, E be a Banach space and Jλ,µ ∈ C1(E, R).
(i) {zn} is a (PS)c-sequence in E for Jλ,µ if Jλ,µ (zn) = c + o(1) and J ′λ,µ (zn) = o(1) strongly in E−1 as
n→∞.
(ii) We say that Jλ,µ satisfies the (PS)c condition if any (PS)c-sequence {zn} for Jλ,µ admits a convergent
subsequence in E.

Lemma 3.1.
(i) If (λ,µ) ∈ SΘ1 , then there exists a (PS)θλ,µ-sequence {zn} ⊂ Nλ,µ in E for Jλ,µ ,
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(ii) If (λ,µ) ∈ S( q
p

) p
p−q Θ1

, then there exists a (PS)θ−
λ,µ

-sequence {zn} ⊂ N
−

λ,µ in E for Jλ,µ.

Proof. The proof is similar to the one in [13]. �

Now, we will demonstrate the existence of a local minimum for Jλ,µ onN+
λ,µ.

Proposition 3.1. If (H1) holds and (λ,µ) ∈ SΘ1 . Then Jλ,µ has a minimizer z1 = (u1, v1) ∈ N
+
λ,µ and

satisfies the following:
(i) Jλ,µ (z1) = θλ,µ = θ+

λ,µ < 0;
(ii) z1 is a positive solution of system (1.1).

Proof. By Lemma 3.1, there exists a (PS)θλ,µ-sequence {zn} =
{
(un, vn)

}
⊂ Nλ,µ of Jλ,µ such that

Jλ,µ (zn) = θλ,µ + on(1), J
′

λ,µ (zn) = on(1). (3.1)

Combining with Lemma 2.1, we can conclude that the sequence {zn} is bounded in E. After passing

to a subsequence (still denoted by {zn}), we can find z1 = (u1, v1) ∈ E such that
un ⇀ u1, vn ⇀ v1, weakly in Z,

un → u1, vn → v1, strongly in Lr(Ω) (1 ≤ r < p∗) ,

un(x)→ u1(x), vn(x)→ v1(x), a.e. in Ω.

(3.2)

From (3.1), we have
〈
J
′

λ,µ (zn) ,ϕ
〉
→ 0 as n → ∞ for all ϕ ∈ E. By (3.1) and (3.2), it is easy to see

that z1 is a solution of system (1.1). Because {zn} ⊂ Nλ,µ, we deduce that

Kλ,µ (zn) = −
p∗q

p∗ − q
Jλ,µ (zn) +

q (p∗ − p)
p (p∗ − q)

‖zn‖
p
E (3.3)

Taking n→∞ in (3.3), by (3.1), (3.2) and the fact θλ,µ < 0, we obtain

Kλ,µ (z1) ≥ −
p∗q

p∗ − q
θλ,µ > 0.

Therefore, z1 ∈ Nλ,µ is a nontrivial solution of system (1.1). Next, we prove that zn → z1 strongly

in E and Jλ,µ (z1) = θλ,µ. Similar to (2.7) and (2.8), for some q < r < p∗, by the Hölder inequality,

one gets,

Kλ,µ (zn) =

∫
Ω

(
λ
|un|

q

|x|γ
+ µ
|vn|

q

|x|γ

)
dx

≤λ

(∫
Ω
|un|

q· rq dx
) q

r
(∫

Ω

( 1
|x|γ

) r
r−q

dx
) r−q

r

+ µ

(∫
Ω
|vn|

q· rq dx
) q

r
(∫

Ω

( 1
|x|γ

) r
r−q

dx
) r−q

r

≤C|un|
q
r + C̃|vn|

q
r ,
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where C, C̃ > 0 are constants. By (3.2) and the Lebesgue dominated convergence theorem, we have

lim
n→∞

Kλ,µ (zn) = Kλ,µ (z1) . (3.4)

Noting z1 ∈ Nλ,µ and applying the Fatou lemma and (3.4), one has

θλ,µ ≤ Jλ,µ (z1) =
1
N
‖z1‖

p
E −

p∗ − q
p∗q

Kλ,µ (z1)

≤ lim inf
n→∞

(
1
N
‖zn‖

p
E −

p∗ − q
p∗q

Kλ,µ (zn)

)
= lim inf

n→∞
Jλ,µ (zn) = θλ,µ,

which implies that Jλ,µ (z1) = θλ,µ and lim
n→∞
‖zn‖

p
E = ‖z1‖

p
E. Combining with (3.2), zn ⇀ z1 as

n→ ∞ in E, it shows that zn → z1. Moreover, we have z1 ∈ N
+
λ,µ. Otherwise, if z1 ∈ N

−

λ,µ, then by

Lemma 2.3 there exist unique t±0 such that t±0 z1 ∈ N
±

λ,µ and t+0 < t−0 = 1. Because of

d
dt
Jλ,µ

(
t+0 z1

)
= 0,

d2

dt2Jλ,µ

(
t+0 z1

)
> 0

there exists t̄ ∈
(
t+0 , t−0

)
such that Jλ,µ

(
t+0 z1

)
< Jλ,µ (t̄z1). Again by Lemma 2.3, we have

Jλ,µ

(
t+0 z1

)
< Jλ,µ (t̄z1) ≤ Jλ,µ

(
t−0 z1

)
= Jλ,µ (z1)

which is a contradiction. Thus, by Lemma 2.6(i),Jλ,µ (z1) = θλ,µ, and z1 ∈ N
+
λ,µ. Consequently,

we get that Jλ,µ (z1) = θλ,µ = θ+
λ,µ < 0. We conclude by proving that z1 is a positive solution of

the system (1.1). Specifically, u1 . 0, v1 . 0. Without loss of generality, let’s assume that v1 ≡ 0.

Then, since u1 is a nontrivial nonnegative solution of the system−∆pu = λ |u|
q−2u
|x|γ , in Ω,

u = 0, on ∂Ω.

By the standard regularity theory, we have u1 > 0 in Ω and∥∥∥(u1, 0)
∥∥∥p

= Kλ,µ (u1, 0) > 0.

Moreover, we may choose ω ∈ Z\{0} such that

‖(0,ω)‖p = Kλ,µ(0,ω) > 0.

Now,

Kλ,µ (u1,ω) = Kλ,µ (u1, 0) + Kλ,µ(0,ω) > 0.

Consequently, by Lemma 2.5 there is a unique 0 < t+ < tmax such that (t+u1, t+ω) ∈N+
λ,µ. Moreover,

tmax =

 (p∗ − q)Kλ,µ (u1,ω)

(p∗ − p)
∥∥∥(u1,ω)

∥∥∥p


1

p−q

=

(
p∗ − q
p∗ − p

) 1
p−q

> 1

and

Jλ,µ

(
t+u1, t+ω

)
= inf

0≤t≤tmax
Jλ,µ (tu1, tω)
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This implies

θ+
λ,µ ≤ Jλ,µ

(
t+u1, t+ω

)
≤ Jλ,µ (u1,ω) < Jλ,µ (u1, 0) = θ+

λ,µ,

which is a contradiction. Finally, by Lemma 2.2 and the strong maximum principle, we deduce

that u1, v1 > 0 in Ω and z1 is a positive solution of system (1.1). �

Proof of Theorem 1.1. By Proposition 3.1, we get that for all λ,µ > 0 and (λ,µ) ∈ SΘ1 , (1.1) has a

positive solution z1 ∈ N
+
λ,µ. �

4. Proof of Theorem 1.2

To the existence of a second positive solution for the system (1.1), we must impose a stronger

condition. In this section, we will first find the range of c where (PS)c condition holds for Jλ,µ.

Lemma 4.1. Assume that {zn} ⊂ E is a (PS)c-sequence for Jλ,µ and zn ⇀ z in E, then z is a critical point
of Jλ,µ, and there exists a positive constant C0 such that

Jλ,µ(z) ≥ −C0

(
λ

p
p−q + µ

p
p−q

)
, (4.1)

where

C0 =
p− q

p

[(
pN − qN + pq

p2

)
Θ
] p

p−q

.

Proof. Let zn = (un, vn) and z = (u, v). If {zn} is a (PS)c-sequence for Jλ,µ such that

Jλ,µ (zn) = c + on(1), J
′

λ,µ (zn) = on(1). (4.2)

We claim that the sequence {zn} is bounded in E. Indeed, for sufficiently large n, we have

c + o(1) + ‖zn‖E ≥ Jλ,µ (zn) −
1
p∗

〈
J
′

λ,µ (zn) , zn
〉

=

(
1
p
−

1
p∗

)
‖zn‖

p
E −

(
1
q
−

1
p∗

)
Kλ,µ (zn)

≥
1
N
‖zn‖

p
E −

(
1
q
−

1
p∗

) (
λ ‖un‖

q
Z + µ ‖vn‖

q
Z

)
Θ

≥
1
N
‖zn‖

p
E −

(
1
q
−

1
p∗

) (
λ

p
p−q + µ

p
p−q

) p−q
p
‖zn‖

q
E Θ,

The given statement implies that the sequence zn is bounded in E. Therefore, our claim is true.

Passing to a subsequence (still denoted by {zn} ), there exists z = (u, v) ∈ Jλ,µ such that zn → z in

E and 
un ⇀ u, vn ⇀ v, weakly in Z,

un → u, vn → v, strongly in Lr(Ω) (1 ≤ r < p∗) ,

un(x)→ u(x), vn(x)→ v(x), a.e. in Ω.

(4.3)

By taking ϕ = (φ1,φ2) ∈ E. Combining with (2.7), (2.8) and (4.3), one gets

lim
n→∞

∫
Ω

|un|
q−2un

|x|γ
φ1dx =

∫
Ω

|u|q−2u
|x|γ

φ1dx, lim
n→∞

∫
Ω

|vn|
q−2vn

|x|γ
φ2dx =

∫
Ω

|v|q−2v
|x|γ

φ2dx. (4.4)
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Since
{
|un|

αi−2
|vn|

βiun
}

and
{
|un|

αi |vn|
βi−2vn

}
for i = 1, 2 are uniformly bounded in

(
Lp∗(Ω)

)′
and

converge to |u|αi−2
|v|βiu and |u|αi |v|βi−2v respectively, we can get that

|un|
αi−2
|vn|

βiun ⇀ |u|αi−2
|v|βiu, |un|

αi |vn|
βi−2vn ⇀ |u|αi |v|βi−2v

weakly in
(
Lp∗(Ω)

)′
×

(
Lp∗(Ω)

)′
for i = 1, 2 as n→∞. Thus, it is concluded from (4.2) and (4.4) that

lim
n→∞

〈
J
′

λ,µ (zn) ,ϕ
〉
=

〈
J
′

λ,µ(z),ϕ
〉
= 0 (4.5)

In particular, choosing ϕ = z in (4.5), one get
〈
J
′

λ,µ(z), z
〉
= 0 and (2.10) is true. Consequently,

Jλ,µ(z) =
(

1
p
−

1
p∗

)
‖z‖pE −

(
1
q
−

1
p∗

)
Kλ,µ(z). (4.6)

Combining (2.7), (2.8) and the Young inequality, we have

Kλ,µ(u, v) ≤
(
λ‖u‖qZ + µ‖v‖qZ

)
Θ

=


p

q
1
N

(
1
q
−

1
p∗

)−1
q
p

‖u‖qZ



p

q
1
N

(
1
q
−

1
p∗

)−1−
q
p

λΘ


+


p

q
1
N

(
1
q
−

1
p∗

)−1
q
p

‖v‖qZ



p

q
1
N

(
1
q
−

1
p∗

)−1−
q
p

µΘ


≤

1
N

(
1
q
−

1
p∗

)−1 (
‖u‖pZ + ‖v‖pZ

)
+ Ĉ

(
λ

p
p−q + µ

p
p−q

)
=

1
N

(
1
q
−

1
p∗

)−1

‖(u, v)‖p + Ĉ
(
λ

p
p−q + µ

p
p−q

)

(4.7)

with

Ĉ =
p− q

p


p

q
1
N

(
1
q
−

1
p∗

)−1−
q
p

Θ


p

p−q

=
p− q

p

(pN − qN + pq
p2

) q
p

Θ


p

p−q

.

Then (4.1) follows from (4.6) and (4.7) with C0 =
(

1
q −

1
p∗
)

Ĉ. �

Lemma 4.2. Suppose that (H1) holds, then Jλ,µ satisfies the (PS)c condition in E, with c satisfying

∞ < c < cλ,µ =
1
N

S
N
p

η,α,β −C0

(
λ

p
p−q + µ

p
p−q

)
where C0 is in Lemma 4.1.

Proof. Let {zn} ⊂ E be a (PS)c-sequence satisfying Jλ,µ (zn) = c + o(1) and J ′λ,µ (zn) = o(1), where

zn = (un, vn). Similarly to Lemma 4.1, the sequence zn is bounded in E. Additionally, we can derive

(3.2) for some z = (u, v) ∈ E. Set ũn = un − u, ṽn = vn − v and z̃n = (ũn, ṽn). From Brézis-Lieb’s

lemma [3], it follows that ∥∥∥̃zn
∥∥∥p

E = ‖zn‖
p
E − ‖z‖

p
E + o(1) (4.8)
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and by Lemma 2.3 in [6] one has∫
Ω
|ũn|

αi |̃vn|
βidx =

∫
Ω
|un|

αi |vn|
βidx−

∫
Ω
|u|αi |v|βidx + o(1), i = 1, 2. (4.9)

Consequently, from (3.4), one gets∥∥∥̃zn
∥∥∥p

E + ‖z‖pE −Q (̃zn) −Q(z) −Kλ,µ(z) = o(1)

and

lim
n→∞

〈
J
′

λ,µ (zn) , z
〉
= ‖z‖pE −Q(z) −Kλ,µ(z) = 0. (4.10)

Since Jλ,µ (zn) = c + o(1),J ′λ,µ (zn) = o(1) and by (4.8) to (4.10), we can deduce that

1
p

∥∥∥̃zn
∥∥∥p

E −
1
p∗

Q (̃zn) = c−Jλ,µ(z) + o(1) (4.11)

and ∥∥∥̃zn
∥∥∥p

E −Q (̃zn) = o(1)

Now, we can assume that

lim
n→∞

∥∥∥̃zn
∥∥∥p

E = lim
n→∞

Q (̃zn) = l. (4.12)

If l = 0, the proof is complete. For l > 0, it follows from (4.12) and the definition of Sη,α,β that∥∥∥̃zn
∥∥∥p

E ≥ Sη,α,βQ
p
p∗ (̃zn)

which means that

l ≥ S
N
p

η,α,β. (4.13)

From (4.10) to (4.13) and Lemma 4.1, we have

c =
(

1
p
−

1
p∗

)
l +Jλ,µ(z) ≥ cλ,µ,

which contradicts the definition of c. Therefore, l = 0 and zn → z strongly in E. �

Next, we will demonstrate the existence of a local minimum forJλ,µ onN−λ,µ, thereby obtaining

a second positive solution for the system (1.1)

We define

f (τ) :=
1 + τp

(η1τβ1 + η2τβ2)
p
p∗

, τ > 0. (4.14)

Since f is continuous on (0,∞) such that lim
τ→0+

f (τ) = lim
τ→+∞

f (τ) = +∞, then there exists τ0 > 0

such that

f (τ0) := min
τ>0

f (τ) > 0. (4.15)

Lemma 4.3. Suppose that N > p and 0 < ηi < ∞ (i = 1, 2), then
(i) Sη,α,β = f (τ0) S;
(ii) Sη,α,β has the minimizers (Uε(x), τminUε(x)), ∀ε > 0, where Uε(x) are defined as in (2.6).
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Proof. i) Suppose w ∈ Z\{0}. Choosing (u, v) = (w, τ0w) in (2.4) we have

1 + τ
p
0(

η1τ
β1
0 + η2τ

β2
0

) p
p∗

∫
Ω
|∇w|pdx(∫

Ω
|w|p

∗

dx
)p/p∗

≥ Sη,α,β. (4.16)

Taking the infimum as w ∈ Z\{0} in (4.16), we have

f (τ0) S ≥ Sη,α,β. (4.17)

Let
{
(un, vn)

}
⊂ E be a minimizing sequence of Sη,α,β and define zn = snvn, where

sn =

(∫
Ω
|vn|

p∗dx
)−1 ∫

Ω
|un|

p∗dx


1
p∗

.

Then ∫
Ω
|zn|

p∗dx =

∫
Ω
|un|

p∗dx (4.18)

From the Young inequality and (4.17) it follows that∫
Ω
|un|

αi |zn|
βidx ≤

αi

p∗

∫
Ω
|un|

p∗dx +
βi

p∗

∫
Ω
|zn|

p∗dx

=

∫
Ω
|un|

p∗dx =

∫
Ω
|zn|

p∗dx, i = 1, 2.
(4.19)

Consequently, ∫
Ω
|∇un|

pdx +
∫

Ω
|∇vn|

pdx(∫
Ω

(
η1|un|

α1 |vn|
β1 + η2|un|

α2 |vn|
β2
)

dx
)p/p∗

≥

∫
Ω
|∇un|

pdx((
η1s−β1

n + η2s−β2
n

) ∫
Ω
|un|

p∗dx
) p

p∗

+

s−p
n

∫
Ω
|∇zn|

pdx((
η1s−β1

n + η2s−β2
n

) ∫
Ω
|zn|

p∗dx
) p

p∗

≥ f
(
s−1

n

)
S

≥ f (τ0) S.

As n→∞we have

Sη,α,β ≥ f (τ0) S,

which together with (4.17) implies that

Sη,α,β = f (τ0) S.

ii) By (2.4) and (4.15), Sη,α,β has the minimizers (Uε(x), τ0Uε(x)). �
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Lemma 4.4. There exist a nonnegative function z̃ ∈ E\{0} and a positive constant Λ∗ such that for all
(λ,µ) ∈ SΛ∗ we have

sup
t≥0
Jλ,µ(tz̃) < cλ,µ.

where cλ,µ is the constant defined in Lemma (4.2). In particular, θ−λ,µ < cλ,µ, for all (λ,µ) ∈ SΛ∗ .

Proof. Since 0 ∈ Ω, there exists ρ0 > 0 such that B(0,ρ0) ⊂ Ω.

Also, let us introduce a cut-off function ψ ∈ C∞0 (Ω) such that ψ(x) = 1 for |x| < ρ0
2 , ψ(x) = 0 for

|x| > ρ0, 0 ≤ ψ(x) ≤ 1 for ρ0
2 ≤ |x| ≤ ρ0 and |∇ψ| ≤ C1.

Define

uε(x) := ε−
N−p

p ψ(x)U
(x
ε

)
=

ε
N−p

p(p−1)(
ε

p
p−1 + |x|

p
p−1

)N−p
p

ψ(x),

where

U(x) :=
1(

1 + |x|
p

p−1

)N−p
p

. (4.20)

Set zε = (uε, τ0uε), where ε > 0 small enough. For any t ≥ 0, we denote

Φε(t) = Jλ,µ (tzε)

= Jλ,µ (tuε, tτ0uε)

=
tp

p

(
1 + τ

p
0

)
‖uε‖

p
Z −

tp∗

p∗
(
η1τ

β1
0 + η2τ

β2
0

) ∫
Ω

up∗
ε dx−

(
λ+ µτ

q
0

) tq

q

∫
Ω

uq
ε

|x|γ
dx

= Φε,1(t) −
(
λ+ µτ

q
0

)
Φε,2(t).

Notice that Φε(0) = 0, lim
t→+∞

Φε(t) = −∞, and lim
t→0+

Φε(t) = 0 uniformly for all ε. If

inf
0<ε≤1

sup
t≥0

Φε(t) ≤ 0 then Jλ,µ (tzε) ≤ 0 < cλ,µ, for any 0 < λ
p

p−q + µ
p

p−q <
S

N
p
η,α,β

NC0
. Thus, for any

0 < λ
p

p−q + µ
p

p−q <
S

N
p
η,α,β

NC0
, one obtains

sup
t≥0
Jλ,µ (tzε) ≤ cλ,µ.

On the other hand, if inf
0<ε≤1

sup
t≥0

Φε(t) > 0, then sup
t≥0

Φε(t) > 0 and it attains for some tε > 0. So,

there exist two constants t1, t2 > 0 such that t1 < tε < t2.

Step 1. We show that

Φε,1(t) ≤
1
N

S
N
p

η,α,β + C2ε
N−p
p−1 .

From Hsu [9] (Lemma 4.3), we have the following estimates:

‖∇uε‖
p
Z =

∫
Ω
|∇uε|p dx = SN/p + O

(
ε

N−p
p−1

)
∫

Ω
|uε(x)|p

∗

dx =SN/p + O
(
ε

N
p−1

) (4.21)
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as ε→ 0.

Note that Φε,1 is increasing in (0, tmax) and decreasing in (tmax,∞), where tmax satisfies Φ′ε,1(tmax) =

0, one has

tmax =


(
1 + τ

p
0

)
‖uε‖

p
Z(

η1τ
β1
0 + η2τ

β2
0

) ∫
Ω

up∗
ε dx


N−p
p2

,

Then, from 4.21 and Lemma 4.3, we conclude that

Φε,1(t) ≤ Φε,1 (tmax)

≤
1
N


(
1 + τ

p
0

)
‖uε‖

p
Z((

η1τ
β1
0 + η2τ

β2
0

) ∫
Ω

up∗
ε dx

) p
p∗



N
p

≤
1
N

 f (τ0)
S

N
p + O

(
ε

N−p
p−1

)
(
S

N
p + O

(
ε

N
p−1

)) p
p∗


N
p

≤
1
N

[ f (τ0) S]
N
p + C2ε

N−p
p−1

=
1
N

S
N
p

η,α,β + C2ε
N−p
p−1 .

(4.22)

Step 2. Now, we estimate Φε,2 (tε) and we claim that if we set ε =
(
λ

p
p−q + µ

p
p−q

) p−1
N−p

, then there exists

Λ∗ > 0 such that for all (λ,µ) ∈ SΛ∗ we have sup
t≥0
Jλ,µ(tz̃) < cλ,µ.

Φε,2 (tε) =
tq
ε

q

∫
Ω

uq
ε

|x|γ
dx

=
tq
ε

q

∫
Ω

ψq(x)ε
(N−p)q
p(p−1)

|x|γ
(
ε

p
p−1 + |x|

p
p−1

) (N−p)q
p(p−1)

dx

≥
tq
1

q

∫
|x|≤

ρ0
2

ε
(N−p)q
p(p−1)

|x|γ
(
ε

p
p−1 + |x|

p
p−1

) (N−p)q
p(p−1)

dx

=
tq
1

q

∫ ρ0
2

0

ε
(N−p)q
p(p−1) rN−1

|r|γε
(N−p)q
(p−1)2

[
1 +

(
r
ε

) p
p−1

] (N−p)q
p(p−1)

dr

(4.23)
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=
tq
1

q
ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2

∫ ρ0
2ε

0

rN−1

rγ
(
1 + r

p
p−1

) (N−p)q
p(p−1)

dr

=
tq
1

q
ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2

∫ 1

0

rN−1

rγ
(
1 + r

p
p−1

) (N−p)q
p(p−1)

dr

+
tq
1

q
ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2

∫ ρ0
2ε

1

rN−1

rγ
(
1 + r

p
p−1

) (N−p)q
p(p−1)

dr.

(4.24)

From (4.24), we get

Φε,2 (tε) =
tq
ε

q

∫
Ω

uq
ε

|x|γ
dx ≥


C3ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2 , γ > N − (N−p)q
(p−1)2 ,

C4ε
qN

p(p−1)−
q

p−1 | ln ε|, γ = N − (N−p)q
(p−1)2 ,

C5ε
qN

p(p−1)−
q

p−1 , γ < N − (N−p)q
(p−1)2 ,

where Ci > 0(i = 3, 4, 5) are positive constants (Ci independent of ε). The case of γ > N − (N−p)q
(p−1)2 ,

combining (4.22) with (4.24), one has

sup
t≥0
Jλ,µ (tzε) = Φε (tε)

= Φε,1 (tε) −
(
λ+ µτ

q
0

)
Φε,2 (tε)

≤
1
N

S
N
p

η,α,β + C2ε
N−p
p−1 −C3

(
λ+ µτ

q
0

)
ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2 .

Let λ
p

p−q + µ
p

p−q = ε
N−p
p−1 , that is, ε =

(
λ

p
p−q + µ

p
p−q

) p−1
N−p

, then we can choose δ1 > 0 such that for all

(λ,µ) ∈ Sδ1 we have

C2ε
N−p
p−1 −C3

(
λ+ µτ

q
0

)
ε

N−γ+ q
(p−1)2

−
qN

p(p−1)2

=C2

(
λ

p
p−q + µ

p
p−q

)
−C3

(
λ+ µτ

q
0

) (
λ

p
p−q + µ

p
p−q

) p(p−1)2N−p(p−1)2γ+pq−qN
p(p−1)2(N−p)

<−C0

(
λ

p
p−q + µ

p
p−q

)
,

Then, for for all (λ,µ) ∈ Sδ1 , one gets

sup
t≥0
Jλ,µ (tzε) <

1
N

S
N
p

η,α,β −C0

(
λ

p
p−q + µ

p
p−q

)
.
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The case of γ = N − (N−p)q
(p−1)2 , it follows from (4.22) and (4.24) that

sup
t≥0
Jλ,µ (tzε) = Φε (tε)

= Φε,1 (tε) −
(
λ+ µτ

q
0

)
Φε,2 (tε)

≤
1
N

S
N
p

η,α,β + C2ε
N−p
p−1 −C4

(
λ+ µτ

q
0

)
ε

qN
p(p−1)−

q
p−1 | ln ε|

Let λ
p

p−q + µ
p

p−q = ε
N−p
p−1 , that is, ε =

(
λ

p
p−q + µ

p
p−q

) p−1
N−p

, choosing δ2 > 0 such that for all for all

(λ,µ) ∈ Sδ2 , then one has

C2ε
N−p
p−1 −C4

(
λ+ µτ

q
0

)
ε

qN
p(p−1)−

q
p−1 | ln ε|

=C2

(
λ

p
p−q + µ

p
p−q

)
−C4

(
λ+ µτ

q
0

) (
λ

p
p−q + µ

p
p−q

) q
p
| ln

(
λ

p
p−q + µ

p
p−q

)
|

<−C0

(
λ

p
p−q + µ

p
p−q

)
.

Consequently, for for all (λ,µ) ∈ Sδ2 , we obtain

sup
t≥0
Jλ,µ (tzε) < cλ,µ.

If we set Λ∗ := min

S
N
p
η,α,β

NC0
, δ1, δ2

 > 0 and ε =
(
λ

p
p−q + µ

p
p−q

) p−1
N−p

, then for (λ,µ) ∈ SΛ∗ , we have

sup
t≥0
Jλ,µ (tzε) < cλ,µ,

Step 3. We prove that θ−λ,µ < cλ,µ, for all (λ,µ) ∈ SΛ∗ .

By the definition of zε and uε, we have

Kλ,µ(zε) > 0, Q(zε) > 0

Combining this with Lemma 2.3 and Lemma 2.5, from the definition of θ−λ,µ, we obtain t−ε zε ∈ N−λ,µ

and

0 < θ−λ,µ ≤ Jλ,µ (t−ε zε) ≤ sup
t≥0
Jλ,µ (tzε) < cλ,µ.

for all (λ,µ) ∈ SΛ∗ . The proof is finalized by taking z̃ = zε. �

Proposition 4.1. If (H2) holds and (λ,µ) ∈ SΛ. Then Jλ,µ has a minimizer z2 = (u2, v2) ∈ N−λ,µ which
satisfies the following:
(i) Jλ,µ (z2) = θ−λ,µ;
(ii) z2 is a positive solution of system (1.1),

where Λ = min
{

Λ∗,
( q

p

) p
p−q Θ1

}
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Proof. If (λ,µ) ∈ S( q
p

) p
p−q Θ1

, then by Lemma 3.1 there exists a (PS)θ−
λ,µ

-sequence {zn} ⊂ N
−

λ,µ in

E for Jλ,µ. From Lemmas 2.6(ii), 4.2 and 4.4 for (λ,µ) ∈ SΛ∗ , Jλ,µ satisfies (PS)θ−
λ,µ

condition

and θ−λ,µ ∈ (0, cλ,µ). By Lemma 2.1 and from coercivity of Jλ,µ in Nλ,µ, we get that {zn} is

bounded in E. Therefore, there exists a subsequence still denoted by {zn} and a nontrivial solution

z2 = (u2, v2) ∈ N−λ,µ such that zn ⇀ z2 weakly in E. Finally by the same arguments as in the proof

of Proposition 3.1, for all (λ,µ) ∈ SΛ, we have that z2 is a positive solution of (1.1). �

Proof of Theorem 1.2. By Proposition 3.1 and 4.1 we obtain that for all λ,µ > 0 and (λ,µ) ∈ SΛ,

(1.1) has two positive solutions z1, z2 with z1 ∈ N
+
λ,µ and z2 ∈ N

−

λ,µ. Since N+
λ,µ ∩N

−

λ,µ = ∅, this

implies that z1 and z2 are distinct. This completes the proof. �
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