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ABSTRACT. The hydromangetic stability of bounded fluid jet under the influence of the electromagnetic (with toroidal 

varying field) force has been developed. A general dispersion relation valid for all modes of perturbation is derived. 

The geometric factor q which is the radii ratio of the tenuous-fluid regions plays an important role for stabilizing the 

model. The axial and transvers magnetic fields interior and exterior the fluid jet are stabilizing. The magnetic fields 

decrease the streaming destabilizing domains and at the same time give a sort or rigidity to the fluid molecules. For 

any value of the applying magnetic field strength, the instability character of the streaming model could be 

suppressed and dispersed. These results are confirmed numerically upon using computer programs. 

 

1. Introduction 

The classical stability analysis of a full jet has been extensively studied by Rayleigh [1], Nayfeh 

[2] and Chandrasekhar [3]. The last author studied the hydromagnetic stability of a fluid jet 

pervaded by a constant magnetic field for axisymmetric perturbation. Radwan et al. ([4],[5]) 

developed the MHD stability of that model for all axisymmetric and non-axisymmetric modes 

subject to electromagnetic forces and pervaded by constant magnetic field. See also Hide [6] . 

Khurana [7] presents some theoretical research on the propagation of Rossby-MHD waves in 
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homogeneous media and inertial-MHD waves over rigid boundaries. Radwan [8] investigated 

Stability of a streaming magnetized fluid jet penetrated internally by a toroidal varying 

magnetic field. Radwan et al. [9] investigated the MHD stability of a fluid jet with surface 

tension that was pierced by a toroidal changing magnetic field in all axisymmetric and non-

axisymmetric perturbation modes. Sakuraba [10] studied a linear analysis of thermally 

generated magneto-convection, with a focus on convection within the Earth's core. Radwan and 

Hasan [11] investigated the self-gravitating instability of a fluid cylinder surrounded by a 

magnetic field and supplied with surface tension. Elazab et al. [12] studied the 

magnetohydrodynamic stability criterion of a self-gravitating streaming fluid cylinder with 

integrated capillary effects. Hasan [13] investigated the stability of an oscillating streaming self-

gravitating dielectric incompressible fluid cylinder surrounded by a tenuous medium with 

minimal motion and a transversely shifting electric field for all axisymmetric and non-

axisymmetric perturbation modes. Abdeen and Hasan [14] studied the magnetohydro-dynamic 

stability of a fluid jet pervaded by a transversely changing magnetic field while its surrounding 

tenuous medium is pierced by a uniform magnetic field. 

Hasan et al. [15] investigated the magnetohydrodynamic stability criterion of a self-gravitating 

streaming fluid cylinder under the combined influence of self-gravitating, magnetic, and 

capillary forces. Barakat [16] investigated the magnetohydrodynamic (MHD) stability of an 

oscillating fluid in the presence of a longitudinal magnetic field.  See (Raphaldini and Raupp, 

[17]). Barakat et al. [18] investigated the self-gravitating stability of a fluid cylinder embedded in 

a confined liquid containing a magnetic field for all symmetric and asymmetric perturbation 

modes. Hendy and Amin [19] investigated the influence of magnetodynamic stability on the 

bounded annular cylinder (tar) penetrated by an unstable magnetic field.  

Hendy [20] investigated the effects of non-axisymmetric self-gravitating instability on a 

capillary incompressible bounded cylindrical hollow jet. See also Wright et al., [21]. Hasan et al. 

[22] explained magnetohydrodynamic stability in a uniform cylinder of an incompressible 

inviscid fluid due to self-gravitation, magnetic field, and capillary forces. Medvedev et al. [23] 

investigated the ideal magnetohydrodynamic properties of axisymmetric balance 

magnetoplasma formations of three rings conveying current dependent on plasma pressure. 

The electrically conductive fluid instability under the effect of a transversal magnetic field 

created by two parallel plates examined by Hussain et al. [24]. Barakat [25] calculated the self-

gravitating stability of a fluid cylinder immersed in a confined liquid with a magnetic field for 

all symmetric and asymmetric perturbation modes. Recently, Elazab et al. [26] investigated 

Magnetohydro-dynamic Stability of Self-gravitating Streaming Fluid Cylinder. The purpose of 
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the present work is to investigate the magnetodynamic stability of cylindrical streaming fluid jet 

pervaded internally by toroidal varying magnetic field and surrounded by bounded medium 

with uniform magnetic field. The advantages here are that model is realistic and that there is no 

singular solution any more in the region surrounding the fluid jet. The conclusion would be 

validated both theoretically and numerically for all (non)-axisymmetric forms of perturbations. 

 

Fig. 1 Sketch for MHD fluid jet 

 

2. Basic State  

  We consider a uniform infinite cylinder of (radius 
0R ) incompressible and inviscid fluid. 

In the initial unperturbed state the fluid is assumed to be streaming uniformally with the 

velocity ( )Uu ,0,00 =  and pervaded by the magnetic field, 

   









= 0

0

0int

0 ,,0 H
R

rH
H 


. 

The tenuous medium surrounding the fluid cylinder is penetrated by  

   ( )00 ,0,0 HH
ext

= , 

where  ,  and   are constants and 
0H  is the intensity of the magnetic field in the exterior 

region of the cylinder as 1= . The components of
0u , 0H  and 

ext
H 0  are considered along the 

utilizing cylindrical polar coordinates ( )zr ,,  system with the z-axis coinciding with the axis of 

the cylinder. 

The magnetohydrodynamic basic equations are given by 
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  ( ) ( )HHcurlPuu
t

u
+−=








+




              (2.1) 

  0= u                  (2.2) 

  ( )Hucurl
t

H
=




                ( 2.3) 

  0= H                  ( 2.4) 

In the surrounding bounded medium 

  0=
ext

H                  (2.5) 

  0=
ext

H                  (2.6) 

   Here  , u  and P are the fluid mass density, velocity vector and kinetic pressure; H  and 
ext

H  

are the magnetic field intensities inside and outside the fluid jet,   the magnetic field 

permeability coefficient. 

  The initial state with 00 =u  is studied upon using the basic equations (2.1)-(2.6). 

Consequently, the distribution of the pressure is given by 

  ( ) .
2

000 constHHP =+


               (2.7) 

By applying the balance of the pressure at 
0Rr = , we get 

  







−−= 2

2

22
22

00
2







R

r
HP               (2.8) 

from which we see that 
0P  is variable. 

 

3. Perturbation Analysis 

Linearization of equations (2.1)-(2.6), is accomplished by substituting the expansions 

  ( ) ( ) ( ) ( ) 0110 ,,,,,, QQzrQtrQtzrQ +=              (3.1) 

and retaining first-order terms only in the fluctuating variables 1Q , where Q stands for 

Hup ,,  and 
ext

H . The amplitude ( )t  of the perturbation at time t is given by 

  ( ) ( )tt  exp0=                 (3.2) 

where ( )0at   0 == t  is the initial amplitude and   (complex) is the growth rate. In view of 

the expansion (3.1) and based on the linear perturbation technique, the perturbed radial 

distance of the fluid cylinder is given by 
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  ( ) 10 RtRr += ,                (3.3) 

with 

  ( ) mkziRR += exp01
               (3.4) 

Here 1R  is the elevation of the surface wave measured from the unperturbed position, k (real) is 

the longitudinal wavenumber and m (integer) is the transverse wavenumber. 

 By an appeal to the expansions (3.1), the linearized equations are given by       

      ( ) ( ) ( ) ( ) 011010110
1 HHHHHHPuu
t

u
++−+−=








+




    (3.5) 

  01 = u                  (3.6) 

  01 = H                  (3.7) 

  ( ) ( ) ( ) 011010
1 HuHuuH

t

H
−−=




            (3.8) 

  01 =
ext

H                  (3.9) 

  01 =
ext

H                 (3.10) 

By combining equations (3.5)-(3.8) and taking into account the space dependence, we get 

  2

1 0  =                 (3.11) 

where ( )0 11 1P H H  = +   is the total magnetohydrodynamic pressure. 

Also upon combining equations (3.9) and (3.10), we get 

  extext
H 11 −=               (3.12) 

with 

  01

2 = ext                (3.13) 

where ext

1  is, some scalar function, the magnetic potential. 

   From the viewpoint of the linearized perturbation technique and the expansions (3.1)-(3.4), we 

may write 

  ( ) ( ) ( )( )tmkzirQtzrQ  ++= exp;,, *

11
           (3.14) 

Consequently, the non-singular solutions of the second order differential equations (3.11) and 

(3.13) are given by 

  ( ) ( )1 expmAI kr i kz m t  = + +              (3.15) 

  ( ) ( )( ) ( ) tmkzikrCIkrBK mm

ext  +++= exp1           (3.16) 
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Here ( )krIm
 and ( )krKm

 are the modified Bessel functions of the first and second kind of the 

order m while A,B and C are constants of integration. 

The latters could be identified upon applying appropriate boundary conditions. 

 Under the present circumstances, these boundary conditions are given as follows: 

1- The normal component of the velocity u  must be compatible with the velocity of the fluid-

tenuous medium interface equation (3.3) at
0Rr = . This condition gives 

  
( ) 

( )xIx

RiUk
A

m

A



++−
=

2

0

22


             (3.17) 

where ( )0kRx =  is a dimensionless longitudinal wavenumber. 

 2- The normal component of the exterior magnetic field 
ext

H  vanishes at 
0qRr = . 

3- The normal component of the magnetic field H  must be continuous across the interface equation 

(3.3) at
0Rr = . 

Consequently the last two conditions give 

  
( )

( )0

0

qkRI

qkRKB
C

m

m



−
=                       (3.18) 

  
( )

( ) ( ) ( ) ( ) 0000

00

kRKqkRIkRIqkRK

qkRIHiR
B

mmmm

m

−

−
=


                  (3.19) 

4- The jump of the total MHD pressure must be continuous across the interface equation (3.3) at 

0Rr = . This condition reads 

  ( ) 0
2

1

0
11 =+



+ HH

r

P
RP


,    at   

0Rr =           (3.20) 

Note that, the jump of magnetic field is given by 

  ( ) ( ) ( )  ( ) ( ) extext
HHHH

r
RHHHHHH 0000110101

22
−




+−=





    (3.21) 

By utilizing the compatibility condition (3.20), the following relation is obtained 

  ( ) ( )
( )

( ) 








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++−=+

m

yxm
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xxm
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H
iUk

,

222

2
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2
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


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           (3.22) 

      where  

  ( ) ( ) ( ) ( )yKxIxKyIL mmmm

m

y
−=             (3.23) 

  ( ) ( ) ( ) ( )yKxIxKyIL mmmm

m

y
−=             (3.24) 
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  with 

   qxy =                (3.25) 

is a dimensionless longitudinal wavenumber due to the existence of the bounded tenuous 

medium. 

 

4. Stability Discussions 

 Equation (3.22) is the desired eigenvalue relation of magnetized fluid cylinder, pervaded 

by toroidal varying magnetic field, surrounded by bounded tenuous magnetized medium. It 

related the growth rate   with the magnetic fields parameters  ,  and  , the intensity of the 

magnetic field 
0H in the tenuous medium as ( )1= , the fluid density  , the radius 

0R  of the 

fluid cylinder, the wavenumbers x, y and m, the modified Bessel functions 
mI  and 

mK  (with 

different arguments) and with their derivatives. Since equation (3.22) is a general dispersion 

relation, we may recover some reported works as limiting cases from it upon assuming some 

postulates. 

   If we assume that 0=U  and →q , we have a stationary liquid cylinder surrounded by 

unbounded tenuous medium of negligible inertia. Its dispersion relation is given from equation 

(3.22) by 

  ( )
( ) ( )
( ) ( )










−+

−
=

xIxK

xKxI
xxm

R

H

mm

mm222

2

0

2

02 



             (4.1) 

where use has been made of the limit 

  ( ) →
→

yIm
y
lim                 (4.2) 

  ( ) 0lim →
→

yKm
y

                (4.3) 

If we assume that 0=U , 0=  and →q , we have a stationary fluid cylinder surrounded by 

infinite tenuous medium pervaded by uniform magnetic field interior and exterior the fluid 

cylinder. In such case the dispersion relation is given by 

  
( ) ( )
( ) ( )










−

−
=

xIxK

xKxI
x

R

H

mm

mm222

2

0

2

02 



              (4.4) 

If we assume that 0=U , 0=  and →q , in this case we have, initially, non-streaming liquid 

cylinder pervaded by transverse varying magnetic field while it is surrounded by unbounded 

medium penetrated by axial magnetic field. 
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      If we assume that the present model is not streaming in the unperturbed state, the 

dispersion relation (3.22) becomes 

   ( )
( )
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) 




















−

−
++−=

yIxKxIyK

yIxKxIyK
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xI

xI
xm

R

H

mmmm

mmmm

m

m 222

2

0

2

02 



            (4.5) 

If the liquid cylinder is non-conducting but streaming in the initial state while the surrounding 

bounded medium is conducting, then the dispersion relation is simply given by 

  
( )

( )
( )
( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )yIxKxIyK

yIxKxIyK

xI

xI
x

RH

ikU

mmmm

mmmm

m

m

−

−
=

+ 22

2

0

2

0

2

/





           (4.6) 

Now, in order to discuss the stability states of the problem under consideration, we have to 

study some characteristic behavior of the modified Bessel functions. 

Consider the recurrence relations 

  ( ) ( ) ( )xIxIxI mmm 112 +− +=                 (4.7) 

  ( ) ( ) ( )xKxKxK mmm 112 +− −−=               (4.8) 

It is well known (cf. Abramowitz and Stegun [27] for non-zero real value of x, that ( )xIm
 is 

positive definite and monotonic increasing while ( )xKm
 is monotonic decreasing but never 

negative. Therefore, on using the recurrence relations (4.7) and (4.8) we may show, for 0x , 

that 

  ( ) 0 xIm
,               (4. 9)   

  ( ) 0 xKm
,               (4.10) 

In addition, one has to mention here, since  q1 , that 

  xy                  (4.11) 

So that 

  ( ) ( )xIyI mm                 (4.12) 

but 

  ( ) ( )yKxK mm                (4.13) 

Based on these inequalities, we may show, for non-zero real values of x and y, that 

  ( ) ( ) ( ) ( ) eyKxIxKyIL mmmm

m

y +=+=            (4.14) 

  ( ) ( ) ( ) ( ) exKyIxKyIL mmmm

m

yx −=+−=,           (4.15) 

Therefore, for 0x  and 0y , the quantity
mQ : 
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( )

( )
0

,





=

m

yxm

m

ym

m
LxI

LxI
Q               (4.16) 

is negative for all axisymmetric mode 0=m  and non-axisymmetric modes 0m  of 

perturbation. 

Now, let us returning to the general dispersion relation (30). 

The effect of the toroidal magnetic field interior the fluid cylinder is represented by the term 

( )2 xm +−  following 
2

0

2

0

R

H




 in the relation (3.22). It is a quadratic quantity with negative sign, 

so it is negative quantity. Therefore, the interior toroidal magnetic field has strong stabilizing 

influence. The influence of the longitudinal magnetic field pervaded in the bounded tenuous 

medium is represented the quantity 
mQx22  following 

2

0

2

0

R

H




 in the general dispersion relation 

(3.22). it, for 0 , 0x , is negative for all 0=m  and 1m  modes of perturbation. 

Therefore, the axial magnetic field penetrated in the tenuous region has strong stabilizing 

influence. The latter is true not only in the axisymmetric perturbation mode 0=m  but also in 

those of non-axisymmetric 1m . The streaming has a destabilizing effect and valid for all short 

and long wavelengths. 

Based on the foregone analytical discussions we may deduce the following results. 

1- The axial magnetic fields interior and exterior the fluid cylinder are stabilizing for all 0m , 

0x  and 0y . 

2- The transverse magnetic field interior the fluid cylinder is stabilizing for all modes 0=m  and 

1m  of perturbations for all non-zero real values of x and y. 

3- The streaming of the fluid is destabilizing. The latter effect is independent of the kind of 

perturbation and whether the wavelength is short or long. 

We conclude that the present streaming model is destabilizing or stabilizing according to 

restrictions. This may be clearer via the numerical analysis, where we can easily identify the 

stable domains and those of instability and their characteristics. 

 

5. Numerical Analysis 

 In order to verify the analytical results and determine exactly where the stable and 

unstable domains are, the dispersion relation (3.22) is formulated in the non-dimension form 
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  ( ) ( )
( )
( ) m

yxm

m
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LxI

LxI
xxmU

,

2222**


++−=−               (5.1) 

With  

2

0

2

0

*

R

H






 = ,                (5.2) 

   

2

0

2

0

*

R

H

ikU
U





−
= ,                (5.3) 

The relation (5.1) has been computed in the computer for 0=m . It is remarkable that the 

transverse magnetic field has no any influence on the stability of the present model in such case. 

Different values for  ,  and q are given while x is assumed to be regular values 50  x  

where qxy = . See figs. (2)- (5). 

 

Fig. (2) Magneto hydrodynamic stable domains for different values of ( ), ,q    with 
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)2,3,1.1(),,(1 =− q    2- )4,3,1.1(),,( =q    3- )5,4,1.1(),,( =q  

4-  )8,5,1.1(),,( =q      5- )9,6,1.1(),,( =q   
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Fig. (3) Magneto hydrodynamic stable domains for different values of ( ), ,q    with 
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4-  )2,3,2(),,( =q      5- )2,3,5(),,( =q   

 

Fig. (4) Magneto hydrodynamic stable domains for different values of ( ), ,q    with 
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)2,5,1.1(),,(1 =− q    2- )2,5,3.1(),,( =q    3- )2,5,8.1(),,( =q  

4-  )2,5,2(),,( =q      5- )2,5,5(),,( =q   

 

 

Fig. (5) Magneto hydrodynamic stable domains for different values of ( ), ,q    with 
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)5,8,1.1(),,(1 =− q    2- )5,8,3.1(),,( =q    3- )5,8,8.1(),,( =q  

4-  )5,8,2(),,( =q      5- )5,8,5(),,( =q  

 

Conclusion6.  

    Based on the numerical results presented, we can conclude the following.  For the same value 

of U, the unstable domains decrease as h increases.  This suggests that the magnetic field has a 

stabilizing impact on both short and long wavelengths. For the same h value, the unstable 

domains increase as U values increase.  

1- The current model's stability is unaffected by the transverse magnetic field. This indicates 

that the streaming is highly disruptive.   

2- The model described in this work is both successful and intelligent in simulating the effect of 

longitudinal wave number, magnetic field, and fluid stream velocity on growth rate.  

3-  The provided model is quite efficient in directly forecasting the stable and unstable domains 

for the growth rate for different parameters.  
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4- The model can generate a large number of outcomes for each modification in magnetic field 

and fluid stream velocity in a single run, which takes only a few minutes and accepts 

mistake.  

5- The model was able to comprehend the stability behavior of a streaming jet field and became 

capable of providing growth rates for various parameters without having to solve such a 

problem again using analytic or any other approach.  

Final, the streaming has a destabilizing effect in both hydrodynamic and MHD forms. The axial 

magnetic field that pierced the mantle jet stabilizes all non-axisymmetric perturbation modes. It 

is discovered that when the magnetic field strength is so high that the Alfven magnetic wave 

velocity is significantly greater than the streaming velocity, the magnetic field's stabilizing 

influence predominates and overcomes the capillary and streaming destabilizing forces, and 

stability occurs. 
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