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Abstract. This article presents the domain of general quantum difference in Nakano sequence space. Some topological
and geometric behavior, the multiplication mappings defined on it, and the spectrum of mapping ideals constructed by
this space and s—numbers have been introduced. Existing results are constructed by controlling the general quantum

difference and power of this new space, which is a major strength.

1. NortATIONS

(1): Z and R: The set of integers and real numbers, respectively.

(2): Z*: The set of non-negative integers.

(3): C: The space of all complex numbers.

@): G, V, Go, and Vy: Any infinite dimensional Banach spaces.

(5): ng: The space of all bounded linear mappings from &G into V.

(6): EI(QV: The space of finite rank mappings from G into V.

(7): ‘.ng: The space of all approximable mappings from G into V.

8): imlg: The space of all compact mappings from G into V.

9): Lig, Tg, Rlg, and N|g: The space of all bounded linear, finite rank, approximable, compact

mappings from G into itself, respectively.
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(10): L, T, R, and M: The ideal of all bounded linear, finite rank, approximable and compact
mappings between any arbitrary Banach spaces, respectively.

(11): (0,0)%": The space of all sequences of positive reals.

(12): €, co, and &, The space of bounded, null, and m-absolutely summable sequences of
complex numbers, respectively.

(13): : The space of all monotonic increasing sequences of positive reals.

(14): €Z": The space of all sequences of complex numbers.

(15): [y]: The integral part of y.

(16): e, := (0,0,...,1,0,0,...) as 1 lies at the x" coordinate.

(17): I;: The identity mapping on the x-dimensional Hilbert space £;.

(18): O: The zero vector of the linear space of sequences Q.

(19): I: The space of each sequences with finite non-zero coordinates.

(20): 3: The space of all sets with a finite number of elements.

(21): (Range(U))‘: The complement of Range(U).

(22): ): A Banach space of one dimension.

(23): sy(H): The x-th s-number [4].

(24): d(H): The x-th Kolmogorov number, where dy(H) := inf, j<, sup i<l infge; ||HA -l

(25): ax(H): The x-th approximation number, where
ax(H) :=inf{|H-Z||: Z € LI and rank(Z) < x}.

(26): See [5]:

L) = {ng } where Ly|} : {H e LIy : ((sx(H))y g € Q}.

Ly = {ng}, where Lgfgv : {H € ng t((ax(H)) 2 € Q}.

LdQ = {Ldalg}, where Léfgv = {H € ng (((dx(H))7 € Q}
s\ . s \P (v
(LQ) = {(LQ) |g }, where
(Lz)p |g = {Y € ng C((px(Y))5p € Q and |IY — px(Y)I| is not invertible, for all x € Z+}.

2. INTRODUCTION

Suppose that ¢ = (@) is a strictly increasing, where ¢ : ZT — Z, the general quantum
difference (g.c.d) V,, is defined in [6] by

Agy =M1

T .
0, otherwise.

op#h-1,

Note that if ¢, = h, then V,A, = VA, = A; — A1, where A, = 0 for h < 0, is the backward
difference defined by Kizmaz [7]. The concept of variable exponent function spaces has been
carefully developed, drawing upon the boundedness of the Hardy-Littlewood maximal mapping.

That discusses its image processing, difference equations, and approximation theory applications.
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The theory of LZ2 introduced and investigated by Pietsch [1]. In [3], he offered and studied the
behaviours of L‘Z,‘b. Makarov and Faried [8], explained that if y > x > 0, one has L?Xg G L?y I(gv - Lg.
Yaying et al. [14], defined and studied the domain of b-Cesaro matrix in £, for every b € (0,1] and
1 < n < co. They explained the q BI of it for b € (0,1] and 1 < 17 < co. They offered its Schauder
basis, a—, f—, and y— duals and represented some matrix classes connected to it. The space EIRI(QV
examined by many authors for different sequence spaces for that see [9,10]. Komal et al. [15],
which defines multiplication mappings on Cesaro sequence spaces under the Luxemburg norm.
[lkhan et al. [16] discussed multiplication mappings on Cesaro second-order function spaces. The
non-absolute type sequence spaces are a generalization of the corresponding absolute type. Hence,
there exists a great interest in studying them. Numerous authors have recently clarified some non-
absolute type sequence spaces and contributed new intriguing works to the literature. Consider
Mursaleen and Noman [12,13], as well as Mursaleen and Basar [11], and Roopaei et al. [17]. Also,

for a complete background on the multiplication operators and pre-quasi operator ideals, see [19].
Lemma 2.1. [21] Suppose that 1, > 0 and @y, 04 € €, for all h € Z*, and h = max{1, sup,, 1.}, one has
@ + onl™ < 2" (|0n]" +lowl™) . (21)

The solution of discrete dynamical systems is found inside a designated sequence space. There
is significant enthusiasm in the field of mathematics for creating novel sequence spaces. Consid-
ering that the verification of numerous fixed-point theorems in a specific space necessitates either
enlarging the space or extending the self-mapping that operates within it, both of these alternatives
are feasible. In this article, we define and discuss several inclusion relations for the domain of g.c.d

in Nakano sequence space (Nss), (f (Vo, n))qb in Section 3. In Section 4, we offer the sufficient setups

on (5 (Ve, 17))¢ under definite function ¢ to form pre-modular private sequence space (p-mpss). So
it is a pre-quasi normed private sequence space (p-q N pss). In Section 5, we give some topological

and geometric behaviors of the multiplication operators defined on (f Vo, n))(i). In Section 6, first,

we offer the sufficient conditions (not necessary) on (f (V<p,17))q5 such that T = Lf’(g(v ). That
@/ ¢

represents the non-linearity of s— type (f (Ve, 17)) o Spaces (see Rhoades [22]). Second, what are the
S
(€Vpm))

sufficient conditions on (f (Vo, 1]))({) for which L?c’(v ) is strictly contained for different ¢ and
1))y
powers. We offer the conditions for which L¢ and L® are minimum and simple, re-

p
spectively. Next we examine the sufficient settings on (f (Ve, r]))qb with (Ls(f(vq,,q))(?) = L?K(Vq),n))(p'

setups of (£(V,,, to generate L re-quasi Banach ideal (p-q BI)? Third, we present the
P @] é g pre-q P-q p
¢

Lastly, we explain our conclusion in Section 7.

3. GENERAL QUANTUM DIFFERENCE IN NAKANO SEQUENCE SPACE

This section provides a discussion on the definition of (€ (Vo n))q), along with an exploration of

possible inclusion relations.
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Definition 3.1. Assume (1)) € (0,00)%" and V is an absolutely non-decreasing.

(eVpm),, = {)\ = () € €% 1 ¢y (pA) <

Theorem 3.1. Let (1) € (0,00)Z", we have

o0

oo, for some p > O}, where p1(A) = Z Vol ™.
y=0

(f(vq), ﬂ))(Pl C (f(V(P, 77))4)2 ,

where o (A) = Z |V<P/\y|ny.
y=0

Proof. We have

(é’(V(P,n))qb = {/\ =(Ay) € 62" : d1(pA) < oo, for some p > 0}
1
= {/\ = (Ay) € CZ": Z |pV§0/\y|ny < Z |pV(p|/\y||ny < oo, for some p > 0}
y=0 y=0
c {)\ = (Ay) € (2N ¢P2(pA) < oo, for some p > 0} = (€(V¢,n))¢2 .
O
Theorem 3.2. Let (1) € (0,00)%" N £, one has
(€Vpm), = {2 = (1) € &+ 9(pA) < o, forany p > 0},
where p(A) = Z |V(,,)\y|qy.
y=0
Proof. Suppose that (1) € (0,00)%" N £s, we have
({’(V(p,n))(p = {/\ =(Ay) € G2 ¢(pA) < oo, for some p > 0}
= {/\ = (Ay) € (O Z (|V(Pp/\y|)qy < oo, for some p > 0}
y=0
= {/\ = (Ay) € CZ" :infp Z (|V(P)\y|)ny < oo, for some p > O}
v
_ {/\ = (Ay) € €% 2 Y (Vo))" < oo}
y=0
= {/\ =(Ay) € G2 ¢(pA) < oo, forany p > O}.
O
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Proof. Suppose that without loss of generality that ¢, = x — 2, for all x € Z". One has

[o¢]

<p(1,—1, 0,0, o,...) =Y PMyr =AM =24 27 2= Y JIAlyea — Ay = qb(l,l, 0,0,0,... )
y=0 y=0
If o = x, we have

¢(1,—1,0,0, 0,...) =Y My Aya” =24 2m 2= Y Al — Alya[” = q>(1,1,0, 0,0,...).
y=0 y=0

That completes the proof. m]
Definition 3.2. Let (1) € (0,00)%".

(E(V,n)g = {/\ = (Ay) € €Z" : ¢(pA) < oo, for some p > 0} where p(A Z ’/\ - Ay L

Theorem 3.4. Assume (1)) € (0,00)%" Nl and @y > x, for all x € Z*, then

(67, m)g & (€(Vp,m), -
Proof. Let A € (£(V, 7)), since

A(P
L

— |y —y+1

_ /\y—l My

1 (o]
< Z |Ay - /\y_1|'7y < 9.

y=0

Y

Therefore, A € (f(qu, n))qb .If we choose A = (1,0,1,0,...), then A ¢ (£(V, 17))¢ and A € (K(V(p, 17))qb ,
where gy = x 4 1. m]

Theorem 3.5. Assume (11y) €,/ N with ng > 0and @y < x—1, forall x € Z, then
(67, )y € (€(Vp,m), -

Proof. Let A € (f(V,n))¢, since

Eoo —A% ~ Ay h-1 My 1 h My

2 A - /\ + A — A (m-1) < 2 A _ A
=y (py—y+] [;)| y1| m(PZ() | mll(p yZ‘| y-1 < 00,
Therefore, A € (f Vo, 1]))(7) . ]

4. PRE—MODULAR-(f(V(P, n))(i) SPACES
We investigate here the sufficient conditions on (f (Vo, n))q) with definite function ¢ to be p-mpss,

where ¢ (A

(K(V(P, n))¢. This implies that (K(V(P, 77))915 isa p-q N pss.
y=0
Definition 4.1. [20] The space Q is called a pss, when it satisfies the next settings:
1): e, €Q, s0thathe Z™,
@:Iff=(fr) € (Za Igl = (Igx]) € Qand |fx| < |gx|, with x € ZT, then |f| € Q, i.e., Qs solid,
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(3): (

fiy ):_O Q@ if(fl) <@

Theorem 4.1. [20] If Qs a pss, then Ly, is an Operators” ideal (OI).

Definition 4.2. [20] A subspace of the pss-Q is named a p-mpss, if we have an operator | : Q — [0, 00)
that satisfies the next settings:

(): Suppose that 5 € Q, 6 = 0 & u(|6]) = 0, and u(5) =0,

(ii): for 6 € Qand 7 € €, there are Eg > 1 with u(td) < |t|Eou(0),

(iii): there are Gy > 1 such that u(y +¢) < Go(u(y) + u(e)), withy, e € Q,

(v): ifx € Z, |Ay| < |Bxl, we have p((1Ax])) < p((1Bl)),

(v): the inequality, u((IA«l)) < u((IA;z)1)) < Dop((1A41)) holds, for Do > 1,

(vi): I = Q,,

(vii): one has @ > 0 such that u(A,0,0,0,...) > @lAlu(1,0,0,0,...), where A € €.

Definition 4.3. [20] Suppose that u satisfies the parts (i)-(iii) of Definition 4.2, then the pss Q,, is said to
be a p-q N pss. If the space Q is complete under u, hence Q,, is called a pre-quasi Banach private sequence
space (p-q B pss).

Theorem 4.2. [20] All p-mpss Q,, is a p-q N pss.

Theorem 4.3. The space (t’ (Ve, 17)) o is a pss, when the next parts are verified:

(f1): If (nx) €/ Nlwo.
£2): lp(x)—x+1]>1, withxe Z™.
(£3): Assume that |\ < |xl, with x € Z7, then [Vy|As| < [VolBal|

Proof. (1-i) For B,A € (f (Vo, 17))¢' We obtain
Voldy + Byll™ <271 Y Volayl™ + Y [Volpyl™ | < oo,
y=0 y=0 y=0

hence, A +p € (f(V(p, 17))(7).
(1) IfpeC Ae (é’(V(P,n))q) and as (1)y) €,/ Nls, we have

2 Vel < suplpl™” [Volayl[" < eo.
y=0

Then, pA € (5 (Ve, n))¢. From conditions (1-i) and (1-ii), hence (f (Ve, 17)) 0 is a linear space.
For (1) €,/ Nle, no > 0, since ¢, € (£(1)), with b € Z, and

(E)g & (EV,m)y & (E(Vpsm)),,-
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Therefore, e, € (f (Ve, 17))¢, foreverybe Z™.
(2) Suppose that A, < |Byl, withb € ZT and |B| € (Z(V(P,n))(P. One has

(o] (o]
Z Voldyl" < Z [VolByl[" < oo,
y=0 y=0

so|Al e (K(V(P,n))¢.

(3) Let (1A]) € (£(V,, n))¢, with (1,) €/ Nle, we have

[0e]

Y el = Y ITpll™ + Y [plul] ™ <2 Y [l < oo,
h=0 h=0 h=0

h=0
therefore (I/\[%]D € (K(V(p,r]))q). m]

Because of Theorem 4.1, we conclude the next theorem.

Theorem 4.4. Suppose that the parts of Theorem 4.3 are verified, one has LS(f(V ) is an OLI.
e )

Theorem 4.5. Suppose that the conditions of Theorem 4.3 are verified, then the space (5 (Vq),n)) 0 is a
p-mpss.

Proof. (i) Definitely, (1) = Y [VolA,I|"™ = 0 and ¢ (1Al) = 0 & A = 6.

y=0
(i) LetpeC e (€(V¢,n))¢ and as (1x) €,/ Nls, we have

d(pA) = Y pVolyl[™ < sup lol™ [Vola,l" < Eolplep(A) < oo,
y=0 Y

where Ey = max {1,supx |p|’7X‘1} > 1.
(iii) Assume A, B € (5 (Vo, 77)) o One gets

(A +p) = Z|V<P|Ay+ﬁy " <2 1[2 Vol " +Z|V<p|ﬁy "= 2" (@A) + ¢(B)) < o0

hence, the inequality (A + ) < 2" 1(¢p(A) + ¢ (B)) is satisfied.
(iv) Suppose that |A| < |Byl, with b € ZT and || € (Z(V(p,n)) . One has

(A1) ZIV ™ < Z|v<p|ﬁb||” O((IBol))

(v) Let (|Ayl) € (f(V(p, n))(ﬁ, with (n,) € /" Nlw, we have

¢((AgN) Z|V

Z Vol ™ + Z [Voldy ™" < ZZ [Voldyl" < Dod((I21)).
y=0 y=0

y=0
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(vi) It is obvious that I = £(V,, 7).
(vii) There are 0 < @ < sup, [A|~1 such that $(A,0,0,0,...) > @|A|p(1,0,0,0,...), for each A # 0 and
o>0,if A =0. m]

Theorem 4.6. The space (t’ (Ve, n))¢ is a p-q B vss, if the conditions of Theorem 4.3 are satisfied.

Proof. According to Theorem 4.5, the space (5 (Vo, 1]))({) is a p-mpss. By Theorem 4.2, (f (Ve, n))(ﬁ
is a p-q N pss. Suppose that A = (A1) is a Cauchy sequence in (f (V<p/77)) o one has for all

¢ € (0,1), there exists ag € Z* with a,b > a9, hence

G(A"=A") = Y [Velag = Ab|"™ < €.
y=0
That gives |V¢IA’; - /\ZI| < ée.So, (V<p|/\§|) is a Cauchy sequence in €, for fixed y € Z", which gives
limy_, o0 V¢|A§| = ch|/\2|/ for fixed y € Z*. Then, ¢p(A? — A%) < ¢l for all a > ag. More, to explain
that A% € (£(V,, n))q), one gets p(A%) < 2171 (¢p(A? = A%) 4+ h(A?)) < oo, then A? € (f(v(p,n))q). Which
implies that (Z(Vq), 17))(7) is a p-q B pss. o

Theorem 4.7. [18] When s— type Q, := {6 = (sx(V))eRZ : Ve ng and u(6) < oo}. Assume L,
1%

is an OI, one has the following:
i. ICs—type Q.
ii. Let (sx(V1))5g € 5— type Qu and (5x(V2)) g € s— type Qu, so0 (sx(V1 + V2));— € s— type Q.
iii. Suppose that € € € and (sx(V))5y € 5— type Qu, one has |¢| (sx(V)) g € s— type Q.
iv. The sequence space Q,, is solid. i.e., if (sx(Y))5_y € s— type Qu and sy (V) < sx(Y), forany x € Z*
and V,Y € LY, s0 (s+(V))57 € s— type Q.

By Theorem 4.7, we have the next behavior of the s— type (5 (Vo, n))(P.
Theorem 4.8. For s— type (K(V(p,n))(p = {6 = (s¢(V)) eRZ" : Ve ng and ¢(0) < oo}. The
following parts are established:

i. s— type (K(V(p,n))(p oL
ii. Assume that (sx(V1))5o € s— type (é’(V(P,n))(P and (sx(V2))1ey € s— type (t’(V(p,n))(P, hence
(se(V1+ V2))iZg € 5= type (€(V,m)
iii. Suppose that r € € and (sx(V))5, € s— type (f(V(p,n))
(EVpm)),.
iv. s— type (K(V(p, ”))¢ is a solid.

o then |rl (sx(V))ey € s— type

Theorem 4.9. Suppose that the conditions of Theorem 4.3 are verified, one has LS@(V ) is not OL
@1 )
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Proof. For n, = 2, ¢(y) = y, forall y € Zzt,¢g=(111,...)and m = (1,0,1,0,...). Clearly,
Imy| < |gyl, forall y € Z* and g es— type ({’(V(P,T]))(?. But m ¢s— type ({’(V(P,n))q). Hence the s—
type (€ (Vo, 1]))¢ is not solid. Given Theorem 4.7, we conclude that L’ is not OL m]

(f(v(w’]))qn

5. MULTIPLICATION MAPPINGS ON ({’ (Vo, 77))¢

We discuss some topological and geometric structures of the multiplication mapping defined on

the space (5 (Vo, n))q) under definite function ¢, where ¢ (A Z |V(p|/\ forall A € (f (Ve, 17)) .

¢

Definition 5.1. [20] IfQ isa p-q N pssand 9 = (8y) € €%". The operator Ts : Q. — Qy is said to be
a multiplication on Q,, if TsA = (Sx/\x) € Qu, with A € Q. Assume Ty € L(Qy,), then the multiplication

operator is called created by .
Theorem 5.1. Fixing 8 € €Z" and the conditions of Theorem 4.3 are satisfied, one has

Sely = Ty€ L((K(Vw,n))q)).

Proof. Suppose that 9 € (. Hence, there exists v > 0 so that [9,| < v, for every x € Z. Assume
A € (l(Vy, , t
( (Vo W))¢ one gets

o(Ts1) =9(32) = 3 ([Vtnil)" < 3, (vWoltall)" < sup v}, ([Vlul])"
h=0 h=0 h=0
= sup vp(A).
h

Hence, T € L((K(V(p,n))(b).
After that, when Ty € L((K(V(p,n))(b) and 9 ¢ {w. So for every x € Z™, there are b € Z* with
[94| > b. We have

o(Tser) = p(9e) = Y (IVoldy(eyl)” > Y ([pV,l(er)yl])" > b6 (ex).
y=0 y=0
That gives, Ty ¢ L((f(V@,n))q)). S0 9 € le. m]
Theorem 5.2. Assume that 9 € 62" and (f (Vo 77)) p is a p-q N pss.
I9x =1, forany x € Z" o Tyisan isometry.
Proof. For any A € (€ (Ve r]))q), we have

o(TsA) = o(94) = Y ([Volsiel])"™ = Y ([Volad)™ = ¢ (1),

(o] (o]
k=0 k=0
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Hence, Ty is an isometry.

Let Ty be an isometry and |9,| < 1, for some x = x9. We get

[S¢]

H(Tsew) = d(9exy) = Y ([Voldilex )™ < Y ([Vol(ew)il])” = dlex,)-

k=0 k=0
Also when |9y, > 1, Obviously, ¢(Tgex,) > ¢(ey,). So, [9x] =1, forallx € Z+. O
Theorem 5.3. Assume S € €2 and the conditions of Theorem 4.3 are satisfied. Then Ty € 9{((5 (Ve, n))@),

if and only if, (8y);° € co

Proof. Suppose that Ty € ‘R(({’(V([,,n))q)), one gets Ty € Em((f(qu,n))q)). If limy e 9y # 0. Hence,
one has p > 0 with K, = {x € Z" : |9,| > ¢} £ 3. Let {ax}yez+ C K,. Hence, {e,, : ay € K} € € is an
infinite set in ({’ (Vo, r]))d). For a,, oy € K, one obtains

[o¢]

O(Toea, — Tsea,) = P(Seq, — deq,) = Z |V¢|8k ((eay )k — (ea, )k ||)
k=0

(o]

>} (oYl ((ea, )k~ (ex )" 2 inf " plea, — eay)-

k=0
Therefore, {eq, : a, € K,} € fo, which cannot have a convergent subsequence under Ty. So Ty ¢
im((f (qu,n))qb). Hence T ¢ %((f (V(p,n))q)), so explains a contradiction. So, limy_,.c 9x = 0. On

the contrary, assume limy_,., 9y = 0. Then forall ¢ > 0, one has K, = {x € Z" : [84| > g} € 3. Then,

for every p > 0, we obtain dim (( (K(V@,n))(f) )KQ) = dim ((SK@) <. SoTy € EZ(( (f(V(p,n))¢ )Kg).

Suppose that 9, € €Z", for every a € Z+, where

Sb, be K;,
(Su)b — a+1
0, otherwise.

Obviously, Ly, € T [( (€(V<P, n))q)) ] such as dim [( (f(V(p, q))d) ) } < oo, foralla € Z". Since
B_ B

1
a+1 a+1

(Nx) €/ Nlo with g > 0, we get

P(To=Lo,)d) :y(((sb_( ) ) Z (JVol(85 = (9 )b)/\h”)nb

b=0
= Y (VI8 = )" Z (V1% = (Sa)o) sl
b=0,beK 1 0,b¢K L
+1 +
(o] 1 e
— Vol 9pAs] VoAl
i ObZ¢K N (| b b|) <a+1)nob 01;21(11 (| b|)
= 1
a_|_ 1 - Z |V(p|/\b|| ( + 1)’70(;[)( )
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Hence, [Ty — Ly, || < . Which explains T € ‘R((Z(V(p, n))¢). O

a+1)

Theorem 5.4. Assume that 9 € %" and the conditions of Theorem 4.3 are verified. Then Ty €
‘JJ?((K(V(,,, n))(b), if and only if, (9x)32_, € co.

Proof. Clearly, as m((f(v(p,n))¢) & %E((f(vq),n))¢). H
Corollary 5.1. Let the conditions of Theorem 4.3 be satisfied, then ED?((Z (Ve, r]))(z)) G L((f (Vo, n))(ﬁ).

Proof. Since the multiplication mapping I on ({’ (Ve, n)) ) is created by 9 = (1,1,...). Which gives
I¢ ‘m((f(V(P,n))(b) and I € L((((V¢,n))¢

Theorem 5.5. If Ty € L((f(Vw, n)){P), where the space ({’(V(P, 1]))(7) is a p-q B pss. Then, there exists p > 0
and q > 0 under p < |94| < g, for every x € (ker(9))", if and only if, Range(Ty) is closed.

) mi

Proof. Suppose that enough conditions are verified. Hence, there exists ¢ > 0 so that [3,| > ¢, for
all x € (ker(9)). To prove the space Range(Ts) is closed, assume ¢ is a limit point of Range(Ts).
One has Tgd, € (f (Vq,,n))@, for every x € Z* so that limy_, Tg0y = g. The sequence Tgdy is a
Cauchy sequence. For (1y) €,/ N, we have

[ee]

(Todr = Todm) = Y ([Vol(Sn(6)n = S (m))1])"

h=0
=Y (Velsunn=su@nl)" + Y, ([Vel(Su(0)n = Su(em)l])"
h=0,he(ker(9)) h=0,hg (ker(9))*
> }: (IVol (91800 = 8(Ga)" = Y, (Yol (Sn(0r)s = S (ewm))I]) "
h=0,he (ker(8))° =0
Mh
Z( ((wp)pn = (wm)p) ] > iI}}f&nh[J(wl - wm),

where

0, x ¢ (ker(9))".
That gives, {w,} is a Cauchy sequence in (f Vo, q))q). Since (€ (Vo 77>)¢ is complete. So, there exists

6 € (f(V(p,n))(P under limy_,c wy, = 0. Since Ty € L((K(Vq),n))¢), we have lim, e Towy = Tgb.
But limy—,co Towy = limye T30x = §. Then T3d = g. Therefore, g € Range(Ty). So Range(Ts) is

. {(5l)x, x € (ker(9)),

closed. After, suppose that the necessity condition is satisfied. Hence, there exists ¢ > 0 so that
¢(Ts6) = ep(6) and 0 € (({’(Vq,,n))(b )( . IfK = {x e (ker(8)) : 184 < e} # 0, hence for

ap € K, one gets

ker(9))°

o0

6(Tsey,) = y((sm (el ) ) ) i (98t )nl)™ < Y ([Vol(ermel)™ < sup 1 9(cy),
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that is a contradiction. Hence K = ¢, we have |9,| > ¢, with x € (ker(9))". m]

Theorem 5.6. Let (K(V(p,n))q5 be a p-q B pss and 9 € 62", Hence, we have p > 0 and q > 0 under
p <9 <qgandx e Z", ifand only if, Ty € L((f(V(,,, n))¢) is invertible.

Proof. Suppose that « € ¢Z" and Ky = 9%- Given Theorem 5.1, hence Ty, L, € L|( o So

V@r’]))¢'
Ty.L, = L. Tg = I. Therefore, L, = Lgl. Next, let Ty is invertible. So Range(Ts) = ((Z(V(p,n))(p )Z+'
Therefore, Range(Ty) is closed. By Theorem 5.5, one obtains p > 0 then |9, > p, forall x € (ker(39))".
Hence ker(9) = 0, if 9y, = 0, where xop € Z*, which explains ey, € ker(Ty), so there is a
contradiction, since ker(Ty) is trivial. Hence, |9 > p, for all x € Z". As Ty € {«. By Theorem 5.1,
one gets g > 0 with |[9y| < g, forall x € Z". So, p < |9x| < g such thatx € Z*. O

Definition 5.2. [23] An operator T € Llq is said to be Fredholm, if dim(Range(T))¢ < oo, dim(ker(T)) <
oo and Range(T) is closed.

Theorem 5.7. If Ty € L((f(V(P, 17))¢), where (f(Vq), 17))¢ is a p-q B pss. Then Ty is Fredholm operator, if
and only if, (a) ker(9) G Z7 is a finite and (b) |9,| > o, with x € (ker(9))".

Proof. Assume that the parts (a) and (b) are verified. Given Theorem 5.5, the part (b) gives that
Range(Ty) is closed. The part (a) implies that dim(ker(Ty)) < co and dim((Range(Ty))¢) < co. So,
Ty is Fredholm. Assume T} is Fredholm operator, let ker(8) & Z* be an infinite, so e, € ker(Ty),
for all z € ker(9). As e;’s are linearly independent, we have that dim(ker(Ty)) = oo, this explains

a contradiction. Therefore, ker(9) & Z must be finite. The part (b) comes from Theorem 5.5. O

6. BEHAVIOUR OF THE OPERATORS’ IDEALS
Firstly, we shall revisit the fundamental principles of Ols.

Definition 6.1. [24] A class H C L is named an OI, if all vector H—Ilg =Hn LI(QV satisfies the following
conditions:

@): In € H.

(ii): ]I—Ilg is a linear space on €.

(iii): Suppose that N € L|90, MeH[Y and P e L[}?, then PMN € Hg;.

Definition 6.2. [5] A mapping A : H — [0, o) is called a pre-quasi norm on the OI H, if it verifies the
next conditions:

1): FMeH[Y, A(M)=0and AM) =0 = M =0,

(2): there are Ey > 1 so that A(xX) < Ep|x|A(X), with X € H—Ilg and x € €,

(3): one has Go = 1 so that A(Z1 + Z5) < Go[A(Z1) + A(Z2))], for all Z1,7Z, € HIY,

(4): we have Dy > 1, when N € ngo, MeH[} and P € L.?, then A(PMN) < Dy ||P|A(M) [INI.

Theorem 6.1. [20] Assume (Q), is a p-mpss, then A is a pre-quasi norm on Lf ., where A(Y) =
u

@
o0 : s vV
p(sx(Y))5, with Y € L(Q)ng.
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Theorem 6.2. [5] A p-q N on the ideal H, if it is ¢ N on IH.
Definition 6.3. [3] A Banach space Q is called simple if Llq includes a unique non-trivial closed ideal.

Theorem 6.3. [3] We have

g & Rlg & Mg & Lig-

In this section. First, we present the sufficient conditions (not necessary) on (f (Ve 1]))(7) under

T = LS(K(v ). This provides an explanation regarding the non-linear nature of s— type (5 (Vo, n))d)
¢y

spaces (see Rhoades [22]). Second, for which conditions on (5 (V(,), 77)) o is Ls(f Vo)) p-q BI? Third,
W’n ®

we offer the sufficient conditions on (5 (Ve,m) )q) under L‘Ef(v ) tobe strictly contained for different
(p/'] ¢

@ is minimum. Also, we examine the

(f(vwrﬂ))¢,

setups when the class LS(K(VM)) | is simple. We give fourthly the sufficient settings on (f (Ve 77))4;

for which L with the sequence of eigenvalues in (f (Ve, 17)) o identical with LS([(v ).
9”77 ¢

¢ and powers. We offer the conditions for which L

6.1. Denseness.

Theorem 6.4. Ls(f(v ) |g = XY, if the conditions of Theorem 4.3 are sufficiently verified (not necessar-
(IJ'TI o]

ily).

Proof. Since e, € (€(V,, , for every x € Z* and (¢(V,, is a linear space. Suppose that
ps 1 % y @1 ¢ p PP

v oo 3V v V3V
Z € Zlg, then (s¢(Z))32, € L. Therefore, ‘Ilg C sz(qu))(plg. To prove that Ls(t’(v(p,n))q)'g c I,
let Z € Ls(f(vq,,n))q,,lg’ then (sx(2))2, € (¢(Vy,m)) o As P(sx(Z))2, < o0, assume p € (0,1), one
obtains xo € Z" \ {0} with ¢((sx(Z))3,,) < §. Since s,(Z) is decreasing, we have
ZX[] n ZX() 0 (o] 0 p
Y, (Vs @)™ < ) (Wgsu(@)" < Y (Wyse(2) " < 5 6.1)
x=xp+1 x=xp+1 X=X0

Hence there exists Y € TLZxolg so that rank(Y) < 2xp and

3xp 2x

y (|V¢||Z—YII|)UX <y (|V(P||Z—Y|||)nx < g, 6.2)

x=2xp+1 x=xp+1

since (1x) €,/ N, we can choose

Xo
Y (|[velz -
x=0

)"x < 6.3)
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By inequalities (1)-(4), hence

d(Z,Y) = ¢ (5:(Z=- V)= Y, (|V<p5x(z -Y) )nx + i (lvﬁosx(z -Y) )m
= =3
< i (voliz—vil)" + 2{) ([Vossr2a(z-1)])"™

3x9 T o0 .
<y (]v(pnz - Yll‘) + Y ('v¢sx(2) )
x=0 X=X0

<3 i (|v(p||z - Y||')”x + i (|v(psx(2) )"x <p.
x=0 X=X(

S
((V,(-2,11,...

verified. m]

For the opposite direction, we have a contradiction since Iy € L D Ig, but 179 > 0 is not
¢

6.2. Pre-quasi Banach ideal.

Theorem 6.5. The subclass (Ls(c(v ) ,A) is a p-q BI, where A(Y) = q{)((sx(Y));‘Lo), whenever the
({7/77 ¢ -

settings of Theorem 4.3 are satisfied.

S

Proof. Since (f (qu,n))qb is a p-mpss, so from theorem 6.1, A is a pre-quasi norm on L (6(%”))@.

Assume (D is a Cauchy sequence in L® V. Since LY 2 L® V then
( X)XEZJr y q (f(v([),rl))(blg |g ({(Vq”n))q’) |g

AD=D) = Y ([%yss=Dy))” = (v, 10Dl

s0 (Dp)pez+ is a Cauchy sequence in ng. As ng is a Banach space, one obtains D € ng with
lim |Dy DIl = 0. Since (s¢(Dy))y, € (5(V¢,n))¢, for every b € Z*. Given Definition 4.2,

conditions (i), (iii), and (v), we have
X

A(D) = i (|v(psy<p) )7 <o i (|v¢s[%] (D- Db)|)”y ot i ([Vesis,(00)

y=0 y=0 y=0
1\ Wi N My
<2 Y ([ 1D -Dyl])” + 27100 Y (Vs (D)) < e
y=0 y=0
o0 s vV
Therefore, (sx(D)):2, € (f(qu, n))(P, then D € L(K(V(,,,r;))q,,b' m]

6.3. Minimality and simplicity.

Theorem 6.6. Suppose that the setups of Theorem 4.3 are satisfied with g (x) > ¢1(x) and 0 < qfcl) < r]ff),

forall x € Z", hence

LS Y LS o SLIY.
(f(til,(nil))))@ G (f(vm' ”iZ))))qa ¢ ¢
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Proof. Assume Z € L? Y hence (s,(Z)) € (£(Vy,, (7)) . One gets
f sy ) 9 e (5(2) (Vs (1)) - One g
- & !
Y ([Ves2)) <Y (Vos(2)) <
x=0 x=0
then Z € LS [V. After, take (sy(Z))* , such that [V, s,(Z)| = ——, one gets Z € L[
(f(Vqur(WiZ))))¢ g * =0 | P ' ’b(clw)/x—O—l g
under
& &1
Z('V‘Ps"(z)) :Zx—l—l -
x=0 x=0
and
oo NEI™ @& o
X X (])
5 ) = o] = £2)T <
x=0 x=0 x=0
Then Z ¢ LS [¥ and Z € L 4
(e ") € (e ) €
Clearly, L? [V c L[Y. After, by taking (s5,(Z))>_, such that |V,s,(Z)| = —5—. We have
(€(V(p2f(fl.<r2))))¢ ¢ ¢ =0 | i | WARTT
ZeLl|Y suchthat Z ¢ LS V. |
g (e ) €
Theorem 6.7. Suppose that the conditions of Theorem 4.3 are satisfied, hence L?f(v ) is minimum.
1))

(o] Tlx
Proof. We have that (L?(v ,]),A), where A(Z) = Z(Iv(pax(Z)D , is a p-q BIL Suppose that
Q7
=0

L?(Vq),n) I(gv = ng, one gets 1 > 0 with A(Z) < nl|Z||, for every Z € ng. Becouse of Dvoretzky’s
theorem [2], for all b € Z*, we have the quotient spaces G/ Y, and subspaces M}, of V which can
be transformed onto fg by isomorphisms V;, and X, so that ||Vb||||V;1|| < 2 and ||Xb||||X;1|| <2
Assume that I, is the identity mapping on fg, Ty is the quotient mapping from G onto G/ Y}, and Jj,
is the natural embedding mapping from M, into V. Suppose that m, is the Bernstein numbers [1],

one has
1=m(Iy) = mz(X, X, ' VeV, ") < IXpllmz (X, ' T V) IV, L= 1Xplime (X, I V)V,
< IXolld= (X, T Vi)V, = 1Xplld= (X, T Ve To) IV, I
< Xyl (JoX;, I Ve To)IV, M,

for 0 < x < b. Suppose that m is the greatest integer, so ¢ (m) = 0. Then we have

x+1 _ -
T S 10l Voas Xy BV Ty)1V; =

x+1\* _
(Fm) = vy

MNx

Vo (%, VT3
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Hence, for some g > 1, one gets

b b
x4+ 1\ - - b
Z(_) sQ||Xb||||Vb1||Z(|V(pax(]bXb11beTb)|) =
x=0

x=0 |1 - m|

b 1y
Y (o) = XAV IAG BVATy) =
x=0

x+1\"

b
Z (—|1 — m|) < onllXullIV, X, 1 Ve Tell =
x=0

b

x+1\k _ _ _ _
E (—|1 — m|) < onlIXpllIV, T2 IV Toll = onll XV, X IV < 4on.
x=0

So there exists a contradiction whenever b — co. Then, G and V both cannot be infinite dimensional

a Vv _ 1V
whean M)lg —ng. O

(V.

We can easily prove the following corollary as theorem 6.7.

Corollary 6.1. L? is minimum, whenever the parts of Theorem 4.3 are satisfied.

(Vo)
Lemma 6.1. [3] Suppose that P € ng and P ¢ ‘ng, then N € Llg and M € L|y with MPNe, = ey, for
allx e Z™.

Theorem 6.8. Let the conditions of Theorem 4.3 be satisfied with @, (x) > ¢1(x) and 0 < 17,((1) < n,(c2), for
allx € Z71, then

s VL )
(6T ) & (T 0l")) G
= %(L an ¥}
(V) €7 (e0gr 0) €
Proof. Suppose that X € L(LS v, L3 I(V) and
(0 ) € (e, ),
X ¢ ‘R(LS v, Ls |(V). From Lemma 6.1, one has
(6T ) " (e 0l) €
Y e L(LS I(V) and Z € L(LS I(V) with ZXYI, = I,. Hence, for every b € Z*, we
(Ve n0) € (eVar a"0). €
4 4
get
= )
[ = (|v(plsx(1b) )
((9r.0"), ¢ %0

- B
<IZXl. <) ([Ves))

(V’ Ls

That fails Theorem 6.6. So X € iR(LS " Ig),
(60 0)

(f(v(,)z,(nf)))) s

o]
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Corollary 6.2. Let the conditions of Theorem 4.3 be satisfied with @z (x) > @1(x) and 0 < 173((1) < 17,(‘2), for

every x € Z*, hence

L(Ls |(V LS |(V)
(60 0)) " (€90, l)) G
- sm(LS e |“V).
(00, 02 6" eV, ),
Proof. Since R C 9, the proof follows. m]
Theorem 6.9. Suppose that the conditions of Theorem 4.3 be satisfied, hence If’(f(v ) is simple.
@1 ¢

Proof. Let the closed ideal SUE(LS([(VWI))(plg) contains X ¢ ‘R(L?K(VW]) )(P|(gv). From Lemma 6.1, we

s v — s Vv
haveY,Z € L(L(f(vw,n))(p'Q) such that ZXYT, = I,. Therefore, ILS([(V(P,U))(@@ € SUE(L(Z(VM))JQ ). Hence

s VY _ ¢ s N% s : :

L(L(f(V(p,n))(P'Q ) = m(L(f(VMJ)(b g )- So, L(Z(an,n))¢ is a simple Banach space. m]

6.4. Spectrum.

Theorem 6.10. Assume that the settings of Theorem 4.3 are satisfied and V(;l exists and bounded linear,
hence

P
L Vs >
( ({(thn))(’r,) |§ ([(V(f”n))q‘u |g

P
Proof. LetH € (Ls(t’(Vq) ) ) |g, one has (px(H));>, € (K(V(p,n))q) and ||H — px(H)I|| = 0, for every
M),

x € Z". Hence X = py(H)I, for every x € Z*, then s,(H) = sx(px(H)I) = |px(H)|, forany x € Z.

00 s vV ; s vV
So, (sx(H));>, € ({’(V(P,r]))¢, one gets X € L(f(ann))(,)'g' After that, if X € L(Z(Vq,,n))d]'Q' Hence

0o N
(sx(H));2, € (Z(V¢,n))¢. Therefore, one obtains Z (‘V(psx(H) ) < 00. 50 limy 00 Vipsx(H) =
=0

0. Since V;l exists and bounded linear, then lim, . sy(H) = 0. Suppose that ||[H — sx(H)Ill‘1
exists, for every x € Z*. So ||H - sy(H)I||™! exists and bounded, for every x € Z*. Hence,
limy e ||[H = sy (H)I||7* = ||X]|"! exists and bounded. Since (LS ). A) is a p-q OI, one has

[ ¢

(e

I=XxX'e LS( ), & = (sx()3g € {(Vp,n) = lim sy(I) = 0.

We have a contradiction, since limy_,« x(I) = 1. Therefore ||H —s,(H)I|| = 0, for all x € Z". That

gives X € (LS v O

P
(f(VQ,,n))(P) |Q :
7. CONCLUSION

We offered the topological and geometric structure of the domain of g.c.d in Nss, as well as the

p
multiplication mappings defined on it, the class L* , and the class (LS ) . This article
(eVom), (EVm),,
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S
(eVom),
and proved that closed OlIs are certain to play an important role in the Banach lattice principle.

presented a novel space of solutions for numerous difference equations, the spectrum of L

4
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