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Abstract. This article presents the domain of general quantum difference in Nakano sequence space. Some topological

and geometric behavior, the multiplication mappings defined on it, and the spectrum of mapping ideals constructed by

this space and s−numbers have been introduced. Existing results are constructed by controlling the general quantum

difference and power of this new space, which is a major strength.

1. Notations

(1): Z and R: The set of integers and real numbers, respectively.

(2): Z+: The set of non-negative integers.

(3): C: The space of all complex numbers.

(4): G,V, G0, andV0: Any infinite dimensional Banach spaces.

(5): L|V
G

: The space of all bounded linear mappings from G intoV.

(6): T|V
G

: The space of finite rank mappings from G intoV.

(7): R|V
G

: The space of all approximable mappings from G intoV.

(8): M|V
G

: The space of all compact mappings from G intoV.

(9): L|G,T|G,R|G, andM|G: The space of all bounded linear, finite rank, approximable, compact

mappings from G into itself, respectively.
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(10): L, T, R, andM: The ideal of all bounded linear, finite rank, approximable and compact

mappings between any arbitrary Banach spaces, respectively.

(11): (0,∞)Z+
: The space of all sequences of positive reals.

(12): `∞, c0, and `m: The space of bounded, null, and m-absolutely summable sequences of

complex numbers, respectively.

(13): ↗: The space of all monotonic increasing sequences of positive reals.

(14): CZ+
: The space of all sequences of complex numbers.

(15): [y]: The integral part of y.

(16): ex := (0, 0, ..., 1, 0, 0, ...) as 1 lies at the xth coordinate.

(17): Ix: The identity mapping on the x-dimensional Hilbert space `x
2.

(18): θ: The zero vector of the linear space of sequences Q.

(19): I: The space of each sequences with finite non-zero coordinates.

(20): I: The space of all sets with a finite number of elements.

(21): (Range(U))c: The complement of Range(U).

(22): Ω: A Banach space of one dimension.

(23): sx(H): The x-th s-number [4].

(24): dx(H): The x-th Kolmogorov number, where dx(H) := infdim J≤x sup
‖λ‖≤1 infβ∈J ‖Hλ− β‖.

(25): αx(H): The x-th approximation number, where

αx(H) := inf
{
‖H −Z‖ : Z ∈ L|V

G
and rank(Z) ≤ x

}
.

(26): See [5]:

Ls
Q

:=
{
Ls
Q
|
V

G

}
, where Ls

Q
|
V

G
:=

{
H ∈ L|V

G
: ((sx(H))∞x=0 ∈ Q

}
.

Lα
Q

:=
{
Lα
Q
|
V

G

}
, where Lα

Q
|
V

G
:=

{
H ∈ L|V

G
: ((αx(H))∞x=0 ∈ Q

}
.

Ld
Q

:=
{
Ld
Q
|
V

G

}
, where Ld

Q
|
V

G
:=

{
H ∈ L|V

G
: ((dx(H))∞x=0 ∈ Q

}
.(

Ls
Q

)ρ
:=

{ (
Ls
Q

)ρ
|
V

G

}
, where(

Ls
Q

)ρ
|
V

G
:=

{
Y ∈ L|V

G
: ((ρx(Y))∞x=0 ∈ Q and ‖Y − ρx(Y)I‖ is not invertible, for all x ∈ Z+

}
.

2. Introduction

Suppose that ϕ = (ϕh) is a strictly increasing, where ϕ : Z+
→ Z, the general quantum

difference (g.c.d) ∇ϕ is defined in [6] by

∇ϕλh =


λϕh−λh−1

ϕh−h+1 , ϕh , h− 1,

0, otherwise.

Note that if ϕh = h, then ∇ϕλh = ∇λh = λh − λh−1, where λh = 0 for h < 0, is the backward

difference defined by Kizmaz [7]. The concept of variable exponent function spaces has been

carefully developed, drawing upon the boundedness of the Hardy-Littlewood maximal mapping.

That discusses its image processing, difference equations, and approximation theory applications.
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The theory of Ls
Q

introduced and investigated by Pietsch [1]. In [3], he offered and studied the

behaviours of Lα
`b

. Makarov and Faried [8], explained that if y > x > 0, one has Lα
`x
|
V

G
& Lα

`y
|
V

G
$ L|V

G
.

Yaying et al. [14], defined and studied the domain of b-Cesàro matrix in `η, for every b ∈ (0, 1] and

1 ≤ η ≤ ∞. They explained the q BI of it for b ∈ (0, 1] and 1 < η < ∞. They offered its Schauder

basis, α−, β−, and γ− duals and represented some matrix classes connected to it. The spaceM|V
G

examined by many authors for different sequence spaces for that see [9, 10]. Komal et al. [15],

which defines multiplication mappings on Cesàro sequence spaces under the Luxemburg norm.

İlkhan et al. [16] discussed multiplication mappings on Cesàro second-order function spaces. The

non-absolute type sequence spaces are a generalization of the corresponding absolute type. Hence,

there exists a great interest in studying them. Numerous authors have recently clarified some non-

absolute type sequence spaces and contributed new intriguing works to the literature. Consider

Mursaleen and Noman [12,13], as well as Mursaleen and Başar [11], and Roopaei et al. [17]. Also,

for a complete background on the multiplication operators and pre-quasi operator ideals, see [19].

Lemma 2.1. [21] Suppose that ηh > 0 and $h, σh ∈ C, for all h ∈ Z+, and h̄ = max{1, suph ηh}, one has

|$h + σh|
ηh ≤ 2h̄−1 (|$h|

ηh + |σh|
ηh) . (2.1)

The solution of discrete dynamical systems is found inside a designated sequence space. There

is significant enthusiasm in the field of mathematics for creating novel sequence spaces. Consid-

ering that the verification of numerous fixed-point theorems in a specific space necessitates either

enlarging the space or extending the self-mapping that operates within it, both of these alternatives

are feasible. In this article, we define and discuss several inclusion relations for the domain of g.c.d
in Nakano sequence space (Nss),

(
`(∇ϕ, η)

)
φ

in Section 3. In Section 4, we offer the sufficient setups

on
(
`(∇ϕ, η)

)
φ

under definite function φ to form pre-modular private sequence space (p-mpss). So

it is a pre-quasi normed private sequence space (p-q N pss). In Section 5, we give some topological

and geometric behaviors of the multiplication operators defined on
(
`(∇ϕ, η)

)
φ

. In Section 6, first,

we offer the sufficient conditions (not necessary) on
(
`(∇ϕ, η)

)
φ

such that T = Ls
(`(∇ϕ,η))φ

. That

represents the non-linearity of s− type
(
`(∇ϕ, η)

)
φ

spaces (see Rhoades [22]). Second, what are the

setups of
(
`(∇ϕ, η)

)
φ

to generate Ls
(`(∇ϕ,η))φ

pre-quasi Banach ideal (p-q BI)? Third, we present the

sufficient conditions on
(
`(∇ϕ, η)

)
φ

for which Lα
(`(∇ϕ,η))φ

is strictly contained for different φ and

powers. We offer the conditions for which Lα
(`(∇ϕ,η))φ

and Ls
(`(∇ϕ,η))φ

are minimum and simple, re-

spectively. Next we examine the sufficient settings on
(
`(∇ϕ, η)

)
φ

with
(
Ls
(`(∇ϕ,η))φ

)ρ
= Ls

(`(∇ϕ,η))φ
.

Lastly, we explain our conclusion in Section 7.

3. General quantum difference in Nakano sequence space

This section provides a discussion on the definition of
(
`(∇ϕ, η)

)
φ

, along with an exploration of

possible inclusion relations.
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Definition 3.1. Assume (ηx) ∈ (0,∞)Z+
and ∇ϕ is an absolutely non-decreasing.(

`(∇ϕ, η)
)
φ1

:=
{
λ = (λy) ∈ CZ+

: φ1(ρλ) < ∞, for some ρ > 0
}
, where φ1(λ) =

∞∑
y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy .

Theorem 3.1. Let (ηx) ∈ (0,∞)Z+
, we have(
`(∇ϕ, η)

)
φ1
⊂

(
`(∇ϕ, η)

)
φ2

,

where φ2(λ) =
∞∑

y=0

∣∣∣∇ϕλy
∣∣∣ηy .

Proof. We have(
`(∇ϕ, η)

)
φ1

=
{
λ = (λy) ∈ C

Z+
: φ1(ρλ) < ∞, for some ρ > 0

}
=

{
λ = (λy) ∈ C

Z+
:
∞∑

y=0

∣∣∣ρ∇ϕλy
∣∣∣ηy
≤

∞∑
y=0

∣∣∣ρ∇ϕ|λy|
∣∣∣ηy
< ∞, for some ρ > 0

}
⊂

{
λ = (λy) ∈ C

Z+
: φ2(ρλ) < ∞, for some ρ > 0

}
=

(
`(∇ϕ, η)

)
φ2

.

�

Theorem 3.2. Let (ηx) ∈ (0,∞)Z+
∩ `∞, one has(

`(∇ϕ, η)
)
φ
=

{
λ = (λy) ∈ C

Z+
: φ(ρλ) < ∞, for any ρ > 0

}
,

where φ(λ) =
∞∑

y=0

∣∣∣∇ϕλy
∣∣∣ηy .

Proof. Suppose that (ηx) ∈ (0,∞)Z+
∩ `∞, we have(

`(∇ϕ, η)
)
φ
=

{
λ = (λy) ∈ C

Z+
: φ(ρλ) < ∞, for some ρ > 0

}
=

{
λ = (λy) ∈ C

Z+
:
∞∑

y=0

(∣∣∣∇ϕρλy
∣∣∣)ηy

< ∞, for some ρ > 0
}

=
{
λ = (λy) ∈ C

Z+
: inf

y
ρηy

∞∑
y=0

(∣∣∣∇ϕλy
∣∣∣)ηy

< ∞, for some ρ > 0
}

=
{
λ = (λy) ∈ C

Z+
:
∞∑

y=0

(∣∣∣∇ϕλy
∣∣∣)ηy

< ∞
}

=
{
λ = (λy) ∈ C

Z+
: φ(ρλ) < ∞, for any ρ > 0

}
.

�

Theorem 3.3. If (ηm) ∈ (0,∞)Z+
and ϕm , m− 1, for all m ∈ Z+, one has

(
`(∇ϕ, η)

)
φ

is a non-absolute

type, where φ(λ) =
∞∑

m=0

∣∣∣∇ϕλm
∣∣∣ηm .
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Proof. Suppose that without loss of generality that ϕx = x− 2, for all x ∈ Z+. One has

φ
(
1,−1, 0, 0, 0, . . .

)
=
∞∑

y=0

∣∣∣λy−2 − λy−1

∣∣∣ηy
= 2 + 2η2 , 2 =

∞∑
y=0

∣∣∣|λ|y−2 − |λ|y−1

∣∣∣ηy
= φ

(
1, 1, 0, 0, 0, . . .

)
.

If ϕx = x, we have

φ
(
1,−1, 0, 0, 0, . . .

)
=
∞∑

y=0

∣∣∣λy − λy−1

∣∣∣ηy
= 2 + 2η1 , 2 =

∞∑
y=0

∣∣∣|λ|y − |λ|y−1

∣∣∣ηy
= φ

(
1, 1, 0, 0, 0, . . .

)
.

That completes the proof. �

Definition 3.2. Let (ηx) ∈ (0,∞)Z+
.

(`(∇, η))φ :=
{
λ = (λx) ∈ CZ+

: φ(ρλ) < ∞, for some ρ > 0
}
, where φ(λ) =

∞∑
y=0

∣∣∣λy − λy−1

∣∣∣ηy .

Theorem 3.4. Assume (ηx) ∈ (0,∞)Z+
∩ `∞ and ϕx > x, for all x ∈ Z+, then

(`(∇, η))φ $
(
`(∇ϕ, η)

)
φ

.

Proof. Let λ ∈ (`(∇, η))φ, since

∞∑
y=0

∣∣∣∣∣∣λϕy − λy−1

ϕy − y + 1

∣∣∣∣∣∣ηy

≤

∞∑
y=0

∣∣∣λy − λy−1

∣∣∣ηy
< ∞.

Therefore, λ ∈
(
`(∇ϕ, η)

)
φ

. If we choose λ = (1, 0, 1, 0, . . .), then λ < (`(∇, η))φ and λ ∈
(
`(∇ϕ, η)

)
φ

,

where ϕx = x + 1. �

Theorem 3.5. Assume (ηx) ∈↗ ∩`∞ with η0 > 0 and ϕx < x− 1, for all x ∈ Z+, then

(`(∇, η))φ $
(
`(∇ϕ, η)

)
φ

.

Proof. Let λ ∈ (`(∇, η))φ, since

∞∑
y=0

∣∣∣∣∣∣λϕy − λy−1

ϕy − y + 1

∣∣∣∣∣∣ηy

≤ 2h̄−1

 ∞∑
y=0

∣∣∣λy − λy−1

∣∣∣ηy
+

∞∑
m=ϕ(0)+1

|λm − λm−1|
ηϕ−1(m−1)

 ≤ 2h̄
∞∑

y=0

∣∣∣λy − λy−1

∣∣∣ηy
< ∞.

Therefore, λ ∈
(
`(∇ϕ, η)

)
φ

. �

4. Pre-modular-
(
`(∇ϕ, η)

)
φ
spaces

We investigate here the sufficient conditions on
(
`(∇ϕ, η)

)
φ

with definite functionφ to be p-mpss,

where φ(λ) =
∞∑

y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy , for all λ ∈

(
`(∇ϕ, η)

)
φ

. This implies that
(
`(∇ϕ, η)

)
φ

is a p-q N pss.

Definition 4.1. [20] The space Q is called a pss, when it satisfies the next settings:

(1): eh ∈ Q, so that h ∈ Z+,
(2): If f = ( fx) ∈ CZ+

, |g| = (|gx|) ∈ Q and | fx| ≤ |gx|, with x ∈ Z+, then | f | ∈ Q, i.e., Q is solid,
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(3):
(∣∣∣∣ f[ y

2 ]

∣∣∣∣)∞
y=0
∈ Q, if

(∣∣∣ fy
∣∣∣)∞

y=0
∈ Q.

Theorem 4.1. [20] If Q is a pss, then Ls
Q

is an Operators’ ideal (OI).

Definition 4.2. [20] A subspace of the pss-Q is named a p-mpss, if we have an operator µ : Q → [0,∞)

that satisfies the next settings:

(i): Suppose that δ ∈ Q, δ = θ⇐⇒ µ(|δ|) = 0, and µ(δ) ≥ 0,
(ii): for δ ∈ Q and τ ∈ C, there are E0 ≥ 1 with µ(τδ) ≤ |τ|E0µ(δ),
(iii): there are G0 ≥ 1 such that µ(γ+ ε) ≤ G0(µ(γ) + µ(ε)), with γ, ε ∈ Q,
(iv): if x ∈ Z+, |λx| ≤ |βx|, we have µ((|λx|)) ≤ µ((|βx|)),
(v): the inequality, µ((|λx|)) ≤ µ((|λ[ x

2 ]
|)) ≤ D0µ((|λx|)) holds, for D0 ≥ 1,

(vi): I = Qµ,
(vii): one has $ > 0 such that µ(λ, 0, 0, 0, ...) ≥ $|λ|µ(1, 0, 0, 0, ...), where λ ∈ C.

Definition 4.3. [20] Suppose that µ satisfies the parts (i)-(iii) of Definition 4.2, then the pss Qµ is said to
be a p-q N pss. If the space Q is complete under µ, hence Qµ is called a pre-quasi Banach private sequence
space (p-q B pss).

Theorem 4.2. [20] All p-mpss Qµ is a p-q N pss.

Theorem 4.3. The space
(
`(∇ϕ, η)

)
φ

is a pss, when the next parts are verified:

(f1): If (ηx) ∈↗ ∩`∞.
(f2): |ϕ(x) − x + 1| ≥ 1, with x ∈ Z+.
(f3): Assume that |λx| ≤ |βx|, with x ∈ Z+, then

∣∣∣∇ϕ|λx|
∣∣∣ ≤ ∣∣∣∇ϕ|βx|

∣∣∣.
Proof. (1-i) For β,λ ∈

(
`(∇ϕ, η)

)
φ

. We obtain

∞∑
y=0

∣∣∣∇ϕ|λy + βy|
∣∣∣ηy
≤ 2h̄−1

 ∞∑
y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy

+
∞∑

y=0

∣∣∣∇ϕ|βy|
∣∣∣ηy

 < ∞,

hence, λ+ β ∈
(
`(∇ϕ, η)

)
φ

.

(1-ii) If ρ ∈ C, λ ∈
(
`(∇ϕ, η)

)
φ

and as (ηx) ∈↗ ∩`∞, we have

∞∑
y=0

∣∣∣ρ∇ϕ|λy|
∣∣∣ηy
≤ sup

y
|ρ|ηy

∣∣∣∇ϕ|λy|
∣∣∣ηy
< ∞.

Then, ρλ ∈
(
`(∇ϕ, η)

)
φ

. From conditions (1-i) and (1-ii), hence
(
`(∇ϕ, η)

)
φ

is a linear space.

For (ηy) ∈↗ ∩`∞, η0 > 0, since eb ∈ (`(η))φ with b ∈ Z+, and

(`(η))φ $ (`(∇, η))φ $
(
`(∇ϕ, η)

)
φ

.
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Therefore, eb ∈
(
`(∇ϕ, η)

)
φ

, for every b ∈ Z+.

(2) Suppose that |λb| ≤ |βb|, with b ∈ Z+ and |β| ∈
(
`(∇ϕ, η)

)
φ

. One has

∞∑
y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy
≤

∞∑
y=0

∣∣∣∇ϕ|βy|
∣∣∣ηy
< ∞,

so |λ| ∈
(
`(∇ϕ, η)

)
φ

.

(3) Let (|λy|) ∈
(
`(∇ϕ, η)

)
φ

, with (ηy) ∈↗ ∩`∞, we have

∞∑
h=0

∣∣∣∣∇ϕ|λ[ h
2 ]
|

∣∣∣∣ηh
=
∞∑

h=0

∣∣∣∇ϕ|λh|
∣∣∣η2h +

∞∑
h=0

∣∣∣∇ϕ|λh|
∣∣∣η2h+1

≤ 2
∞∑

h=0

∣∣∣∇ϕ|λh|
∣∣∣ηh < ∞,

therefore (|λ[ y
2 ]
|) ∈

(
`(∇ϕ, η)

)
φ

. �

Because of Theorem 4.1, we conclude the next theorem.

Theorem 4.4. Suppose that the parts of Theorem 4.3 are verified, one has Ls
(`(∇ϕ,η))φ

is an OI.

Theorem 4.5. Suppose that the conditions of Theorem 4.3 are verified, then the space
(
`(∇ϕ, η)

)
φ

is a
p-mpss.

Proof. (i) Definitely, φ(λ) =
∞∑

y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy
≥ 0 and φ(|λ|) = 0⇔ λ = θ.

(ii) Let ρ ∈ C, λ ∈
(
`(∇ϕ, η)

)
φ

and as (ηx) ∈↗ ∩`∞, we have

φ(ρλ) =
∞∑

y=0

∣∣∣ρ∇ϕ|λy|
∣∣∣ηy
≤ sup

y
|ρ|ηy

∣∣∣∇ϕ|λy|
∣∣∣ηy
≤ E0|ρ|φ(λ) < ∞,

where E0 = max
{
1, supx |ρ|

ηx−1
}
≥ 1.

(iii) Assume λ, β ∈
(
`(∇ϕ, η)

)
φ

. One gets

φ(λ+ β) =
∞∑

y=0

∣∣∣∇ϕ|λy + βy|
∣∣∣ηy
≤ 2h̄−1

 ∞∑
y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy

+
∞∑

y=0

∣∣∣∇ϕ|βy|
∣∣∣ηy

 = 2h̄−1(φ(λ) + φ(β)) < ∞,

hence, the inequality φ(λ+ β) ≤ 2h̄−1(φ(λ) + φ(β)) is satisfied.

(iv) Suppose that |λb| ≤ |βb|, with b ∈ Z+ and |β| ∈
(
`(∇ϕ, η)

)
φ

. One has

φ((|λb|)) =
∞∑

b=0

∣∣∣∇ϕ|λb|
∣∣∣ηb
≤

∞∑
b=0

∣∣∣∇ϕ|βb|
∣∣∣ηb = φ((|βb|)).

(v) Let (|λy|) ∈
(
`(∇ϕ, η)

)
φ

, with (ηy) ∈↗ ∩`∞, we have

φ((|λ[ y
2 ]
|)) =

∞∑
y=0

∣∣∣∣∇ϕ|λ[ y
2 ]
|

∣∣∣∣ηy
=
∞∑

y=0

∣∣∣∇ϕ|λy|
∣∣∣η2y

+
∞∑

y=0

∣∣∣∇ϕ|λy|
∣∣∣η2y+1

≤ 2
∞∑

y=0

∣∣∣∇ϕ|λy|
∣∣∣ηy
≤ D0φ((|λy|)).
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(vi) It is obvious that I = `(∇ϕ, η).

(vii) There are 0 < $ ≤ supx |λ|
ηx−1 such that φ(λ, 0, 0, 0, ...) ≥ $|λ|φ(1, 0, 0, 0, ...), for each λ , 0 and

$ > 0, if λ = 0. �

Theorem 4.6. The space
(
`(∇ϕ, η)

)
φ

is a p-q B pss, if the conditions of Theorem 4.3 are satisfied.

Proof. According to Theorem 4.5, the space
(
`(∇ϕ, η)

)
φ

is a p-mpss. By Theorem 4.2,
(
`(∇ϕ, η)

)
φ

is a p-q N pss. Suppose that λa = (λa
x)
∞

x=0 is a Cauchy sequence in
(
`(∇ϕ, η)

)
φ

, one has for all

ε ∈ (0, 1), there exists a0 ∈ Z+ with a, b ≥ a0, hence

φ(λa
− λb) =

∞∑
y=0

∣∣∣∇ϕ|λa
y − λ

b
y|
∣∣∣ηy
< εh̄.

That gives
∣∣∣∇ϕ|λa

y − λ
b
y|
∣∣∣ < ε. So, (∇ϕ|λb

y|) is a Cauchy sequence in C, for fixed y ∈ Z+, which gives

limb→∞ ∇ϕ|λ
b
y| = ∇ϕ|λ

0
y|, for fixed y ∈ Z+. Then, φ(λa

− λ0) < εh̄, for all a ≥ a0. More, to explain

that λ0
∈

(
`(∇ϕ, η)

)
φ

, one gets φ(λ0) ≤ 2h̄−1(φ(λa
−λ0) +φ(λa)) < ∞, then λ0

∈

(
`(∇ϕ, η)

)
φ

. Which

implies that
(
`(∇ϕ, η)

)
φ

is a p-q B pss. �

Theorem 4.7. [18] When s− type Qµ :=
{
δ = (sx(V)) ∈ RZ+

: V ∈ L|V
G

and µ(δ) < ∞
}
. Assume Ls

Qµ

is an OI, one has the following:

i. I ⊂ s− type Qµ.
ii. Let (sx(V1))

∞

x=0 ∈ s− type Qµ and (sx(V2))
∞

x=0 ∈ s− type Qµ, so (sx(V1 + V2))
∞

x=0 ∈ s− type Qµ.
iii. Suppose that ε ∈ C and (sx(V))∞x=0 ∈ s− type Qµ, one has |ε| (sx(V))∞x=0 ∈ s− type Qµ.
iv. The sequence spaceQµ is solid. i.e., if (sx(Y))

∞

x=0 ∈ s− typeQµ and sx(V) ≤ sx(Y), for any x ∈ Z+

and V, Y ∈ L|V
G

, so (sx(V))∞x=0 ∈ s− type Qµ.

By Theorem 4.7, we have the next behavior of the s− type
(
`(∇ϕ, η)

)
φ

.

Theorem 4.8. For s− type
(
`(∇ϕ, η)

)
φ

:=
{
δ = (sx(V)) ∈ RZ+

: V ∈ L|V
G

and φ(δ) < ∞
}
. The

following parts are established:

i. s− type
(
`(∇ϕ, η)

)
φ
⊃ I.

ii. Assume that (sx(V1))
∞

x=0 ∈ s− type
(
`(∇ϕ, η)

)
φ

and (sx(V2))
∞

x=0 ∈ s− type
(
`(∇ϕ, η)

)
φ

, hence

(sx(V1 + V2))
∞

x=0 ∈ s− type
(
`(∇ϕ, η)

)
φ

.

iii. Suppose that r ∈ C and (sx(V))∞x=0 ∈ s− type
(
`(∇ϕ, η)

)
φ

, then |r| (sx(V))∞x=0 ∈ s− type(
`(∇ϕ, η)

)
φ

.

iv. s− type
(
`(∇ϕ, η)

)
φ

is a solid.

Theorem 4.9. Suppose that the conditions of Theorem 4.3 are verified, one has Ls
(`(∇ϕ,η))φ

is not OI.
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Proof. For ηy = 2, φ(y) = y, for all y ∈ Z+, g = (1, 1, 1, . . .) and m = (1, 0, 1, 0, . . .). Clearly,

|my| ≤ |gy|, for all y ∈ Z+ and g ∈s− type
(
`(∇ϕ, η)

)
φ

. But m <s− type
(
`(∇ϕ, η)

)
φ

. Hence the s−

type
(
`(∇ϕ, η)

)
φ

is not solid. Given Theorem 4.7, we conclude that Ls
(`(∇ϕ,η))φ

is not OI. �

5. Multiplication mappings on
(
`(∇ϕ, η)

)
φ

We discuss some topological and geometric structures of the multiplication mapping defined on

the space
(
`(∇ϕ, η)

)
φ

under definite function φ, where φ(λ) =
∞∑

x=0

∣∣∣∇ϕ|λy|
∣∣∣ηx , for all λ ∈

(
`(∇ϕ, η)

)
φ

.

Definition 5.1. [20] If Qµ is a p-q N pss and ϑ = (ϑx) ∈ CZ+
. The operator Tϑ : Qµ → Qµ is said to be

a multiplication on Qµ, if Tϑλ =
(
ϑxλx

)
∈ Qµ, with λ ∈ Qµ. Assume Tϑ ∈ L(Qµ), then the multiplication

operator is called created by ϑ.

Theorem 5.1. Fixing ϑ ∈ CZ+
and the conditions of Theorem 4.3 are satisfied, one has

ϑ ∈ `∞ ⇐⇒ Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
).

Proof. Suppose that ϑ ∈ `∞. Hence, there exists ν > 0 so that |ϑx| ≤ ν, for every x ∈ Z+. Assume

λ ∈
(
`(∇ϕ, η)

)
φ

, one gets

φ(Tϑλ) = φ(ϑλ) =
∞∑

h=0

(∣∣∣∇ϕ|ϑhλh|
∣∣∣)ηh
≤

∞∑
h=0

(∣∣∣ν∇ϕ|λh|
∣∣∣)ηh
≤ sup

h
νηh

∞∑
h=0

(∣∣∣∇ϕ|λh|
∣∣∣)ηh

= sup
h
νηhφ(λ).

Hence, Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
).

After that, when Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
) and ϑ < `∞. So for every x ∈ Z+, there are b ∈ Z+ with

|ϑx| > b. We have

φ(Tϑex) = φ(ϑex) =
∞∑

y=0

(∣∣∣∇ϕ|ϑy(ex)y|
∣∣∣)ηy

>
∞∑

y=0

(∣∣∣b∇ϕ|(ex)y|
∣∣∣)ηy

> bη0φ(ex).

That gives, Tϑ < L(
(
`(∇ϕ, η)

)
φ
). So ϑ ∈ `∞. �

Theorem 5.2. Assume that ϑ ∈ CZ+
and

(
`(∇ϕ, η)

)
φ

is a p-q N pss.

|ϑx| = 1, for any x ∈ Z+
⇔ Tϑ is an isometry.

Proof. For any λ ∈
(
`(∇ϕ, η)

)
φ

, we have

φ(Tϑλ) = φ(ϑλ) =
∞∑

k=0

(∣∣∣∇ϕ|ϑkλk|
∣∣∣)ηk

=
∞∑

k=0

(∣∣∣∇ϕ|λk|
∣∣∣)ηk

= φ(λ),
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Hence, Tϑ is an isometry.

Let Tϑ be an isometry and |ϑx| < 1, for some x = x0. We get

φ(Tϑex0) = φ(ϑex0) =
∞∑

k=0

(∣∣∣∇ϕ|ϑk(ex0)k|
∣∣∣)ηk

<
∞∑

k=0

(∣∣∣∇ϕ|(ex0)k|
∣∣∣)ηk

= φ(ex0).

Also when |ϑx0 | > 1, Obviously, φ(Tϑex0) > φ(ex0). So, |ϑx| = 1, for all x ∈ Z+. �

Theorem 5.3. Assumeϑ ∈ CZ+
and the conditions of Theorem 4.3 are satisfied. Then Tϑ ∈ R(

(
`(∇ϕ, η)

)
φ
),

if and only if, (ϑb)
∞

b=0 ∈ c0.

Proof. Suppose that Tϑ ∈ R(
(
`(∇ϕ, η)

)
φ
), one gets Tϑ ∈ M(

(
`(∇ϕ, η)

)
φ
). If limx→∞ ϑx , 0. Hence,

one has % > 0 with K% = {x ∈ Z+ : |ϑx| ≥ %} " I. Let {αx}x∈Z+ ⊂ K%. Hence, {eαx : αx ∈ K%} ∈ `∞ is an

infinite set in
(
`(∇ϕ, η)

)
φ

. For αa,αb ∈ K%, one obtains

φ(Tϑeαa − Tϑeαb) = φ(ϑeαa − ϑeαb) =
∞∑

k=0

(∣∣∣∇ϕ|ϑk((eαa)k − (eαb)k)|
∣∣∣)ηk

≥

∞∑
k=0

(
%
∣∣∣∇ϕ|((eαa)k − (eαb)k)|

∣∣∣)ηk
≥ inf

k
%ηkφ(eαa − eαb).

Therefore, {eαb : αb ∈ K%} ∈ `∞, which cannot have a convergent subsequence under Tϑ. So Tϑ <
M(

(
`(∇ϕ, η)

)
φ
). Hence Tϑ < R(

(
`(∇ϕ, η)

)
φ
), so explains a contradiction. So, limx→∞ ϑx = 0. On

the contrary, assume limx→∞ ϑx = 0. Then for all % > 0, one has K% = {x ∈ Z+ : |ϑx| ≥ %} ⊂ I. Then,

for every % > 0, we obtain dim
(( (
`(∇ϕ, η)

)
φ

)
K%

)
= dim

(
CK%

)
< ∞. So Tϑ ∈ T

(( (
`(∇ϕ, η)

)
φ

)
K%

)
.

Suppose that ϑa ∈ C
Z+

, for every a ∈ Z+, where

(ϑa)b =

ϑb, b ∈ K 1
a+1

,

0, otherwise.

Obviously, Lϑa ∈ T

( (`(∇ϕ, η)
)
φ

)
B 1

a+1

 such as dim

( (`(∇ϕ, η)
)
φ

)
B 1

a+1

 < ∞, for all a ∈ Z+. Since

(ηx) ∈↗ ∩`∞ with η0 > 0, we get

φ((Tϑ − Lϑa)λ) = µ
((
(ϑb − (ϑa)b)λb

)∞
b=0

)
=
∞∑

b=0

(∣∣∣∇ϕ|(ϑb − (ϑa)b)λb|
∣∣∣)ηb

=
∞∑

b=0,b∈K 1
a+1

(∣∣∣∇ϕ|(ϑb − (ϑa)b)λb|
∣∣∣)ηb

+
∞∑

b=0,b<K 1
a+1

(∣∣∣∇ϕ|(ϑb − (ϑa)b)λb|
∣∣∣)ηb

=
∞∑

b=0,b<K 1
a+1

(∣∣∣∇ϕ|ϑbλb|
∣∣∣)ηb
≤

1
(a + 1)η0

∞∑
b=0,b<K 1

a+1

(∣∣∣∇ϕ|λb|
∣∣∣)ηb

<
1

(a + 1)η0

∞∑
b=0

(∣∣∣∇ϕ|λb|
∣∣∣)ηb

=
1

(a + 1)η0
φ(λ).
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Hence, ‖Tϑ − Lϑa‖ ≤
1

(a+1)η0 . Which explains Tϑ ∈ R(
(
`(∇ϕ, η)

)
φ
). �

Theorem 5.4. Assume that ϑ ∈ CZ+
and the conditions of Theorem 4.3 are verified. Then Tϑ ∈

M(
(
`(∇ϕ, η)

)
φ
), if and only if, (ϑx)∞x=0 ∈ c0.

Proof. Clearly, as R(
(
`(∇ϕ, η)

)
φ
) &M(

(
`(∇ϕ, η)

)
φ
). �

Corollary 5.1. Let the conditions of Theorem 4.3 be satisfied, thenM(
(
`(∇ϕ, η)

)
φ
) & L(

(
`(∇ϕ, η)

)
φ
).

Proof. Since the multiplication mapping I on
(
`(∇ϕ, η)

)
φ

is created by ϑ = (1, 1, . . .). Which gives

I <M(
(
`(∇ϕ, η)

)
φ
) and I ∈ L(

(
`(∇ϕ, η)

)
φ
). �

Theorem 5.5. If Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
), where the space

(
`(∇ϕ, η)

)
φ

is a p-q B pss. Then, there exists p > 0

and q > 0 under p < |ϑx| < q, for every x ∈ (ker(ϑ))c, if and only if, Range(Tϑ) is closed.

Proof. Suppose that enough conditions are verified. Hence, there exists ε > 0 so that |ϑx| ≥ ε, for

all x ∈ (ker(ϑ))c. To prove the space Range(Tϑ) is closed, assume g is a limit point of Range(Tϑ).
One has Tϑδx ∈

(
`(∇ϕ, η)

)
φ

, for every x ∈ Z+ so that limx→∞ Tϑδx = g. The sequence Tϑδx is a

Cauchy sequence. For (ηx) ∈↗ ∩`∞, we have

φ(Tϑδl − Tϑδm) =
∞∑

h=0

(∣∣∣∇ϕ|(ϑh(δl)h − ϑh(δm)h)|
∣∣∣)ηh

=
∞∑

h=0,h∈(ker(ϑ))c

(∣∣∣∇ϕ|(ϑh(δl)h − ϑh(δm)h)|
∣∣∣)ηh

+
∞∑

h=0,h<(ker(ϑ))c

(∣∣∣∇ϕ|(ϑh(δl)h − ϑh(δm)h)|
∣∣∣)ηh

≥

∞∑
h=0,h∈(ker(ϑ))c

(∣∣∣∇ϕ|(ϑh(δl)h − ϑh(δm)h)|
∣∣∣)ηh

=
∞∑

h=0

(∣∣∣∇ϕ|(ϑh(wl)h − ϑh(wm)h)|
∣∣∣)ηh

>
∞∑

h=0

ζx

∣∣∣∣∣∣∣
x∑

h=0

ε((wl)h − (wm)h)

∣∣∣∣∣∣∣

ηh

≥ inf
h
εηhµ

(
wl −wm

)
,

where

(wl)x =

(δl)x, x ∈ (ker(ϑ))c ,

0, x < (ker(ϑ))c .

That gives, {wl} is a Cauchy sequence in
(
`(∇ϕ, η)

)
φ

. Since
(
`(∇ϕ, η)

)
φ

is complete. So, there exists

δ ∈
(
`(∇ϕ, η)

)
φ

under limx→∞wx = δ. Since Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
), we have limx→∞ Tϑwx = Tϑδ.

But limx→∞ Tϑwx = limx→∞ Tϑδx = g. Then Tϑδ = g. Therefore, g ∈ Range(Tϑ). So Range(Tϑ) is

closed. After, suppose that the necessity condition is satisfied. Hence, there exists ε > 0 so that

φ(Tϑδ) ≥ εφ(δ) and δ ∈
( (
`(∇ϕ, η)

)
φ

)
(ker(ϑ))c

. If K =
{
x ∈ (ker(ϑ))c : |ϑx| < ε

}
, ∅, hence for

a0 ∈ K, one gets

φ(Tϑel0) = µ
((
ϑm(el0)m)

)∞
m=0

)
=

∞∑
m=0

(∣∣∣∇ϕ|ϑm(el0)m|
∣∣∣)ηm

<
∞∑

y=0

(∣∣∣∇ϕ|(el0)mε|
∣∣∣)ηm
≤ sup

m
εηmφ(el0),
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that is a contradiction. Hence K = φ, we have |ϑx| ≥ ε, with x ∈ (ker(ϑ))c. �

Theorem 5.6. Let
(
`(∇ϕ, η)

)
φ

be a p-q B pss and ϑ ∈ CZ+
. Hence, we have p > 0 and q > 0 under

p < |ϑx| < q and x ∈ Z+, if and only if, Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
) is invertible.

Proof. Suppose that κ ∈ CZ+
and κx = 1

ϑx
. Given Theorem 5.1, hence Tϑ, Lκ ∈ L|(`(∇ϕ,η))φ

. So

Tϑ.Lκ = Lκ.Tϑ = I. Therefore, Lκ = L−1
ϑ . Next, let Tϑ is invertible. So Range(Tϑ) =

( (
`(∇ϕ, η)

)
φ

)
Z+

.

Therefore, Range(Tϑ) is closed. By Theorem 5.5, one obtains p > 0 then |ϑx| ≥ p, for all x ∈ (ker(ϑ))c.

Hence ker(ϑ) = ∅, if ϑx0 = 0, where x0 ∈ Z+, which explains ex0 ∈ ker(Tϑ), so there is a

contradiction, since ker(Tϑ) is trivial. Hence, |ϑx| ≥ p, for all x ∈ Z+. As Tϑ ∈ `∞. By Theorem 5.1,

one gets q > 0 with |ϑx| ≤ q, for all x ∈ Z+. So, p ≤ |ϑx| ≤ q such that x ∈ Z+. �

Definition 5.2. [23] An operator T ∈ L|Q is said to be Fredholm, if dim(Range(T))c < ∞, dim(ker(T)) <
∞ and Range(T) is closed.

Theorem 5.7. If Tϑ ∈ L(
(
`(∇ϕ, η)

)
φ
), where

(
`(∇ϕ, η)

)
φ

is a p-q B pss. Then Tϑ is Fredholm operator, if

and only if, (a) ker(ϑ) $ Z+ is a finite and (b) |ϑx| ≥ %, with x ∈ (ker(ϑ))c.

Proof. Assume that the parts (a) and (b) are verified. Given Theorem 5.5, the part (b) gives that

Range(Tϑ) is closed. The part (a) implies that dim(ker(Tϑ)) < ∞ and dim((Range(Tϑ))c) < ∞. So,

Tϑ is Fredholm. Assume Tϑ is Fredholm operator, let ker(ϑ) $ Z+ be an infinite, so ez ∈ ker(Tϑ),
for all z ∈ ker(ϑ). As ez’s are linearly independent, we have that dim(ker(Tϑ)) = ∞, this explains

a contradiction. Therefore, ker(ϑ) $ Z+ must be finite. The part (b) comes from Theorem 5.5. �

6. Behaviour of the operators’ ideals

Firstly, we shall revisit the fundamental principles of OIs.

Definition 6.1. [24] A class H ⊆ L is named an OI, if all vector H|V
G

= H∩ L|V
G

satisfies the following
conditions:

(i): IΩ ∈H.
(ii): H|V

G
is a linear space on C.

(iii): Suppose that N ∈ L|G
G0

, M ∈H|V
G

and P ∈ L|V0
V

, then PMN ∈H|
V0
G0

.

Definition 6.2. [5] A mapping Λ : H→ [0,∞) is called a pre-quasi norm on the OI H, if it verifies the
next conditions:

(1): If M ∈H|V
G

, Λ(M) ≥ 0 and Λ(M) = 0⇐⇒M = 0,
(2): there are E0 ≥ 1 so that Λ(κX) ≤ E0|κ|Λ(X), with X ∈H|V

G
and κ ∈ C,

(3): one has G0 ≥ 1 so that Λ(Z1 + Z2) ≤ G0[Λ(Z1) + Λ(Z2)], for all Z1, Z2 ∈H|V
G

,

(4): we have D0 ≥ 1, when N ∈ L|G
G0

, M ∈H|V
G

and P ∈ LV0
V

, then Λ(PMN) ≤ D0 ‖P‖Λ(M) ‖N‖.

Theorem 6.1. [20] Assume (Q)µ is a p-mpss, then Λ is a pre-quasi norm on Ls
(Q)µ

, where Λ(Y) =

µ(sx(Y))∞x=0, with Y ∈ Ls
(Q)µ
|
V

G
.
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Theorem 6.2. [5] A p-q N on the ideal H, if it is q N on H.

Definition 6.3. [3] A Banach space Q is called simple if L|Q includes a unique non-trivial closed ideal.

Theorem 6.3. [3] We have

T|G & R|G &M|G & L|G.

In this section. First, we present the sufficient conditions (not necessary) on
(
`(∇ϕ, η)

)
φ

under

T = Ls
(`(∇ϕ,η))φ

. This provides an explanation regarding the non-linear nature of s− type
(
`(∇ϕ, η)

)
φ

spaces (see Rhoades [22]). Second, for which conditions on
(
`(∇ϕ, η)

)
φ

, is Ls
(`(∇ϕ,η))φ

p-q BI? Third,

we offer the sufficient conditions on
(
`(∇ϕ, η)

)
φ

under Lα
(`(∇ϕ,η))φ

to be strictly contained for different

φ and powers. We offer the conditions for which Lα
(`(∇ϕ,η))φ

is minimum. Also, we examine the

setups when the class Ls
(`(∇ϕ,η))φ

is simple. We give fourthly the sufficient settings on
(
`(∇ϕ, η)

)
φ

for which L with the sequence of eigenvalues in
(
`(∇ϕ, η)

)
φ

identical with Ls
(`(∇ϕ,η))φ

.

6.1. Denseness.

Theorem 6.4. Ls
(`(∇ϕ,η))φ

|
V

G
= T|V

G
, if the conditions of Theorem 4.3 are sufficiently verified (not necessar-

ily).

Proof. Since ex ∈
(
`(∇ϕ, η)

)
φ

, for every x ∈ Z+ and
(
`(∇ϕ, η)

)
φ

is a linear space. Suppose that

Z ∈ T|V
G

, then (sx(Z))∞x=0 ∈ I. Therefore, T|V
G
⊆ Ls

(`(∇ϕ,η))φ
|
V

G
. To prove that Ls

(`(∇ϕ,η))φ
|
V

G
⊆ T|V

G
,

let Z ∈ Ls
(`(∇ϕ,η))φ

|
V

G
, then (sx(Z))∞x=0 ∈

(
`(∇ϕ, η)

)
φ

. As φ(sx(Z))∞x=0 < ∞, assume ρ ∈ (0, 1), one

obtains x0 ∈ Z+
\ {0}with φ((sx(Z))∞x=x0

) <
ρ
4 . Since sx(Z) is decreasing, we have

2x0∑
x=x0+1

(
|∇ϕs2x0(Z)|

)ηx
≤

2x0∑
x=x0+1

(
|∇ϕsx(Z)|

)ηx
≤

∞∑
x=x0

(
|∇ϕsx(Z)|

)ηx
<
ρ

4
. (6.1)

Hence there exists Y ∈ T2x0 |
V

G
so that rank(Y) ≤ 2x0 and

3x0∑
x=2x0+1

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

≤

2x0∑
x=x0+1

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

<
ρ

4
, (6.2)

since (ηx) ∈↗ ∩`∞, we can choose

x0∑
x=0

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

<
ρ

4
. (6.3)
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By inequalities (1)-(4), hence

d(Z, Y) = φ (sx(Z−Y))∞x=0 =

3x0−1∑
x=0

(∣∣∣∣∇ϕsx(Z−Y)
∣∣∣∣)ηx

+
∞∑

x=3x0

(∣∣∣∣∇ϕsx(Z−Y)
∣∣∣∣)ηx

≤

3x0∑
x=0

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

+
∞∑

x=x0

(∣∣∣∣∇ϕsx+2x0(Z−Y)
∣∣∣∣)ηx+2x0

≤

3x0∑
x=0

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

+
∞∑

x=x0

(∣∣∣∣∇ϕsx(Z)
∣∣∣∣)ηx

≤ 3
x0∑

x=0

(∣∣∣∣∇ϕ‖Z−Y‖
∣∣∣∣)ηx

+
∞∑

x=x0

(∣∣∣∣∇ϕsx(Z)
∣∣∣∣)ηx

< ρ.

For the opposite direction, we have a contradiction since I4 ∈ Ls
(`(∇,(−2,1,1,...)))φ

|
V

G
, but η0 > 0 is not

verified. �

6.2. Pre-quasi Banach ideal.

Theorem 6.5. The subclass
(
Ls
(`(∇ϕ,η))φ

, Λ
)

is a p-q BI, where Λ(Y) = φ
(
(sx(Y))∞x=0

)
, whenever the

settings of Theorem 4.3 are satisfied.

Proof. Since
(
`(∇ϕ, η)

)
φ

is a p-mpss, so from theorem 6.1, Λ is a pre-quasi norm on Ls
(`(∇ϕ,η))φ

.

Assume (Dx)x∈Z+ is a Cauchy sequence in Ls
(`(∇ϕ,η))φ

|
V

G
. Since L|V

G
⊇ Ls

(`(∇ϕ,η))φ
|
V

G
, then

Λ(Da −Db) =
∞∑

y=0

(∣∣∣∣∇ϕsy(Da −Db)
∣∣∣∣)ηy

≥

(∣∣∣∣∇ϕ ‖Da −Db‖

∣∣∣∣)η0

,

so (Db)b∈Z+ is a Cauchy sequence in L|V
G

. As L|V
G

is a Banach space, one obtains D ∈ L|V
G

with

lim
b→∞

‖Db − D‖ = 0. Since (sx(Db))
∞

x=0 ∈
(
`(∇ϕ, η)

)
φ

, for every b ∈ Z+. Given Definition 4.2,

conditions (ii), (iii), and (v), we have

Λ(D) =
∞∑

y=0

(∣∣∣∣∇ϕsy(D)
∣∣∣∣)ηx

≤ 2h̄−1
∞∑

y=0

(∣∣∣∣∇ϕs[ y
2 ]
(D−Db)

∣∣∣∣)ηy

+ 2h̄−1
∞∑

y=0

(∣∣∣∣∇ϕs[ y
2 ]
(Db)

∣∣∣∣)ηy

≤ 2h̄−1
∞∑

y=0

(∣∣∣∣∇ϕ ‖D−Db‖

∣∣∣∣)ηy

+ 2h̄−1D0

∞∑
y=0

(∣∣∣∣∇ϕsy(Db)
∣∣∣∣)ηy

< ∞.

Therefore, (sx(D))∞x=0 ∈
(
`(∇ϕ, η)

)
φ

, then D ∈ Ls
(`(∇ϕ,η))φ

|
V

G
. �

6.3. Minimality and simplicity.

Theorem 6.6. Suppose that the setups of Theorem 4.3 are satisfied withϕ2(x) ≥ ϕ1(x) and 0 < η(1)x < η(2)x ,
for all x ∈ Z+, hence

Ls(
`(∇ϕ1 ,(η(1)x ))

)
φ

|
V

G
& Ls(

`(∇ϕ2 ,(η(2)x ))
)
φ

|
V

G
$ L|V

G
.
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Proof. Assume Z ∈ Ls(
`(∇ϕ1 ,(η(1)x ))

)
φ

|
V

G
, hence (sx(Z)) ∈

(
`(∇ϕ1 , (η(1)x ))

)
φ

. One gets

∞∑
x=0

(∣∣∣∣∇ϕ2sx(Z)
∣∣∣∣)η(2)x

<
∞∑

x=0

(∣∣∣∣∇ϕ1sx(Z)
∣∣∣∣)η(1)x

< ∞,

then Z ∈ Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
. After, take (sx(Z))∞x=0 such that

∣∣∣∣∇ϕ1sx(Z)
∣∣∣∣ = 1

η
(1)
x
√

x+1
, one gets Z ∈ L|V

G

under
∞∑

x=0

(∣∣∣∣∇ϕsx(Z)
∣∣∣∣)η(1)x

=
∞∑

x=0

1
x + 1

= ∞,

and
∞∑

x=0

(∣∣∣∣∇ϕ2sx(Z)
∣∣∣∣)η(2)x

≤

∞∑
x=0

(∣∣∣∣∇ϕ1sx(Z)
∣∣∣∣)η(2)x

=
∞∑

x=0

( 1
x + 1

) η(2)x

η
(1)
x < ∞.

Then Z < Ls(
`(∇ϕ1 ,(η(1)x ))

)
φ

|
V

G
and Z ∈ Ls(

`(∇ϕ2 ,(η(2)x ))
)
φ

|
V

G
.

Clearly, Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
⊂ L|V

G
. After, by taking (sx(Z))∞x=0 such that

∣∣∣∣∇ϕ2sz(Z)
∣∣∣∣ = 1

η
(2)
x
√

x+1
. We have

Z ∈ L|V
G

such that Z < Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
. �

Theorem 6.7. Suppose that the conditions of Theorem 4.3 are satisfied, hence Lα
(`(∇ϕ,η))φ

is minimum.

Proof. We have that (Lα
`(∇ϕ,η)

, Λ), where Λ(Z) =
∞∑

x=0

(∣∣∣∣∇ϕαx(Z)
∣∣∣∣)ηx

, is a p-q BI. Suppose that

Lα
`(∇ϕ,η)

|
V

G
= L|V

G
, one gets η > 0 with Λ(Z) ≤ η‖Z‖, for every Z ∈ L|V

G
. Becouse of Dvoretzky’s

theorem [2], for all b ∈ Z+, we have the quotient spaces G/Yb and subspaces Mb ofV which can

be transformed onto `b
2 by isomorphisms Vb and Xb so that ‖Vb‖‖V−1

b ‖ ≤ 2 and ‖Xb‖‖X−1
b ‖ ≤ 2.

Assume that Ib is the identity mapping on `b
2, Tb is the quotient mapping from G onto G/Yb and Jb

is the natural embedding mapping from Mb intoV. Suppose that mz is the Bernstein numbers [1],

one has

1 =mz(Ib) = mz(XbX−1
b IbVbV−1

b ) ≤ ‖Xb‖mz(X−1
b IbVb)‖V−1

b ‖ = ‖Xb‖mz(JbX−1
b IbVb)‖V−1

b ‖

≤ ‖Xb‖dz(JbX−1
b IbVb)‖V−1

b ‖ = ‖Xb‖dz(JbX−1
b IbVbTb)‖V−1

b ‖

≤ ‖Xb‖αz(JbX−1
b IbVbTb)‖V−1

b ‖,

for 0 ≤ x ≤ b. Suppose that m is the greatest integer, so ϕ(m) = 0. Then we have

x + 1
|1−m|

≤ ‖Xb‖

∣∣∣∣∇ϕαx(JbX−1
b IbVbTb)

∣∣∣∣‖V−1
b ‖ ⇒( x + 1

|1−m|

)ηx

≤ (‖Xb‖‖V−1
b ‖)

ηx

(∣∣∣∣∇ϕαx(JbX−1
b IbVbTb)

∣∣∣∣)ηx

.
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Hence, for some % ≥ 1, one gets

b∑
x=0

( x + 1
|1−m|

)ηx

≤ %‖Xb‖‖V−1
b ‖

b∑
x=0

(∣∣∣∣∇ϕαx(JbX−1
b IbVbTb)

∣∣∣∣)ηx

⇒

b∑
x=0

( x + 1
|1−m|

)ηx

≤ %‖Xb‖‖V−1
b ‖Λ(JbX−1

b IbVbTb)⇒

b∑
x=0

( x + 1
|1−m|

)ηx

≤ %η‖Xb‖‖V−1
b ‖‖JbX−1

b IbVbTb‖ ⇒

b∑
x=0

( x + 1
|1−m|

)ηx

≤ %η‖Xb‖‖V−1
b ‖‖JbX−1

b ‖‖Ib‖‖VbTb‖ = %η‖Xb‖‖V−1
b ‖‖X

−1
b ‖‖Ib‖‖Vb‖ ≤ 4%η.

So there exists a contradiction whenever b→∞. Then,G andV both cannot be infinite dimensional

when Lα
`(∇ϕ,η)

|
V

G
= L|V

G
. �

We can easily prove the following corollary as theorem 6.7.

Corollary 6.1. Ld
`(∇ϕ,η)

is minimum, whenever the parts of Theorem 4.3 are satisfied.

Lemma 6.1. [3] Suppose that P ∈ L|V
G

and P < R|V
G

, then N ∈ L|G and M ∈ L|V with MPNex = ex, for
all x ∈ Z+.

Theorem 6.8. Let the conditions of Theorem 4.3 be satisfied with ϕ2(x) ≥ ϕ1(x) and 0 < η(1)x < η(2)x , for
all x ∈ Z+, then

L
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
= R

(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
.

Proof. Suppose that X ∈ L
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
and

X < R
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
. From Lemma 6.1, one has

Y ∈ L
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G

)
and Z ∈ L

(
Ls(
`(∇ϕ1 ,(η(1)x ))

)
φ

|
V

G

)
with ZXYIb = Ib. Hence, for every b ∈ Z+, we

get

‖Ib‖Ls(
`(∇ϕ1 ,(η

(1)
x ))

)
φ

|
V

G

=
∞∑

x=0

(∣∣∣∣∇ϕ1sx(Ib)
∣∣∣∣)η(1)x

≤ ‖ZXY‖‖Ib‖Ls(
`(∇ϕ2 ,(η

(2)
x ))

)
φ

|
V

G

≤

∞∑
x=0

(∣∣∣∣∇ϕ2sx(Ib)
∣∣∣∣)η(2)x

.

That fails Theorem 6.6. So X ∈ R
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
, �
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Corollary 6.2. Let the conditions of Theorem 4.3 be satisfied with ϕ2(x) ≥ ϕ1(x) and 0 < η(1)x < η(2)x , for
every x ∈ Z+, hence

L
(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
= M

(
Ls(
`(∇ϕ2 ,(η(2)x ))

)
φ

|
V

G
, Ls(

`(∇ϕ1 ,(η(1)x ))
)
φ

|
V

G

)
.

Proof. Since R ⊂M, the proof follows. �

Theorem 6.9. Suppose that the conditions of Theorem 4.3 be satisfied, hence Ls
(`(∇ϕ,η))φ

is simple.

Proof. Let the closed ideal M(Ls
(`(∇ϕ,η))φ

|
V

G
) contains X < R(Ls

(`(∇ϕ,η))φ
|
V

G
). From Lemma 6.1, we

have Y, Z ∈ L(Ls
(`(∇ϕ,η))φ

|
V

G
) such that ZXYIb = Ib. Therefore, ILs

(`(∇ϕ ,η))φ
|
V

G

∈M(Ls
(`(∇ϕ,η))φ

|
V

G
). Hence

L(Ls
(`(∇ϕ,η))φ

|
V

G
) = M(Ls

(`(∇ϕ,η))φ
|
V

G
). So, Ls

(`(∇ϕ,η))φ
is a simple Banach space. �

6.4. Spectrum.

Theorem 6.10. Assume that the settings of Theorem 4.3 are satisfied and ∇−1
ϕ exists and bounded linear,

hence (
Ls
(`(∇ϕ,η))φ

)ρ
|
V

G
= Ls

(`(∇ϕ,η))φ
|
V

G
.

Proof. Let H ∈
(
Ls
(`(∇ϕ,η))φ

)ρ
|
V

G
, one has (ρx(H))∞x=0 ∈

(
`(∇ϕ, η)

)
φ

and ‖H − ρx(H)I‖ = 0, for every

x ∈ Z+. Hence X = ρx(H)I, for every x ∈ Z+, then sx(H) = sx(ρx(H)I) = |ρx(H)|, for any x ∈ Z+.

So, (sx(H))∞x=0 ∈
(
`(∇ϕ, η)

)
φ

, one gets X ∈ Ls
(`(∇ϕ,η))φ

|
V

G
. After that, if X ∈ Ls

(`(∇ϕ,η))φ
|
V

G
. Hence

(sx(H))∞x=0 ∈
(
`(∇ϕ, η)

)
φ

. Therefore, one obtains
∞∑

x=0

(∣∣∣∣∇ϕsx(H)
∣∣∣∣)ηx

< ∞. So limx→∞ ∇ϕsx(H) =

0. Since ∇−1
ϕ exists and bounded linear, then limx→∞ sx(H) = 0. Suppose that ‖H − sx(H)I‖−1

exists, for every x ∈ Z+. So ‖H − sx(H)I‖−1 exists and bounded, for every x ∈ Z+. Hence,

limx→∞ ‖H − sx(H)I‖−1 = ‖X‖−1 exists and bounded. Since
(
Ls
(`(∇ϕ,η))φ

, Λ
)

is a p-q OI, one has

I = XX−1
∈ Ls

(`(∇ϕ,η))φ
|
V

G
⇒ (sx(I))∞x=0 ∈ `(∇ϕ, η)⇒ lim

x→∞
sx(I) = 0.

We have a contradiction, since limx→∞ sx(I) = 1. Therefore ‖H − sx(H)I‖ = 0, for all x ∈ Z+. That

gives X ∈
(
Ls
(`(∇ϕ,η))φ

)ρ
|
V

G
. �

7. Conclusion

We offered the topological and geometric structure of the domain of g.c.d in Nss, as well as the

multiplication mappings defined on it, the class Ls
(`(∇ϕ,η))φ

, and the class
(
Ls
(`(∇ϕ,η))φ

)ρ
. This article
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presented a novel space of solutions for numerous difference equations, the spectrum of Ls
(`(∇ϕ,η))φ

,

and proved that closed OIs are certain to play an important role in the Banach lattice principle.
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