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A NEW ENTROPY FORMULA AND GRADIENT ESTIMATES

FOR THE LINEAR HEAT EQUATION ON STATIC MANIFOLD

ABIMBOLA ABOLARINWA

Abstract. In this paper we prove a new monotonicity formula for the heat

equation via a generalized family of entropy functionals. This family of en-

tropy formulas generalizes both Perelman’s entropy for evolving metric and
Ni’s entropy on static manifold. We show that this entropy satisfies a point-

wise differential inequality for heat kernel. The consequences of which are

various gradient and Harnack estimates for all positive solutions to the heat
equation on compact manifold.

1. Introduction and Preliminaries

We study the heat equation defined on a compact Riemannian manifold M with
static metric g

(1.1)
( ∂
∂t
−∆g

)
u(x, t) = 0,

where ∆g is the usual Laplace-Beltrami operator acting on functions in space with
respect to metric g. Throughout, M will be taken to be a closed manifold (i.e.,
compact without boundary) except when otherwise indicated. Most of our calcu-
lations are done in local coordinates, where {xi} is fixed in a neighbourhood of
every point x ∈ M. The Riemannian metric g(x) at any point x ∈ M is a bilinear
symmetric positive definite matrix denoted in local coordinates by

gij = ds2 = gijdx
idxj

The Laplace-Beltrami operator acting on a smooth function f on M is defined as
the product of divergence and gradient of f written as

∆gf := div grad f =
1√
|g|

∂

∂xi

(√
|g|gij ∂

∂xj
f
)
,

where |g| = det(gij) and the inverse metric gij = (gij)
−1. By the above we note

that

(grad f)i = (∇f)i = gij
∂

∂xj
f and divF =

1√
|g|

∂

∂xi
(
√
|g|F i).

Also we have the metric norm

|∇f |2g = gij∇if∇jf
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and application of Cauchy-Schwarz inequality on the expression

∆f = gij∇i∇jf = trHessf

yields the following inequality

(Hessf)2 ≥ 1

n
(∆f)2.

The Riemann structure allows us to define Riemannian volume measure dV (x) on
M

dV (x) =
√
|gij(x)|dxi.

By the divergence theorem we have the following integration by parts formulas for
functions f, h ∈ C2(M)∫

M

f∆gh dV = −
∫
M

〈∇f,∇h〉gdV =

∫
M

∆gf hdV.

For any smooth function f on M , we have the Bochner identity defined as

∆(|∇f |2) = 2|∇∇f |2 + 2〈∇f,∇∆f〉+ 2Rc(∇f,∇f),

where Rc is the Ricci curvature of M whose tensor components will be written in
local coordinates as Rij . We switch between coordinates to allow calculations to
be explicit and we write in local coordinates ∇f = fi, ∇∇f = ∇i∇jf = fij and
∂
∂xi = ∂i. Also we write time derivative ∂

∂tf = ∂tf = ft. We adopt summation
convention with repeated indices summed up.

Any function 0 < u ∈ C∞(M × [0, T ]) which satisfies (1.1) is called a positive
solution. If u tends to a dirac-delta δ-function as t goes to zero, u will be called the
heat kernel, that is the unique minimal positive solution on M . We are interested
in the behaviours of all positive solutions, in particular, the heat kernel. We derive
gradient estimates and differential Harnack inequalities via the monotone property
of a new family of entropy functionals. It is well known that entropy monotonicity
formulas are closely related to the gradient estimate for the heat equation. The
importance of gradient estimates as well as those of Harnack inequalities can not
be overemphasised in the fields of Differential geometry and Analysis among their
numerous applications. Differential Harnack inequalities are used to study the
behaviours of solutions to the heat equation in space-time. Li and Yau’s paper
[15] can be said to mark the beginning of rigorous applications of these concepts.
They derived gradient estimates for positive solutions to the heat operator defined
on a complete manifold with static metrics, from which they obtained Harnack
inequalities. These inequalities were in turn used to establish various lower and
upper bounds on the heat kernel. Precisely, Li and Yau’s results for static metrics
are the following;
Theorem A (Li-Yau [15]). Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose there exist some nonnegative constant k such that the Ricci
curvature Rij(g) ≥ −k. Let u ∈ C2,1(M × [0, T ]) be any smooth positive solution to
the heat equation (1.1) in the geodesic ball B2ρ×[0, T ]. Then, the following estimate
holds

(1.2) sup
x∈Bρ

{ |∇u|2
u2

− αut
u

}
≤ nα2

2t
+
Cα2

ρ2

( α2

α2 − 1
+
√
kρ
)

+
nα2k

2(α− 1)
.
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for all (x, t) ∈ B2ρ,T , t > 0 and some constants C depending only on n and α > 1.
Moreover, the following estimate

(1.3) sup
x∈Bρ

{ |∇u|2
u2

− αut
u

}
≤ nα2

2t
+

nα2k

2(α− 1)

holds for complete noncompact manifold by letting ρ→∞. The above results have
been improved by Davies [7, Section 5.3] as follows

(1.4) sup
x∈Bρ

{ |∇u|2
u2

− αut
u

}
≤ nα2

2t
+

nα2k

4(α− 1)
.

As α→ 1, the second terms in both (1.3) and (1.4) blow up and we obtain a sharp
estimate

|∇u|2

u2
− ut
u
≤ n

2t
.

Note that α can be chosen as a constant function of time only such in a way that
it goes to 1 as t→ 0, see for instance Hamilton [11], Huang, Huang and Li [12] and
Li and Xu [14].

Li and Yau derived their gradient estimates using the maximum principle, but by
now it is known how to use monotonicity formulas derived from classical entropies
of Shannon (from statistical thermodynamics) and Fisher’s information (from in-
formation theory). Let u > 0 be a positive solution to (1.1) with the normalization
condition

∫
M
udV (x) = 1, then, the classical Shannon entropy is defined by

(1.5) S0(u(t)) =

∫
M

u(x, t) log u(x, t)dV (x)

and the Fisher information defined by

(1.6) F0(u(t)) =

∫
M

|∇u(x, t)|2

u(x, t)
dV (x).

A straightforward computation shows that

d

dt
S0(u(t)) = −

∫
M

|∇ log u(x, t)|2u(x, t)dV (x) = −F0(u(t))

and

d2

dt2
S0(u(t)) = − d

dt
F0(u(t))

= 2

∫
M

(
|Hess log u|2 +Rc(∇ log u,∇ log u)

)
udV (x),

where Rc is the Ricci curvature of M . We now define normalised versions of S0
and F0 by

S(u(t)) := S0(u(t)) +
n

2
log(4πt) +

n

2

=

∫
M

(
log u+

n

2
log(4πt) +

n

2

)
udV (x)

F(u(t)) := tF0(u(t))− n

2

=

∫
M

(
t|∇ log u|2 − n

2

)
udV (x).



4 ABIMBOLA ABOLARINWA

Here, the normalisation is done so that the entropies remain identically zero for all
time when u is the heat kernel. It easily shown that S and F are identically zero
on M = Rn, the Euclidean space, for

u = H(x, y, t) = (4πt)−
n
2 exp

(
− |x− y|

2

4t

)
.

By the above calculation, Shannon entropy S0 for a positive solution to the heat
equation on static manifold is seen to be monotone decreasing while its derivative
is monotone nondecreasing on the condition that the Ricci curvature of M is non-
negative. Thus, the Shannon entropy is convex in this case. We can now define
another entropy W(u, t) based on the above

(1.7) W(u, t) = F(u, t)− S(u, t) = − d

dt

(
tS(u, t)

)
.

Obviously, the entropy W(u, t) reads

W(u, t) =

∫
M

(
t
|∇u|2

u2
− log u− n

2
log(4πt)− n

)
udV (x).

Let u = (4πt)−
n
2 e−f be a positive solution to the heat equation, where f is a

smooth function. Here we have

f = − log u− n

2
log(4πt),

∫
M

(4πt)−
n
2 e−f = 1,

(1.8) W(f, t) =

∫
M

(t|∇f |2 + f − n)(4πt)−
n
2 e−fdV (x)

and

d

dt
W = − d

dt

(
tS
)

= −2t

∫
M

(∣∣∣∇∇f − 1

2t
g
∣∣∣2 +Rc(∇f,∇f)

) e−f

(4πt)−
n
2
.

This is exactly Ni’s result in [17] which states thatW(f, t) is monotone nonincreas-
ing on a closed manifold with nonnegative Ricci curvature. In the case the manifold
is Ricci flat this is indeed Perelman’s entropy monotonicity formula [20] on a metric
evolving by the Ricci flow.

Notice that by application of integration by parts F(u(t)) can be written as

(1.9) F(u(t)) =

∫
M

−
(
t∆ log u+

n

2

)
udV (x).

This has a surprising connection to the Li-Yau gradient estimate in Theorem A
above. Clearly, the quantity under the integral is equivalent to the Harnack quantity
of Li-Yau

−
(
t∆ log u+

n

2

)
u = −

(∆u

u
− |∇u|

2

u2
+
n

2

)
u.

Li-Yau gradient estimate [15] says F(u) ≤ 0 when Rc ≥ 0, which implies

ut
u
− ∇u|

2

u2
+
n

2
≥ 0.

This is in turn equivalent to

(1.10) t∆f − n

2
≤ 0,
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which can be viewed as a generalized Laplacian comparison theorem. Indeed, the
Laplacian comparison theorem on M is a consequence of (1.10) by applying in-
equality to the heat kernel and letting t tends to zero. One can also see that
limt→0 S(u(t)) = 0 for the heat kernel and hence S(u(t)) is monotone increasing on
nonnegative Ricci curvature manifold. Therefore, we have W(f, t) ≥ 0 for the heat
kernel for some t > 0 if and only if M is isometric to Rn. Note that on Rn we have
f = |x|2/4t. Lei Ni also showed that these results hold for all complete manifolds
with Rc ≥ 0. Let M be a complete Riemannian manifold with nonnegative Ricci
curvature, then at t = 1/2, W ≥ 0 holds on M if and only if M is isometric to
Rn, (See also Weissler [22]). This is indeed equivalent to Gross logarithmic Sobolev
inequalities [9] on Rn. Thus, there is a strong relation between the log-Sobolev
inequality and the geometry of the manifold which was originally discovered by
Bakry, Concordet and Ledoux [3] (see also [4]). That is,

(1.11)

∫
Rn

(1

2
|∇f |2 + f − n

) e−f

(4πt)−
n
2
≥ 0

implies

(1.12)

∫
Rn
u log u dx ≤ n

2
log
( 1

2nπe

∫
Rn

|∇u|2

u

)
with equality on any Gaussian with

∫
Rn udµ. To get (1.12) from (1.11) one uses the

monotone property ofW on Rn and asymptotic behaviour of the positive solution to
the heat equation, noting that solution on Rn converges after rescaling at infinity to
constant multiples of the usual Gaussian. The remarkable papers [17] and [18] have
shown a desirable interpolation between entropy formula of Ni on static manifolds
and that of Perelman [20] on evolving manifolds. The new Wε(f, t) discussed in
this paper (see section 2) is an example of such a family of entropies connecting
both Ni’s and Perelman’s entropies. We demonstrated this in [2, Chapter 3] and
have applied it on manifold evolving by the Ricci-harmonic map flow in [1]. We
remark that estimates and bounds on parabolic equations behave in similar way
whether the metric is static or moving. This can be justified by the fact that heat
diffusion on a bounded geometry with either static or evolving metric behaves like
heat diffusion in Euclidean space, many a times, their estimates even coincide.

In this paper however, we prove the monotonicity formulas for a family of entropy
functionals Wε(f, t) and discuss some of its analytic and geometric consequences.
The plan of the rest of the paper is as follows: In Section 2 we introduce a new family
of entropy functionals and prove its monotonicity for a positive solution to the heat
equation. The monotonicity derived here is used in Section 3 to derive pointwise
differential Harnack inequalities and gradient estimates for the heat equation. As a
consequence we obtain Harnack estimates for the fundamental solution which also
holds for all positive solutions in Section 4. We give Li-Yau-Hamilton type gradient
estimates for bounded solutions in the last section.

2. A new entropy monotonicity formula

We emphasize that the volume is kept fixed throughout the time of evolution for
the heat equation on a closed n-dimensional manifold (M, g). We also impose the
condition of nonnegativity on the Ricci curvature of the underlying manifold M .
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Let u = u(x, t) be a positive solution to the heat equation

(2.1) �u =
( ∂
∂t
−∆

)
u(x, t) = 0.

Let f : M × (0, T ]→ R be smoothly defined as u = (4πt)−
n
2 e−f with normalization

condition
∫
M
u(x, t)dV (x) = 1. We introduce a generalized family of entropy by

(2.2) Wε(f, t) =

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

] e−f

(4πt)
n
2
dV (x),

where 0 < ε2 ≤ 4π. We remark that if ε2 = 4π, we recover the Perelman’s en-
tropy as in the special case considered by Ni in [17]. From this entropy formula
we later derive the corresponding differential inequality and gradient estimate for
the fundamental solution, which in fact, holds for all positive solutions to the heat
equation. The same entropy is used by the author in his Phd thesis [2] to examine
the surprising relation that exists between the entropy formula for heat equation
and the conjugate heat equation under the Ricci flow. We have also used its mono-
tonicity properties combined with some Sobolev-type inequalities to derive sharp
upper bound for conjugate heat kernel along Ricci-harmonic map heat flow in [1].

Lemma 2.1. Let u = (4πt)−
n
2 e−f be a positive solution to the heat equation �u = 0

on a closed Riemannian manifold M . Then

(2.3) (∂t −∆)|∇f |2 = −2f2ij − 2〈∇f,∇|∇f |2〉 − 2Rijfifj

and

(2.4) (∂t −∆)(∆f) = −2f2ij − 2〈∇f,∇|∇f |2〉 − 2〈∇f,∇∂tf〉 − 2Rijfifj .

Moreover, if w = 2∆f − |∇f |2, then

(2.5) (∂t −∆)w = −2f2ij − 2Rijfifj − 2〈∇w,∇f〉.

Proof. Since u = (4πt)−
n
2 e−f , f = − log u− n

2 log(4πt) and ∂
∂tf = ∆f−|∇f |2− n

2t .

(1)

∂

∂t
|∇f |2 =

∂

∂t
(gij∂if∂jf) = 2gij∂if∂jf∂tf = 2〈∇f,∇∂tf〉.(2.6)

By Bochner identity

∆(|∇f |2) = 2f2ij + 2〈∇f,∇∆f〉+ 2Rijfifj

= 2f2ij + 2〈∇f,∇(∂tf + |∇f |2〉+ 2Rijfifj

= 2f2ij + 2〈∇f,∇|∇f |2〉+ 2〈∇f,∇∂tf〉+ 2Rijfifj .

Adding the last equality to (2.6) proves (2.3).
(2)

(∂t −∆)(∆f) = ∆(∆f − |∇f |2)−∆(∆f) = −∆|∇f |2

= −2f2ij − 2〈∇f,∇(∂tf + |∇f |2〉 − 2Rijfifj

= −2f2ij − 2〈∇f,∇|∇f |2〉 − ∂t(|∇f |2)− 2Rijfifj .

(3)

(∂t −∆)w = 2(∂t −∆)∆f − (∂t −∆)|∇f |2

= −2f2ij − 2Rijfifj − 2〈∇f,∇(|∇f |2 + 2∂tf).〉
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This ends the proof of the lemma. �

We are now set to establish the monotone property of the Wε(f, t)-entropy. By
the monotonicity formula for this entropy functional, we will derive gradient esti-
mates and the corresponding differential Harnack inequalities for the fundamental
solution to the heat equation on a static manifold.

Proposition 2.2. Let M be any closed manifold and u = (4πt)−
n
2 e−f be any

positive solution to the heat equation �u = (∂t −∆)u = 0 on M × (0.T ]. Denoting

(2.7) Pε =
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π
,

where 0 < ε2 ≤ 4π. Then

(2.8) (∂t−∆)Pε ≤ −
ε2t

2π

(∣∣∣fij−√π
εt
gij

∣∣∣2+Rijfifj

)
−2〈∇Pε,∇f〉−

(
1− ε2

4π

)
|∇f |2.

Proof. Here we write

P̃ε =
ε2t

4π
w + f̃ +

n

2
ln
( 1

ε2t

)
− nε2

4π
.

Since f = − lnu − n
2 ln(4πt), taking u = e−f̃ implies f = f̃ − n

2 ln(4πt). we notice

also that ∇f̃ = ∇f , ∆f̃ = ∆f and f̃ij = fij , then (∂t − ∆)f̃ = −|∇f̃ |2 − n
2t .

Now by direct differentiation and application of Lemma 2.1, we have the following
computation

(∂t −∆)Pε =
ε2t

4π
(∂t −∆)w +

ε2

4π
w + (∂t −∆)f̃ +

∂

∂t

(n
2

ln
( 1

ε2t

)
− nε2

4π

)
=
ε2t

4π

(
− 2f2ij − 2Rijfifj − 2〈∇w,∇f〉

)
+
ε2

4π
(2∆f − |∇f |2)− |∇f |2 − n

2t

=
ε2t

4π

(
− 2f2ij −

2π

ε2
n

t2
− 2Rijfifj

)
+
ε2

4π
(2∆f − |∇f |2)− 2〈ε

2t

4π
∇w,∇f〉 − |∇f |2.

Notice that

2〈ε
2t

4π
∇w,∇f〉 = 2〈(∇Pε − f̃),∇f〉 = 2〈∇Pε,∇f〉 − 2|∇f |2

and

(2∆f − |∇f |2) = (2∂tf + |∇f |2)

Then we have

(∂t −∆)Pε ≤ −2
ε2t

4π

(
f2ij +

π

ε2
n

t2
− 2
√
π

εt
∆f +Rijfifj

)
− 2〈∇Pε,∇f〉+

ε2

4π
|∇f |2 − |∇f |2

= −2ε2t

4π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
− 2〈∇Pε,∇f〉 −

(
1− ε2

4π

)
|∇f |2.

�

Theorem 2.3. Let M be a closed Riemannian manifold. Assume that u = (4πt)−
n
2 e−f

is a positive solution to the heat equation (∂t−∆)u = 0, then, we have the following
monotonicity formula for Wε(f, t) defined in (2.2)
(2.9)

d

dt
Wε(f, t) = −

∫
M

[
ε2t

2π

(∣∣∣fij−√π
εt
gij

∣∣∣2+Rijfifj

)
+
(

1− ε2

4π

)
|∇f |2

]
e−f

(4πt)
n
2
dV (x)
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with (f, t) satisfying

(2.10)

∫
M

e−f

(4πt)
n
2
dV (x) = 1

and 0 < ε2 ≤ 4π.

Proof. Combining Proposition 2.2 with the fact that �u = 0 and u∇f = −∇u, we
have

(∂t −∆)(Pεu) = (∂t −∆)Pε · u+ Pε(∂t −∆)u− 2〈∇Pε,∇u〉

= −ε
2t

2π

(∣∣∣fij − √π
εt
gij

∣∣∣2 +Rijfifj

)
u− 2〈∇Pε,∇f〉u

−
(

1− ε2

4π

)
|∇f |2u− 2〈∇Pε,∇u〉.

Integrating over M , we have∫
M

PεudV (x) =

∫
M

[ε2t
4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
udV (x)

=

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
udV (x)

+
2ε2t

4π

∫
M

(∆f − |∇f |2)udV (x)

=Wε(f, t),

in the sense that the second integral in the RHS vanishes on a closed manifold since
(∆f − |∇f |2)u = −∆u. Therefore

d

dt
Wε(f, t) =

∂

∂t

∫
M

Pεu dV (x)

=

∫
M

( d
dt
Pε u+ Pε

∂

∂t
u
)
dV (x)

=

∫
M

[
(∂t −∆)Pε u+ Pε(∂t −∆)u

]
dV (x)

=

∫
M

(∂t −∆)Pε udV (x),

where we have used integration by parts and �u = 0. Using the evolution (∂t −
∆)Pε from Proposition 2.2, we get the desired result. Moreover, if the manifold
has nonnegative Ricci curvature, i.e, Rij ≥ 0, it becomes obvious from (2.9) that
dWε/dt ≤ 0. �

We remark that Kuang and Zhang [13] have a result in this direction, it is
stated as follows; Let M be a closed Riemannian manifold with nonnegative Ricci
curvature. Let u be the fundamental solution to the heat equation with f =
− lnu− n

2 ln(4πt), we have

(2.11) t(α∆f − |∇f |2) + f − αn
2
≤ 0

for any constant α ≥ 1. Indeed, if α = 2, this is exactly the differential inequality

t(2∆f − |∇f |2) + f − n ≤ 0
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proved in [17]. Dividing through by α · t, with α ≥ 1 and t ≥ 0, we obtain

∆f − |∇f |
2

α
+

f

αt
− n

2t
≤ 0

as t→∞, which is precisely the Li-Yau gradient estimate. For α > 2, the gradient
estimate is an interpolation of Perelman’s estimate and Li-Yau estimate. For 1 ≤
α ≤ 2, it is considered in [13]. In Euclidean space Rn, if u is the fundamental
solution to the heat equation then (2.11) becomes an equality.

3. Gradient Estimates for Heat Equation on Static Manifold

The monotonicity formula in the last section may be viewed as a local version of
the Perelman’s W-entropy formula in [20]. In what follows, we want to show that
the local entropy satisfies a pointwise differential inequality for the heat kernel. We
have the following fashioned after [17, Theorem 1.2] with the proof follows from the
argument of [16, Proposition 3.6].

Theorem 3.1. Let M be a closed manifold with nonnegative Ricci curvature and
H(x, y, t) = H = (4πt)−

n
2 e−f be the heat kernel, where H tends to a δ-function as

t→ 0 and satisfies
∫
M
HdV (x) = 1. Then for all t > 0, we have

(3.1) Pε =
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2
ln
(4π

ε2

)
− nε2

4π
≤ 0.

Proof. Let h be any compactly supported smooth function for all t0 > 0. Suppose
h(·, t) is a positive solution to the backward heat equation (∂t + ∆)h = 0, (This is
Perelman’s argument in [20, Corollary 9.3]), then, it is clear that ∂

∂t

∫
M
HhdV = 0

and we have by direct calculation that

∂

∂t

∫
M

hPεHdV (x) =

∫
M

[
∂th(PεH) + h∂t(PεH)

]
dV (x)

=

∫
M

[
(∂t + ∆)h(PεH) + h(∂t −∆)PεH)

]
dV (x)

=

∫
M

h(∂t −∆)PεHdV (x)

≤ 0.

The inequality is due to Theorem 2.3 since Rij ≥ 0. We are left to showing that
for everywhere positive function h(·, t), the limit of

∫
M
hPεHdV (x) is nonpositive

as t→ 0. We assume the claim apriori (i.e, limt→0

∫
M
hPεHdV = 0) and conclude

the result.
For completeness, we devote the next effort to justifying the claim

(3.2) lim
t→0

∫
M

hPεHdV ≤ 0.

Our argument follows from [16], for detail see [17, 19, 20], the calculation in [13]
is also similar. If H tends to a dirac δ-function, say at a point p ∈ M , for t → 0,

then f satisfies f(x, t)→ d2(p, x)
4t . This is in relation to l- length of Perelman. This

yields

(3.3) lim
t→0

∫
M

fhHdV ≤ lim sup
t→0

∫
M

d2(p, x)

4t
hHdV =

n

2
h(p, 0).
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Meanwhile, by the strong Maximum principle we have h(x, 0) > 0 and limt→0

∫
M
hHdV =

h(x, 0), hence by scaling argument, we assume that h(x, 0) = 1. All these will soon
become clearer. Rewriting Pε and using integrating by parts methods we have∫

M

PεhHdV =

∫
M

ε2t

4π
(|∇f |2 − n

2t
)hHdV − ε2t

2π

∫
M

〈∇f,∇h〉HdV

+

∫
M

fHhdV +
n

2

[
ln
(4π

ε2

)
− ε2

4π

] ∫
M

Hh dV.

Though, the H appearing in the last equation is actually the heat kernel on an
evolving manifold in Ni’s result [19] while h satisfies the forward heat equation, his
argument still holds in our case, we only need the asymptotic behaviour of heat
kernel on a fixed metric. We should also note that since h(·, t0) is compactly sup-
ported and by strong maximum principle we have h(·, t0), |∇h(·, t0)| and |∆h(·, t0)|
bounded on M . This implies that there exists a bounded solution h(·, t0).

It turns out that we need to show that there exists a constant B ≥ 0 which may
depend on the geometry of the underlying manifold and independent of t as t→ 0,
such that

∫
M
PεhHdV ≤ B(n).

Now we claim that the first two terms on the right hand side of the last equation
vanish as t→ 0, we can see this in the following argument. By integration by parts
and the fact that ∇H = −H∇f , we have

−t
∫
M

〈∇f,∇h〉HdV = t

∫
M

〈∇H,∇h〉dV = −t
∫
M

H∆hdV

is bounded since |∆h| is bounded as stated earlier. Thus, the second term is bound-
ed and goes to zero as t→ 0. We need a bound of Li-Yau type to obtain a bound
for the first term |∇f |2. See Lemma 3.2 below for the statement of the result ([5])
see also [6, Corollary 16.23] and Souplet and Zhang [21]). By this we have for the
heat kernel in the present case that

(3.4) t

∫
M

|∇f |2 ≤ 2
(
B(n, δ) +

d2(x, y)

(4− δ)t

)
,

which is also clearly seen to be bounded from above as t → 0 by the justification
of asymptotic behaviour of the heat kernel. We have now reduced the analysis to

(3.5) lim
t→0

∫
M

PεhHdV ≤ lim sup
t→0

∫
M

(
f +

nq

2

)
hHdV,

where q = ln( 4π
ε2 )− ε2

4π . For simplicity, we can choose ε such that ε2 → 4π as t→ 0
so that the whole problem is reduced to finding

(3.6) lim
t→0

∫
M

(
f − n

2

)
hHdV.

Using the asymptotic behaviour of the heat kernel, i.e, f ≈ d2

4t as t → 0. Recall
(Cf. [8, 19]) as t→ 0

H(x, y, t) ∼ (4πt)−
n
2 exp

(d2(x, y)

4t

) ∞∑
j=o

uj(x, y, t)t
j := wk(x, y, t)

where d2(x, y) is the distance function and wk(x, y, t) satisfies uniformly for all
x, y ∈M

wk(x, y, t) = O
(
tk+1−n2 exp

(δd2(x, y)

4t

))
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and δ is just a number depending only on the geometry of (M, g). The function can
be chosen such that u0(x, y, 0) = 1. Though, the above asymptotic result does not
require any curvature assumption, a result due to Cheeger and Yau [5] states that
on manifold with nonnegative Ricci curvature (which is our case), the heat kernel
satisfies

H(x, y, t) ≥ (4πt)−
n
2 exp

(d2(x, y)

4t

)
which implies

f(x, t) ≤ d2(x, y)

4t
.

Therefore

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
M

(d2(x, y)

4t
− n

2

)
h(y, t)H(x, y, t)dV (y)

= lim
t→0

∫
M

(d2(x, y)

4t
− n

2

)e−d2(x,y)/4t
(4πt)

n
2

H(y, t)dV (y).

It is easy to see that for any δ > 0, the integration of the above integrand in the
domain d(x, y) ≤ δ converges to zero exponentially fast. Therefore

(3.7) lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
d(x,y)≤δ

(d2(x, y)

4t
− n

2

)e−d2(x,y)
4t

(4πt)
n
2
h(y, t)dV (y).

Whenever δ is chosen sufficiently small, d(x, y) is asymptotically sufficiently close
to the Euclidean distance. By standard approximation, we have

(3.8) lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ lim

t→0

∫
d(x,y)≤δ

( |x− y|2
4t

− n

2

)e−|x−y|24t

(4πt)
n
2
hp(y)dV (y),

where hp is the pullback of h(·, 0) to the Euclidean space from the region d(x, y) ≤ δ.
Splitting the last integrand as in [13] we are left with

lim
t→0

∫
M

(
f − n

2

)
hHdV ≤ hp(x) lim

t→0

∫
Rn

( |x− y|2
4t

− n

2

)e−|x−y|24t

(4πt)
n
2
dV (y)

= hp(·) lim
t→0

∫
Rn

( |y|2
4t

e−
|y|2
4t

(4πt)
n
2

)
dV (y)− n

2
hp(·).

The last equality is due to convolution properties of the heat kernel. Lastly we
show that the RHS evaluates to 0. Recall, using standard Gauss integral, that∫

Rn
|y|2e−α|y|

2

dy = n
(∫ ∞
−∞

y2e−αy
2

dy
)(∫ ∞

−∞
e−αy

2

dy
)n−1

=
n

2

√
π

α3
·
(√π

α

)n−1
=

n

2α

(√π

α

)n
,

so that we have∫
Rn

( |y|2
4t

e−
|y|2
4t

(4πt)
n
2

)
dV (y) =

1

(4πt)
n
2
· n

4t

(∫ ∞
−∞

y2e−
1
4ty

2

dy
)(∫ ∞

−∞
e−

1
4ty

2

dy
)n−1

=
n

2
,

by taking α = 1/4t in the above. We can then conclude the claim. �
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Lemma 3.2. On a complete Riemannian Manifold (M, g) with nonnegative Ricci
curvature, the following estimate holds for the gradient of the heat kernel H(x, y, t)
and all δ > 0,

(3.9)
|∇H|2

H
≤ 2H

t

(
B(n, δ) +

d2(x, y)

(4− δ)t

)
for all x, y in M and t > 0.

4. Harnack Estimates for the Heat Kernel

The following differential Harnack quantity for linear heat equation on static
manifold follows immediately as an application of the reuslts in the last subsection.

Corollary 4.1. Let M be a closed manifold with curvature bounded from below by
Rc ≥ 0. Then we have

(4.1)
ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2

(
ln
(4π

ε2

)
− ε2

2π

)
≤ 0,

where f = − ln(4πt)
n
2H and H is the positive minimal solution to the heat equation( ∂

∂t
−∆x

)
H(x, y, t) = 0.

Remark 4.2. Note that the quantity 2∆f − |∇f |2 can be expressed as |∇u|
2

u2 − 2ut
u

in terms of u, which is similar to Li-Yau gradient estimate [15] on a manifold

with nonnegative Ricci curvature, ut
u −

|∇u|2
u2 + n

2t ≥ 0. This is equivalent to the

differential Harnack inequality 2t∆f ≤ n, where f = − ln(4πt)
n
2 u, which can be

regarded as a generalized Laplacian comparison theorem in space for Heat kernel on
M .

However, we have from (4.1) that

f ≤ n

2

[ ε2
2π
− ln

4π

ε2

]
− ε2t

4π
(2∆f − |∇f |2)

≤ n

2

[ ε2
2π
− ln

4π

ε2

]
− ε2n

8π
=
n

2

[ ε2
4π
− ln

4π

ε2

]
.

Define

(4.2) Q(x, t) =
ε2

π
tf(x, t)

(4.3) (∂t −∆)Q(x, t) =
ε2

π
f(x, t) +

ε2

π
t(∂t −∆)f ≤ nε2

2π

[ ε2
4π
− ln

4π

ε2

]
.

Still as ε = 2
√
π we recover Ni’s generalized Laplacian. From Corollary 4.1, we

have the differential Harnack inequality as follows

ε2t

4π

(
2∆f − |∇f |2

)
+ f +

n

2

(
ln
(4π

ε2

)
− ε2

2π

)
≤ 0.

Multiplying through by − 2π
ε2t , we have

−∆f +
1

2
|∇f |2 − 2π

ε2t
f − nπ

ε2t

(
ln
(4π

ε2

)
− ε2

2π

)
≥ 0

−∆f +
1

2
|∇f |2 − 2π

ε2t
f +

n

2t
− nπ

ε2t
ln
(4π

ε2

)
≥ 0.
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Recall that (∂t −∆)H = 0 implies ∆f = ∂tf + |∇f |2 + n
2t , then we have

−∂tf −
1

2
|∇f |2 − 2π

ε2t
f ≥ nπ

ε2t
ln
(4π

ε2

)
∂tf +

1

2
|∇f |2 ≤ − 2π

ε2t
f − nπ

ε2t
ln
(4π

ε2

)
= − 2π

ε2t

(
f +

n

2
ln
(4π

ε2

))
.

By the Young’s inequality we have on the path γ(t), (γ(t) : [t1, t2] → M is a
minimizing geodesic connecting points x1 and x2 such that γ(t1) = x1 and γ(t2) =
x2.)

d

dt
f(γ(t), t) = ∂tf + 〈∇f, γ′(t)〉

≤ ∂tf +
1

2
|∇f |2 +

1

2
|γ′(t)|2

=
1

2
|γ′(t)|2 − 2π

ε2t

(
f +

n

2
ln
(4π

ε2

))
since we have from (4.1) that

f ≤ n

2

( ε2
4π
− ln

4π

ε2

)
,

inserting this quantity in the above inequality gives the following Harnack Estimates

(4.4)
d

dt
f(γ(t), t) ≤ 1

2
|γ′(t)|2 − n

4t
.

After the usual integration of (4.4) and exponentiation we have the following

Corollary 4.3. With the notation and assumption of Corollary 4.1, we have the
following differential Harnack estimates

(4.5)
u(x2, t2)

u(x1, t1)
≤
( t1
t2

)n
4

exp
[1

2

∫ t2

t1

|γ′(t)|2dt
]
.

Remark 4.4. If M is a closed manifold with nonnegative Ricci curvature and
u = (4πt)−

n
2 e−f is the heat kernel on M . Then Wε(f, t0) ≥ 0 for some t0 > 0, if

and only if M is isometric to Euclidean space Rn. Recall that we have obtained that
d
dtWε(f, t) ≤ 0 andWε(f, t) ≤ 0 which in turn imply that we must haveWε(f, t) ≡ 0
for 0 ≤ t ≤ t0. For instance, in the case ε = 2

√
π, we have

|fij −
1

2t
gij |2 = 0 and fij −

1

2t
gij = 0.

Taking the trace of the above yields

(4.6) t∆f − n

2
= 0.

Because f(x, t) ≈ f̃(x, t) = d2(p,x)
4t for t small, we have limt→0 4tf = d2(p, x). Hence

(4.6) implies that

(4.7) ∆d2(p, x) = 2n

so that we can get for the area Ap(r) of ∂Bp(r) and the volume Vp(r) of the ball
Bp(r), the following quotient

Ap(r)

Vp(r)
=
n

r
.
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This shows that Vp(r) is exactly the same as the volume function of Euclidean balls.
This argument shows that the Li-Yau Harnack inequality, which is equivalent to

2t∆f − n ≤ 0 for u = (4πt)−
n
2 e−f becomes an equality if and only if the manifold

M with Rc ≥ 0 is isometric to Rn and u is precisely the heat kernel. If t = 1
2 and

M = Rn, the inequality Wε(f, t0) ≥ 0 for ε2 = 4π, is equivalent to

(4.8)

∫
Rn

(
1

2
|∇f |2 + f − n)(2π)−

n
2 e−fdV ≥ 0

for all f with the condition
∫
M

(2π)−
n
2 e−fdV = 1.

The above implies a sharp (Gross) logarithmic Sobolev inequality on Rn. For
details about logarithmic-Sobolev inequalities see for instance [9, 10, 22]. In the
same vein our dual entropy also yields a version of logarithmic Sobolev inequality.
(This will not be discussed here).

Remark 4.5. Note that fij −
√
π
εt gij ≥ 0 =⇒ ∆f ≥ n

√
π

εt which in turns =⇒
|∇u|2
u2 − ut

u ≥
n
√
π

εt .

It turns out that Wε(f, t) being finite with u being the heat kernel, also has
strong topological and geometric consequences. For instance, in the case M has
nonnegative curvature, it implies that M has finite fundamental group. In fact one
can show that M is of maximum volume growth if and only if the entropy Wε(f, t)
is uniformly bounded for all t ≥ 0, where u is the heat kernel. This analogy was
originally discovered in [20] for ancient solution to the Ricci flow with bounded
nonnegative curvature, where Perelman claims that ancient solution to the Ricci
flow with nonnegative curvature operator is κ-noncollapsed if and only if the entropy
is uniformly bounded for any fundamental solution to the conjugate heat equation.

Lastly, in this subsection we make some comment to show how sharp the dual
entropy for the heat equation. Recall

(4.9) Wε(f, t) =

∫
M

[ε2t
4π
|∇f |2 + f +

n

2
ln
(4π

ε2

)
− nε2

4π

]
HdV

with f = − ln(4πt)
n
2H and

∫
M
HdV = 1 and 0 < ε2 ≤ 4π.

Rewrite Wε(f, t) as
(4.10)

Wε(f, t) =
ε2

4π

∫
M

(t|∇f |2 + f − n)HdV + (1− ε2

4π
)

∫
M

fHdV +
n

2
ln

4π

ε2

∫
M

HdV.

Hence, we have the following

Proposition 4.6. For 0 < ε2 ≤ 4π, f = − ln(4πt)
n
2H with

∫
M
HdV = 1, we have

the following monotonicity formula on a manifold with nonnegative Ricci curvature;

(4.11)
d

dt
Wε(f, t) ≤ −

ε2

2π
t

∫
M

(
|fij −

1

2t
gij |2 +Rijfifj

)
HdV.

Proof. The proof follows from a straight forward computation onWε using the idea
of [17, Theorem 1.1].

(4.12)
d

dt
Wε(f, t) =

ε2

4π

∂

∂t

(∫
M

t|∇f |2 + f − n
)
HdV + (1− ε2

4π
)
∂

∂t

(∫
M

fHdV
)
.
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We are only left to justify the non-positivity of ∂
∂t

( ∫
M
fHdV

)
. Then we have by

integration by parts

∂

∂t

(∫
M

fHdV
)

=

∫
M

( ∂
∂t
f H + f

∂

∂t
H
)
dV

=

∫
M

( ∂
∂t
f H + f∆H + f(

∂

∂t
−∆)H

)
dV

=

∫
M

( ∂
∂t

+ ∆
)
fHdV

=

∫
M

(2∆f − |∇f |2 − n

2t
)HdV,

where we have used the facts that ( ∂∂t−∆)H = 0 and ∂
∂tf = ∆f−|∇f |2− n

2t . Taking

f = − ln((4πt)
n
2H, then the integrand in the RHS of the last equality becomes

(4.13) 2∆f − |∇f |2 − n

2t
=
|∇H|2

H2
− 2∆H

H
− n

2t
≤ 0,

which is precisely the Li-Yau Harnack inequality since we are on nonnegative Ricci
curvature manifold. Hence our claim. �

5. LYH gradient estimates for positive solutions

In the next we give useful estimates found by Hamilton [11]. He was inspired
by the results of Li and Yau [15], hence the estimates are popularly referred to
as Li-Yau-Hamilton (LYH) estimates. We state and prove the result for bounded
solutions on a closed manifold. As an application of this LYH-type estimates we
can obtain a sharp upper bound on the heat kernel.

Theorem 5.1. Let (M, g) be a closed Riemannian manifold with Rij ≥ −kgij ,
where k ≥ 0. Suppose u is a positive solution to the heat equation with u ≤M <∞.
Then

(5.1) t
|∇u|2

u2
≤ (1 + 2kt) log

(M
u

)
.

Proof. Let f = log u so that |∇f |2 = |∇ log u|2 = |∇u|2
u2 and

(
∂
∂t −∆

)
f = |∇f |2.

Define a heat type operator

L :=
( ∂
∂t
−∆− 〈∇f,∇·〉

)
.

The idea to this proof is to apply the heat-type operator L on the quantity

t
|∇u|2

u2
− (1 + 2kt) log

(M
u

)
and then use weak maximum principle. Recall from the calculation in Lemma 2.1
and the Bochner identity that

∂

∂t
|∇f |2 = 2fifti & ∆|∇f |2 = 2|fij |2 + 2fjfjji + 2Rijfifj .

Hence ( ∂
∂t
−∆

)
|∇f |2 = −2|fij |2 − 2Rijfifj + 2〈∇f,∇|∇f |2〉
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and ( ∂
∂t
−∆

)
(t|∇f |2) = |∇f |2 + t(

∂

∂t
−∆)|∇f |2

= |∇f |2 − 2t|fij |2 − 2tRijfifj + 2t〈∇f,∇|∇f |2〉.

Using the condition that Rij ≥ −kgij , we have

(5.2)
( ∂
∂t
−∆

)
(t|∇f |2) = (1 + 2kt)|∇f |2 + 2〈∇f,∇(t|∇f |2)〉.

On the other hand

L
(

(1 + 2kt) log
(M
u

))
= 2k log

(M
u

)
+ (1 + 2kt)L

(
log
(M
u

))
= 2k log

(M
u

)
+
( ∂
∂t
−∆

)
log
(M
u

)
− 2(1 + 2kt)〈f,∇ log

(M
u

)
〉.

Computing ( ∂
∂t
−∆

)
log
(M
u

)
=
( ∂
∂t
−∆

)
logM −

( ∂
∂t
−∆

)
log u

= −|∇f |2

= −2〈∇f,∇ log u
)
〉+ |∇f |2

= 2〈∇f,∇ log
(M
u

)
〉+ |∇f |2.

Then

L
(

(1 + 2kt) log
(M
u

))
= 2k log

(M
u

)
+ 2〈∇f,∇ log

(M
u

)
〉+ |∇f |2

− 2(1 + 2kt)〈f,∇ log
(M
u

)
〉

= 2k log
(M
u

)
+ 2〈∇f,∇((1 + 2kt) log

(M
u

)
〉(5.3)

+ (1 + 2kt)|∇f |2.(5.4)

Combining the expressions in (5.2) and (5.3) we arrive at

L
(
t|∇f |2 − (1 + 2kt) log

(A
u

))
≤ −2k log

(M
u

)
(5.5)

since k ≥ 0 and 0 ≤ log M
u <∞. Note that at t = 0,

− log
(A
u

)
≤ 0 and t|∇f |2 − (1 + 2kt) log

(A
u

)
≤ 0.

Hence, by the weak maximum principle we have

t|∇f |2 − (1 + 2kt) log
(A
u

)
≤ 0

for all t ≥ 0. This completes the proof. �
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The above result can be extended to the case of complete noncompact manifold,
although, a little more effort will be required. The idea here is to use ε-regularization
method by supposing that the solution u ≥ ε, replacing u by uε = u + ε for a
sufficiently small ε > 0 and letting ε go to zero after the analysis for uε is completed.
An application of this result shows we can bound the maximum of a positive solution
by its integral (see [11]). Furthermore, the estimate yields sharp lower and upper
bounds for the fundamental solution, See [6].
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