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Abstract. In this paper, we introduce the context of K-Extended fuzzy bipolar b-metric space and prove fixed point
theorem. Some of the well-known results in the literature are expanded and generalized by our research. Additionally,

we presented applications to integral equation and fractional differential equation.

In this paper, we introduce the context of 8-Extended fuzzy bipolar b-metric space and prove
fixed point theorem. Some of the well-known results in the literature are expanded and generalized
by our research. Additionally, we presented applications to integral equation and fractional

differential equation.

1. INTRODUCTION

The concept of continuous triangular norm was first developed by Schweizer and Sklar [1] in
1960. Following that, Zadeh [2] presents the fuzzy set theory in 1965. Using the concept of fuzziness
and the continuous t-norm, Kramosil and Michalek [3] created the fuzzy metric space in 1975.The
fuzzy approach to distance is predicated on the idea that the distance—which we must estimate or

determine—between any two locations need not necessarily be represented by a precise number,
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but rather is a fuzzy idea. George and Veeramani [4] revised the fuzzy metric spaces definition in
1994. The authors of Karamosil and Michalek [3], Grabeic [5] extends the well-known fixed point
theorem of Banach to fuzzy metric spaces. Gregori and Sapena [6] then extended the fuzzy banach
contraction theorem, in the sense of George and Veeramani’s [4], to fuzzy metric space. Mutlu
and Gurdal [7] generalized bipolar metric spaces, which offer a new framework for calculating the
distance between objects in two different sets.The fuzzy bipolar metric space was established by
Bartwal, Dimri, and Prasad [8]. Sezen [9] demonstrated controlled fuzzy metric spaces and some

associated fixed point outcomes recently. For more about fuzzy metric space see ( [10-14]).

2. PRELIMINARIES

We offer the following fundamental definitions, lemmas, and propositions. Here seq means
sequence and bi-seq means bisequence and UF P means unique fixed point and FP7 means

Fixed point theorem.

Definition 2.1. [4] Let A be a nonempty set. An triple (A,w, +) is said to be a fuzzy metric space if W is a
fuzzy set on A2 x (0, 00) and = is a continuous d-norm satisfies for all &,7,4 € A and d,¢ > 0;

Q) w(erd) =1ifée =7

(3) w(e ¥ d) = w(F ¢ d);

(4) w(&,q,d+c)=w(er a7, q,.c);

(5) w(e#,.):(0,00) — (0,1] is continuous.

Definition 2.2. [8] Let ¥ and A be two non-void sets. A quadruple (Y, A, Wy, *) is called as fuzzy
bipolar metric space, where * is continuous d-norm and Wy is a fuzzy set on ¥ X A x (0, 00), satisfies for all

d,c,it>0:
(1) (8, 7,d) >0V (&,7) € ¥ x 4;
(2) wy(&,7,d) =1iffée=7rVéeYandreg
(3) Wy (&, 7,d) = wy(F,&,d) ¥V &Fe TN A
(4) Wy (&1, 72,8+ ¢ + 1) > Wy (&1, P, )%y (82, F1, €)Wy (82, T, 11) for all
é1, er €Y and 71,?2 eAN;
(5) Wy (&,7,.) : [0,00) —> [0, 1] is left continuous;

e,
(6) Wy (&,7,.) is non-decreasing for all ¢ € ¥ and ¥ € A.
Definition 2.3. Let ¥ and A be two non-void sets. Let U,8,9 : ¥ XA — [1,00) be three distinct
functions.. A quadruple (Y, A, ty,+) is called a N-Extended fuzzy bipolar b-metric space(REF,BMS),
where * is continuous d-norm and Wy is a fuzzy set on ¥ X A x (0, o), satisfies for all &, ¢, it > 0:
(1) @y (&,7,d) >0V (&7) € ¥ xA;
(2) wy(e 7,a) =1

e, 7,

() wy (&, 7a) = wy(F,&,d) V& Fe ¥ NA;
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evl,fz)ﬂvl + 8(51, fg)g + g{)(ev],fg)lxvl) > d)g(él,ﬁ,d)
z,fl,g)*wg(éz,?z,ﬁ)fOV all 1,60 €Y and 71,72 € A;

Remark 2.1. Taking 0(&1,%2) = N((&1,%2) = 9(&1,%2) = b, forallb > 1, then we derive that fuzzy bipolar
b-metric space [15].

Example 2.1. Let ¥ = {1,2,3,4}, A = {2,4,5,6} and 0,8, 9 : ¥ X A — [1, 00) be three mapping defined
as 0(&,F) =+ 7+ 1N(87) =&+ ¥+ 1and p(¢,7) = & +#— 1. Define wy : ¥ x A x (0,00) — [0,1]
defined by

min{¢&, #} + d

forallé € ¥ and ¥ € A. Then (‘Y,A,dz;},*) is a NEF,BMS with the continuous d-norm % such that
oxb = ob. Conditions 1 to 3 and 5, 6 be easily verify we only prove 4. Let & = 1,7, = 4,71 = 2 and
¢y = 3. Then

v

Wy (&, F, i) =

min{1,4} + 64 + 6¢ + 4il

max{1,4} + 64 + 6¢ + 4ii

S 6 + 2¢ + 6if + 3dic + 2it + 2411 + dcil

T 24+ 8¢ + 124 + 4dc + 611 + 2¢1i 4 3¢l + dcil
> Wy (1,2,8) % @;(3,2,¢) * wy(3,4, ).

wy(1,4,9(1,4)d +N(1,4)c + p(1,4)1) =

Similarly, the remaining conditions can be proved. Hence (¥, A, wy, %) is a NEF,BMS.

Example 2.2. We replace product d-norm in Example 2.1 by minimum d-norm, then (¥, A,w;, ) is
not a XEF,BMS. For instance, let &1 = 1,#, = 4,71 = 2, ¢ = 3 and d = 0.02,¢ = 0.03,11 = 0.04
with 9,8, 9 : ¥ X A — [1,00) be three mapping defined as ¥(¢,7) = ¢+ 7+ 1,N(&,#) = & + 7+ 1 and
Q¢ F) =& +7—1, then

1+0.46
Dy . . . = = (0.327
wb(1,4,012~|—018~|—016) 17046 0.32735,
and
. ~1+0.02
wb(1,2,0.02) =37 00m - 1.009,
2+ 0.03
0:(3,2,0. = = 0.6699
wb(3, ,0.03) 37003 0.6699,
3+ 0.04
07(3,4,0.04) = = (0.7524.
wb(3, ,0.04) 17004 0.75
Clearly,

W (1,4,0.12 4 0.18 + 0.16) # wy(1,2,0.02) x wy(3,2,0.03)
* Wy (3,4,0.04).

Hence (¥, A, Wy, %) is not a NEF,BMS with minimum d-norm.
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Definition 2.4. Let (¥, A, Wy, *) be a REF,BMS. The points belong to ¥, A and ¥ N A is said to be Left,
Right and Central points respectively.

Lemma 2.1. Let (¥, A, Wy, *) be a NEF,BMS implies that

wy (8,7, vid) > Wy (&,7,4)
forée¥,fe Aandv e (0,1). Then é = 7.

Proof. We know

Wy (&, 7, vd) > Wy (8, F,d) for i > 0. 2.1)

Wy (8,7, vid) < Wy (8,7, 4d). (2.2)
From (2.1) and (2.2) and definition of NEF,BMS, we get é = 7. O

Definition 2.5. Let (¥, A, Wy, *) be a REF,BMS. A seq {é;} € ¥ converges to a right point ¥ iff for every
€ > 0and i > 0, we can find that €y € IN implies that Wy (&, 7,d) — 1as € — oo ¥ £ > £y. Similarly, a
right seq {7} converges to a left point é iff for every € > 0 and id > 0, we can find that £y € IN implies that

wb(é,?g,d) —>1last - ooV =>4

Definition 2.6. Let (Y, A, Wy, +) be a NEF,BMS then:
(1) The (&,7¢) € ¥ x A are reffered as bi-seq on (¥, A, Wy, ).
(2) Suppose &, and ¥, are converges, the seq (&¢,7¢) € ¥ X A are called as convergent seq. Suppose &
and ¥¢ are converges to some center point, bi-seq (&, ¥¢) is called as biconvergent seq.
(3) Abi-seq (&,7¢) on NEF,BMS (¥, A, Wy, *) are called as Cauchy bi-seq if for each € > 0, we can find
that £y € IN implies that Wy (&, 7y, d) — 1as €, 0 — oo forall i >0,¢,0> {o(€, 0 € N).

Definition 2.7. The fuzzy NEF,BMS (¥, A, Wy, *) is called a complete if every Cauchy bi-seq in ¥ x A is

convergent in it.
Proposition 2.1. In a NEF,BMS, every convergent Cauchy bi-seq is biconvergent.

Proof. Let (¥, A,wy,+) be a NEF,BMS and a bi-seq (¢, 7¢) € ¥ x A implies that {¢} — 7 € A and

{f¢} — ¢ € Y. Since (&, 7¢) is convergent Cauchy bi-seq, so for all # > 0 we have
Wy, (8e, 5, 8) = 1as € — oo,
which indicates
wy (¢, 7,d) =1 for all 4 > 0.
Hence by 2 bi-seq (&, 7¢) is biconvergent. o

Proposition 2.2. In a NEF,BMS, every biconvergent bi-seq is a Cauchy bi-seq.
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Proof. Let (¥, A, Wy, *) be a NEF,BMS and bi-seq (&, 7,) € ¥ X A converges to a point & € ¥ N A for
allf,p€ N and d > 0, by 4, we have

wi, (é{’/ Tyg, ﬁ) > ZT)E (ég, o,

39(&, & 39(éo, &)
PN d
*Wp\eo,Tor 375
b( 4 3,0( 0, r@))
as £, 0 — oo, we get
Wy (8¢, Ty, d) > 1 for all d > 0.
Which indicates (¢, 7y, 4) — 1V i > 0. Hence, (&, 7¢) is a Cauchy bi-seq. o

Lemma 2.2. Let (¥, A, wy, ) be a REF,BMS and x € Y N A is a limit of a seq then it is a unique limit of
the seq.

Proof. consider {é,} € ¥ be a seq. Assume that {¢;} - 7€ Aand {é/} = x €Y NA, thenVd,c,ii>0,
defined as

Wy (X, ¥, 8 ¢ 1) 2 Dy (X Xy e Vo0 (B ) o Y00 (B, ¥, —
AV.92Y Z We\X, Xy 07—~ )*Wp\le, X, &7~ )¥Wp\€¢, V) —F—~
’ P B E) TR T ek )
as { — oo, we get

wy(x, Fd+c+1)>1,
which indicates x = 7, i.e., seq {é,} have a unique limit. m|

Definition 2.8. A point é € ¥ N A is said to be P for the mapping @ on é € ¥ N A such that é = Dé.

Motivated by Sezen [9], we prove FP7 on NEF,BMS with an application.

3. MaIN Resurr

We demonstrate the extension of several well-known FP7 to NEFp,BMS in this section.

Theorem 3.1. Let (¥, Ay, +) be a complete NEF,BMS with three functions 9,8, ¢ : ¥ X A — [1,00)
such that

lim @y (8,7,d) = 1Y € ¥, Fe A (3.1)

Let ®:YUA — Y UA be map as follows:
(i) O(¥) CY¥and P(A) C A;
(ii) Wy (D(e), D(¥),vid) > wy(¢,7,d)Veée Y, 7€ Aand d >0, wherev € (0,1).

Also, assume that for every é € ¥, we deduce

lim 0(&;, #) and lim 0(%, &),

{— 00 {—o00

Then @ has a UF P.
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Then we get (&, 7¢) as a bi-seq on NEF,BMS (¥, A, @y, ). Now, we have
i

Proof. Fix & € ¥ and 7y € A and assume that @(&;) = &,11 and O(¥;) = ¥y for all £ € N U {0}.
0)/ (D(fO),ﬂv) > Zbg(éo,?o, ;)

w

1) = Wy (D@

for all @ > 0 and ¢ € IN. Using induction, we get
NP . y . P
(8, e, ) = Wy(P(Bumyg), P(Fag), ) = (80, Fo, ) (3.2)
and
NP y y 5 PV
Wy (811, Te, d) = Wy (D (&), P(Fug), d) = Wy(é1, Fo, F) (3.3)
Vi >0and ¢ € IN. Consider ¢ < g, for £,p € N. Then
By (80, Fon ) 2B (B0, Foo ) o 1B (B2, Fry o
b\€t, T or ZWp\&L, e, 3’5(55, f@,ﬁ) p\Ct+1, 1ty 3N(é[, 1’@, d)
* Wy (81, T a
P B0 (6, 7y, )
i

i
> Wy (&, T TR . —
(80 35(ég,fg,ﬁ)) p(8esn e 3R (8, Fp, d)
i

3280(é51 7\;@/ d)fj(él”rlr ifl@)
a

* Wy (€py1, Tt

* Wy (Epyo, Trr1 — —
B Pt g R e o)

N

~

Y

* Wy (€ 7
b( e 320 (¢, ?@)@(ééﬂrlz 7’@)
d . . a
* Wi (€ Ye, —————

* Wy (8pa1, T
p(Eer1, Fev, Pl 70

o i
* BT e R G )
* Wy (Ep 42, Tey2, — Va —
335{7<€[,79)9(854_1,7’@)0(3{4_2,T@)
i
3398, T0) 9 (Eev1, T0)R (812, 7p)

* Wy (Ep43, Te42,

. a
* By Ces o G F o o B9 Errn 7)
> g (8, Py )+ By (B0, Pty ) K
30(&, 7y) 30(&, )
d
30—1@@& ?9)80(5€+1/?9)' '5(50—1/?@—1)

* ZZ)E (é@_1, f@_l,
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v

i
P(Ce, 7o) (Ber1,7p) - N(Ep, Tp1)

)

)

* Wy (€, Top-1, =

x

* Wy (&, 7 — — — —
by 39—180(66’/ 7@)50(€g+1,7’@)"'50(€g, r@)

Apply (3.2) and (3.3), we get

wi, (éé’/ 17@, d) > ZZ?E (éo, o,

).

From (3.1), as £, 0 — oo we get
Wy (&, 7y, d) > 1 forall d > 0.

Therefore, bi-seq (¢, 7¢) is a Cauchy bi-seq. Since (¥, A, Wy, +) is a complete. So, bi-seq (&, 7¢) is a
convergent Cauchy bi-seq. By Proposition 2.1 the bi-seq (&, 7¢) is biconvergent seq.

As, bi-seq (&, 7¢) is biconvergent then we can find y € ¥ N A implies a limit of seq {&/} and {#}.
Using Lemma 2.2, both seq {¢/} and {7/} has a unique limit. From 4, assume

v »

Wy (Q(x), X, d) 2 Dy (P(x), D(Fe), 35(@?)(),%) <y (P(Ec), P(7e), m)
(P (), X, 3p(P(x), x) :

forall £ € N and 4 > 0 and as ¢ — oo we obtain
Wy (P(x), x,d) = 1x1+1 = 1.

From 2, we get @(x) = x. Letv € ¥ N A is one more FP of @. Then

v

y . . i
wy (x,v,d) = wy(P(x), P(v),d) = dy(x, v, ;)

forv e (0,1) and V i > 0. Using Lemma 2.1 we obtain y = v. ]
Example 3.1. Let ¥ = [0,1], A = {0JUN — {1} and 9,8, 9 : ¥ X A — [1, ) be three mapping defined
as 9(&,F) = E+F+ 1N F) = & + 7+ 1and p(&7) = & + 7~ 1. Define wy(&,7,d) = s for all
d>0andée¥and¥e A. Clearly, (¥, 4, wy, +) is a complete REF,BMS, where * is a continuous d-norm

defined as o+b = ob.
Define @ : YUA - YUA by

V x € Y UA. Thus, Theorem 3.1 of all axioms are fulfilled. Hence ®@ has a UF P, i.e., x = 0.
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Theorem 3.2. Let (¥, Ay, +) be a complete NEF,BMS with three functions 9,8, ¢ : ¥ X A — [1,00)
implies that
lim by (&, %,d) =1 ¥ 8 € ¥, 7 € A. (3.4)

Let ®:YUA — Y UA be map as follows:
(i) O(¥) CAdand O(A) CY;
(ii) Wy (D(¥), D (&), vid) > wy(¢,7,d),VeEéeY, 7€ Aandi >0, wherev e (0,1).

Then @ has a UF P.

Proof. Fix & € ¥ and consider @(¢;) = #r and @(#;) = &,41 for all £ € N U {0}. Then we get (&, 7¢)
as a bi-seq on NEF,BMS (¥, A, @y, *). Now, we have

for all @ > 0 and ¢ € IN. Using induction we obtain

P . . . ..
Wy (8¢, Te, d) = Wy (D (Feo1), P (&), d) = (&, To, ﬁ) (3.5)
and
. L. . . oL o . a
Wy (Ep 41, Te, @) = Wy (D (Fe), D (&), d) = Wy (&0, To, W) (3.6)

V> 0and ¢ € N. Consider ¢ < g, for £, 0 € N. Then

N VI d e .
Wy (8¢, Ty, i) 2Ty (&, Te, W) * Wy (811, Te,
+To
i
380(é€/f0)

v

)

* Wy (Eps1, T,

a

3N(&, 7p) )

> Wy (&, T, ) * Wy (Eey1, e,

30(&, )

e .y a

* Wy (€p+1,Te41 v ”
e T G E oG 7o)
a

* Wy (8p42,Te41 — —
T AT

v

* Wy (842, 7 S
b( e 3280(65170)9(65+1170)
d Ve d
* Wy (€ ve, —————

)

a
* Wy (Epy1, To41 — —
R R ALI RN

i
320 (8, 7o) N (81, ) )

v

a

3380(éf/ fg)g{)(ég+1, 7\/{Q)’Z\j(é{f+2/ 7\;@)

* Wy (Epy2, Tes1,

* Wy (Epv2, Tego,
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v

a
3380<é€’ 7\//Q)So(élf%*h 7\;Q)><(éf+2/ 7\;@)

v

i
3390(Ee, T9) 9 (Er11,70) 9 (Ee12, Tp)

L)*wv(é 7 L)*
36(¢, 7,) BT 358, 7,)

* Wy (Er+3, Ter2,

* 'ZI)E <é5+3/ ?g/

> w;} (éfr 7\;(1
a
3@_189(é€/ 7’@) 0 (8r41, 7’@) T 25(50_1, 7’@—1)

i
3¢ 9(8r, )9 (8e11, 79) -+ N(Eg, 1)

* ZDE (ég—lr i’/g—l/

* Wy (6, Fp1,

N¢

* Wy (Eo,To, 30 0(8r, 7p) 9 (Bes1, o) - - 9 (€0, Tp) ).
Apply (3.2) and (3.3), we get
N A Y- d {0 d
Wy (8e, T, ) = Wy(éo, Fo, 3020(8,, f@)) * (8o, o, 3v2lHIN(e,, 7 ))
heren * 1y (0, Fo, ji )

From (3.4), as ¢, 0 — co we get
Wy (8¢, Ty, d) > 1 for all d > 0.

Therefore, bi-seq (&, 7¢) is a Cauchy bi-seq. Since (¥, 4, Wy, *) is a complete. So, bi-seq (&, 7¢) is
a convergent Cauchy bi-seq. By Proposition 2.1 the bi-seq (&, #¢) is biconvergent seq. As, bi-seq
(¢¢, 7¢) is biconvergent then we can find y € ¥ N A implies a limit of seq {¢;} and {#/}. Using Lemma

2.2, both seq {¢/} and {7/} have a unique limit. From 4, assume

Wy (D (x), X, d) 2 Wy (P (x), P(&), %

forall £ € N and d > 0 and as { — oo we have
Wy (P(x), x,d) = 1x1+1 = 1.
From 2, we get @(x) = x. Letv € ¥ N A is one more P of @. Then
wy(x,v,d) = wy(P(v), P(x),d) = Dy(x, v, %v)

for v € (0,1) and for all 4 > 0. Using Lemma 2.1 we obtain y = v. m]
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Example 3.2. Let ¥ = [0,1], A = {0}UN — {1} and 9,8, 9 : ¥ X A — [1, 00) be three mapping defined
as V(&,7) = e+ ¥+ 1,N(&,¥) = & + ¥+ land p(&,7) = & + ¥ - 1. Define
(=72
Wy(&Fd) =e T, VEeY,Fe,id>0.
Then (¥, A, Wy, +) is a complete REF,BMS with product d-norm. Define @ : ¥ UA — Y U A by
1_T5_X/ lf)( € [0/ 1]/
0, ifx e N-{1},

VYxeYUA. Leté € [0,1] and ¥ € N — {1}, then

D(x) =

y y T b v
Wy (P (&), (), vid) = wy, ,0,vi

= Wy (&, 7,d).
Thus, Theorem 3.2 of all axioms are fulfilled. Hence ® has a UF P, i.e., x = 0.

Theorem 3.3. Let (¥, A, 0y, ) be a complete NEF,BMS with three functions 9,8, ¢ : ¥ X A — [1,00)
and @ : Y UA - Y UA amap as follows:
(1) O(¥) C ¥ and O(A) C 4;
) For & € ¥, € Aand & > 0,ay(&,7,d) > 0 = wy(D(), D(F),d) = w(wy (8,7,
W : (0,1] — (0,1] is an increasing function implies that lim,_,., @’ (v) = 1 and W(v) > v for all
ve(0,1].
Then @ has a FP.

Proof. Let & € ¥ and #) € A implies that @(é;) = &1 and @ (7;) = ¥4 for all £ € IN U {0}, then
(€, 7¢) be a bi-seq on XEF,BMS (Y, A, Wy, +). By condition of 2 for all 4 > 0 and condition 2, we get

Wy (&, e, 8) = W (y (8, 7o, &) (3.7)
and
Wy (&1, e, d) 2 O (g (81, 7o, ). (3.8)
Let £ < g, for {,p € IN. Then
e i oo i
Wy, (8¢, 7o, d) 2Wy (8¢, T, m) * Wy (Epv1, e, m)
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v

L)*wv(é ¥ __4
36(¢, 7,) BT B3R (8, 7,)

)

> ﬁ)i}(ég, Te,

* Wy (Epy1, o1 —— —
R R ALI RN

* Wy (Epy2, o1 — — —
R AN N

d
9 (Ee11,70)9 (841, 7p)

)1»
@%

(€[+2, r@/ 32 )

ey a a

> 1y (&, e, T) * Wy (€41, T0) o)
30(é¢, 7p) 3N(é¢, 7y)

* Wy (Ept1, Fo41 ————— —
e P o )

* Wy (Epy2, o1 — — —
A R N N

o

i
3398, 7o) 9 (Er1,79)0(Er12,Tp)

v

i
33908, T9) 9 (Br41,7) N (Ee12, Tp)

~

i
339 (e, )9 (Cr11,79) 9 (Eev2, 7o)

z o

i
s o) X Wl Te, g
30(8, 1’@)) b(Ber e 3N (&, 7y)

* Z\DZ, (ég—ll 7\;@—1/

* ﬁ’;} (é€+2/ Fet2,

* ﬁ’;} (é€+3/ Fet2,

* ,(I)lvy (éf+3/ ?Ql

> Wy (8, e, ) *-

a
30—1@(@’1 i’/@)@(ét’Jrl; 7\;@) te Zv)(ép—ll i’/p—l)
a

* Wy (85, Fom1, —

* Wy (&, 7 — — —
b 30_1@(651 r@)@(et’ﬂ,rg) e @(391 rg)

Apply (3.7) and (3.8), we get

N¢

— ——)).
39_180(65, 7’@)8{)(3€+1er) T go(eg, r@)

As £, 0 — oo, we have Wy (&, 7,,d) — 1 for all @ > 0. By Theorem 3.1. We get, if y € ¥ N A implies
a unique limit of seq {¢/} and {7}, then y is a 7P of @. We have, @y (&, x,d) — d for all 4 > 0 and
Wy (Ep1, P(x), d) = Wy (D (&), D(x),d) = W(wy (e, x,d)) = Wy (&, x,d), and &1 = P(x), such that
D(x) = x- =
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v

€[0,1] and 9,8,9 : ¥ XA — [1,00) be

Example 3.3. Let ¥ = {2,4,5,6},A = {1,4},04b = ¢ b
¢ +1and p(¢,7) = & + #— 1. Define

Yo

three mapping defined as 9(¢,7) = é + 7+ 1,N(¢,7) =
oy oy x  Min{é, 7} +d y g y
wy (¢, 7,d) = maxE A F dfor allé € ¥,7 € Aand for all 4 > 0.
Then (Y, A, Wy, *) is an complete NEF,BMS. Now, define w : (0,1] — (0,1] implies that ®(v) = +v.
Now, w(v) = v satisfies W function.
Let © : YUA — Y U A be a map implies that @(2) = ©(4) = @(1) =4, D(5) = ©(6) = 1. Thus
Theorem 3.3 of all axioms are fulfilled. The FP of D is é = 4.

Theorem 3.4. Let (¥, A, Wy, ) be a complete NEF,BMS with three functions 9,8, ¢ : ¥ X A — [1,00)
and @ : YUA - Y UA amap as follows:

(i) O(¥) C Aand D(A) CY¥;
(i) For &€ ¥, 7€ Aand d > 0,w;(&,7,d) > 0 = wy(D(¥), D(&), &) = w(by (8, 7,4)).

Then @ has a FP.

Proof. We can easily prove by Theorem 3.3 and Theorem 3.2. m|

4. APPLICATION

In this part, we investigate the existence and unique solution of integral equations as an appli-

cation of Theorem 3.1.

Theorem 4.1. Assume that the integral equation
do)=be)+ | Qe (c))de, e T1UTy,
T1UT,
where Ty U Ty isa Lebesgue measurable set. Let
(1) Q: (T?UT3) x[0,00) = [0,00) and b € L®(Ty) UL®(T2),
(2) there is a continuous function 0 : T2 U T2 — [0,00) and v € (0,1) such that

12(0,¢,é(c)) — Q(o,¢,7(c))l < vO(0,c)(1E(0) —F(o)]),
forg,c € Tf U T%,
3) SUP e, U, leuTz 0(p,¢)dc < 1.

Then the integral equation has a unique solution in L*(T1) UL®(T,).

Proof. Let ¥ = L®(T;) and A = L*(T;) be two normed linear spaces, where T1, T, are Lebesgue
measurable sets and m(T; U T;) < 0.

Consider @y, : ¥ X A x (0,00) — [0,1] by

SUP e, UTy lé(e)—-F(o)l

wy (¢, 7,d) =e @



Int. ]. Anal. Appl. (2024), 22:223 13

for all ¢ € ¥,7 € A. Define 4,8, : ¥ XA — [1,0) be three mapping defined as 0(¢,7) =
E+F+1N@EF) =R +7+1and (&7 = &+ #— 1. Then (¥, A, by, +) is a complete NEF,BMS.
Define the mapping @, ® : L*(T1) UL®(T,) — L°(T;) UL®(T,) by

Do) =blo)+ |  Qocéc))ds, pe TruTh.
T1UT,
Now, we have

|P&(0)-Pi(0)l

Wy (D¥(0), DF(0), vit) = ¢ *Peetivty

b(@)+ fp, ur, Plos()de=bo)-[f, ur, QlecH(<)de)l
—c SuppeTl ul, od

B(g)+\ffluf2 Q(ﬁ,c,E(:))d;—(E(gH leuTz Q(ﬁ,c,f(c))dc)

—SUp, .t. Ut ~
—=e pgeTluTz vi

St 12(0.c8(c)) Qe H(c) e
—SUp f Uf, ——2 -
2 e peT1UTy v

Jryut, v0(00) ((0)-F(o))de

>e SUPuety Uty v

Jr, U, v6(ec)(1E()~Ho))de
—sup .+, Ut 12 =
2 e 0eT1UTy vi

e(0)-+o)
> o SUPr U, T

= Wy (8, 7, d).

Hence, from Theorem 3.1 of all axioms are fulfilled and thus integral equation has a unique

solution. O

5. ArprLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

Fractional differential equations (FDEs) can be used to model and study physical systems with
continuous distributions or interactions. They offer a framework for understanding the complex
behaviors and interconnections present in various engineering systems. There are several possible
applications for implicit differential equations (FDEs) in engineering research. In this part, we
show that the FDE has a single solution. These kinds of differential equations are frequently
utilized in engineering. These formulas offer an adaptable structure for comprehending and
evaluating continuous distributions and interactions in a range of engineering domains. By
merging ideas from graph mappings, Kannan mappings, and fuzzy contractions, Younis and
Abdou [16] creatively developed a brand-new concept known as Kannan-graph-fuzzy contraction.
We demonstrate that the following fractional differential equations have a unique solution in the
sense of the Caputo derivative. Refer to this work [17] for further details.

Dy, #(0) +8(0,7(0)) =0, 0<p<1, (5.1)
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with boundary conditions

F0)+7(0) =0, #1)+7#(1)=0,
where, 1 < 1 < 2, g: [0,1] x Rt — R* are continuous functions. Let ¥ = (C[0,1], Rt = (f :
[0,1] = R*}, and A = (C[0,1], (=0,0]) = {f : [0,1] = (=o0,0]} : are f is a continuous function.
Define Qp : ¥ x A X R™ — [0,1] by

sup ey, U, F(0)-a(0)?

Qb(i\’/,CD,TO =e n ,

where i +b = ib. Consider # € ¥ U A solves (5.1) and for every # € ¥ U A is defined as
1 1
o) = [ (=8 1= )ats 79

1
+ﬁfo (1-3)T2(1-0)a(3,#(3))ds

1 0

g | =9 s
(1) Jo

Theorem 5.1. Consider the operators 7 : ¥ UA — Y U A are given by:

Such that
(1) forall¥ € ¥,@ € Aand g: [0,1] X [0,00) — [0, ), satisfies

)

sup
0€(0,1)

Then T has a unique solution.

Proof. Leti e ¥, @ € A,

1 1
THo) - T (o) =|—— fo (1= 971 (1 - g) (0(8 73) - (% @(3))))ds
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< (ﬁn) fol(l -5 (1~ @)'(g(é,f(é) —9(5,@(5))))|ds
+ﬁf()l(l—5)’7‘2(1—@)‘(9(5,?(5)—g(é,w(sf))))d§
+ % fop(@—é)"‘1 (a(5,7(3) — (5, @(%)))) d§)2

< (% fo 1(1 —8)1Y(1 - 0)o2|F(3) - @ (3)Id3

+ ﬁ fo (1721 - 0o} E) - (S

+ % fo p(@—g)'l—lo%|f(§) —m(§)|d§)2

= al¥(0) —w(@)lz(%n) fol(l =511~ o)ds

1 ! _x\n—2 _ X L ¢ _x\n-1 vz
+—(D(T[—1)fo<1 $)T(1 @)ds—l—q)(n)fo(g Hn ds)

2
zalf(e)—w(@)lz(q)l_p JLlre, @ ))

So, we have
2

T#0) - T(0)| <oli(o)-a(o)l,

ie.,
2

sup eio1) |7 7(0) =T @(0)

_suPgpy (o) ~ ()P

0Tt Tt
2

T#0) - T o(p)

SUP e (0 1] 2

7

) ( Sup (1) [7(0) — @(0)
>exp| — -

exp(—

oTt

thus, we have

Oo(T7(0), Ta(0),0m) 2 Qo (F(0), @(0), 7).

Hence, Theorem 3.1 of all axioms are satisfied, we can find that the Caputo fracional solution (5.1).

O
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