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Abstract. In this article, we review a number of iterative and analytical techniques to approximate structured singular

values or µ-values which is a straightforward generalization of singular values for square and rectangular matrices.

The µ-value is a well-known tool which acts as a strong link between numerical linear algebra and control theory.

The computation of structured singular value provides a platform to study and discuss stability, performance, and

robustness of the system. Furthermore, we review some very important literature that discusses the applications of

structured singular values in different areas of engineering.

1. Introduction

The mathematical approximation to structured singular value for a given real or complex valued

matrix (n-dimensional case) and a set with a block diagonal structure that represent the sets of

structured uncertainties were introduced by J. C. Doyle [1] as a tool to analyze and synthesis of

the linear time-invariant systems (LTI systems in control) which appears in the control theory. The

methods developed by Doyle to compute structured singular values involve the minimization of

the largest singular value, an admissible perturbation ∆ from the uncertainty set.

The review paper gives a fairly brief introduction to some well-known methods developed by

using various tools from mathematics and engineering to compute structured singular values.

In this paper, we mainly focus on those numerical methods that are developed to approximate

structured singular values from below. The main objective to develop such a µ-theory was to

study and discuss both robustness and performance-like properties corresponding to the linear

time-invariant feedback systems which does appear in control.

The computation of µ-values in an exact manner is very crucial and tedious, unfortunately

it is a NP-hard problem [2]. This motivates us to develop some numerical methods for the
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approximation of structured singular values both above and below. The numerical approximation

of lower bounds of structured singular values allows us to study and discuss the instability of

LTI feedback systems appearing in control. Furthermore, the numerical approximation or exact

computation of structured singular values from above gives a message to discuss the stability of a

LTI system under control.

The organization of this article as follows: In Section 2 of this paper, we review a number of well-

known iterative methods to approximate structured singular values from below while making use

of some established mathematical techniques.

2. Mathematical methods to compute structured singular values

2.1. Feedback systems analysis via structured perturbations. A most generic approach to analyze

the Linear Time Invariant (LTI) systems with structured uncertainties consists of a new generalized

spectral theory of matrices is presented in [1]. The proposed theory addresses the norm-bounded

type of perturbation problem with an arbitrary structure. For matrix M ∈ Cn,n or Rn,n which

has a block diagonal perturbation, a mathematical function µ was introduced that provides both

necessary and sufficient conditions to the structured perturbation problems. The properties of the

µ function were given with the matrix algebraic terms. Techniques were developed to compute

the µ in some important special cases. Furthermore, examples and discussions in computing were

also provided for a much better understanding of the µ function.

The block-diagonal perturbation: The analysis based on singular values establishes a framework

to develop the multi-loop generalizations to the classical single-loop techniques. But, unfortu-

nately, the singular value techniques have their own limitations, for instance, the analysis of linear

multi-variable feedback system having two multiplicative perturbations appears at the inputs and

outputs.

In singular value techniques, the system can be isolated into two perturbations as a single per-

turbation having two-block-diagonal structure. At a later stage, the block-diagonal perturbation

is written with a one full matrix perturbation.

The analysis of differential sensitivity to singular values at a single point relative to perturbations

at other points, is nothing but an extension to singular values. But, unfortunately, this does not

holds true for large perturbations, and this yields to directional sensitivity information.

The matrix problem of determining both necessary and sufficient conditions so thatλi(I+M∆) ,

0, ∀i. The partial solution to the general block-diagonal perturbation problem, and solution to three

or fewer blocks is presented in [1].

In [1], a very many important properties of structured singular values are provided, these

includes:

P1 : µB1(A) ≥ 0, for any A.

P2 : µB1(αA) = |α|µB1(A), for any A, and for all α ∈ C.

P3 : µB1(AB) ≤ σ1(A)µB1(B), where σ(A) is the largest singular value of A.
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P4 : µB1(∆) = σ1(∆), ∀ ∆ ∈ B1.

P5 : Let ∆0 = {λI : λ ∈ C}, then µB1(A) = ρ(A), where ρ(A) is the spectral radius of A.

P6 : Let ∆ = {∆0 : ∆ ∈ Cn,n
}, then µ∆(A) = σ1(∆).

P7 : SupµB1(A) = ||A||∞.

P8 : Let ∆ = {diag(∆1, ∆2, · · ·, ∆n) : ∆i ∈ Cn,n
}, then µ∆(A) = µ∆(D−1MD), where D = diag(d1, · ·

·, dn), |di| ≥ 0.

P9 : Let ∆0 = {diag(∆1, ∆2, · · ·, ∆n) : ∆i ∈ Cn,n
}, then ρ(A) < µ∆0(A) < σ1(A).

P10 : From P8, and P9 we have that µB1(A) = µB1(D
−1AD) ≤ in f σ1(D−1AD), where in f is taken

over D.

For the differentiability properties of singular values, the necessary tools were developed in [1]

to compute the gradients for singular values.The following new results on the computation of

µ−values were established.

Theorem 2.1. The structured singular value µ(M) = 1 if and only if 0 ∈ ∇2(M), with ∇2(M) defined
in [1].

Theorem 2.2. The largest singular value σmax(M) = µ(M) if and only if 0 ∈ Co∇2, with Co∇2 defined
in [1], and n ≤ 3.

We refer interested readers to [1] to see two numerical examples and a detailed discussions

regarding the computational experience.

2.2. An iterative method to yield the lower bounds of µ. A new iterative method in order to

approximate µ-values, is developed and then investigated [3]. The developed numerical technique

is based on an algorithm which is a two-level algorithm, i.e., an inner-outer algorithm. In case

of the inner algorithm, we aim to formulate and then solve a system of ODEs (gradient type)

corresponding to an optimization problem induced on the manifold which is yield by the defined

structure. In the case of the outer algorithm, a Newton’s type iteration is used for the adjustment

of the desired perturbation level denoted by ε. The inner-outer algorithm µ-values from below

instead of above.

2.2.1. Inner-Algorithm. Theorem 1 confess to compute an admissible ∆ ∈ B∗, where B∗ is the set

consisiting upon the block diagonal matrices having only pure complex perturbations. We refer

to [3] for definitions of sets of block diagonal matrices.

Theorem 2.3. Consider that ∆opt = diag (δ1Ir1 , δ2Ir2 , · · · , δ2IrS; ∆1, ∆2, · · · , ∆F) : ||∆opt||2 = 1, is an
extremizer (in the sense of local) of structured epsilon spectral value set ∆B

ε (M). Additionally, we assume
that εM∆opt has a largest eigenvalue in magnitude (which is a simple eigenvalue too) λ = |λ|eιθ, 0 ≤ θ ≤ 2π

having both right and left eigenvectors x and y. These eigenvectors are scaled such that s = eιθy∗x > 0.
Furthermore, we partition the eigenvectors as

x =
(
xT

1 , · · · , xT
S ; xT

S+1, · · · , xT
S+F

)T
,
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and

z = M∗y =
(
zT

1 , · · · , zT
s ; zT

s+1, · · · , zT
s+F

)
.

We assume that z∗kxk , 0, ∀ k = 1, 2, · · · , S and ||zS+h||2 · ||xs+h||2 , 0, ∀ h = 1, 2, · · · , F. Then, we have
that |δk| = 1, ∀ k = 1, 2, · · · , S, and ||∆h||2 = 2, ∀ h = 1, 2, · · · , F.

An important conclusion is presented in [3] to replace full blocks with matrices which having

rank one. In turn this permits to work with matrix Frobenius norm rather than that of 2-norm.

The reason is that for rank-1 matrices, both matrix 2-norm and matrix Frobeneius norm are equal.

This further helps to search for local extremizer.

Theorem 2.4. [3] Let ∆opt = diag (δ1Ir1 , δ2Ir2 , · · · , δ2IrS; ∆1, ∆2, · · · , ∆F) is an extremizer (in the sense of
local). Assume thatλ, x, z such that all these quantities are considered as in above Theorem 2.3. Furthermore,
suppose that the non-degeneracy conditions for full blocks holds. Then each block ∆h possesses a singular
value having the value exactly equal to 1 corresponding to the singular vectors

uh = γh
zS+h

||zS+h||2
νh = γh

xS+h

||xS+h||2
, for |γh| = 1 .

Additionally, the matrix valued function

∆∗ = diag
(
δ1Ir1 , δ2Ir2 , · · · , δ2Irs; u1ν

∗

1, · · · , uFν
∗

F

)
acts as an extremizer (in the sense of local), that is, ρ(εM∆opt) = ρ(εM∆∗).

The system (gradient type) of ODE’s is constructed and solved in [3] whereas the solution of

system of ODE’s yields a local extremizer on manifold given as B∗1:

∆̇ = D1PB∗(zx∗) −D2∆ ,

whereas ||x(t)||2 = 1 and is corresponding to an eigenvalue (the simple one) λ(t) of matrix

εM∆(t), ε > 0. The matrices D1(t), D2(t) depends on ∆(t) and PB∗(zx∗) is the orthogonal pro-

jection of matrices zx∗ on B∗. The stationary points of ∆̇(t) are computed with following Theorem

3.

Theorem 2.5. [3] Let ∆(t) and z(t) is maximum simple non-zero eigenvalue of the perturbed matrix εM∆

having both right and left eigenvectors x(t), y(t). Also, we assume z(t) = M∗y(t), then we have

d
dt

∣∣∣λ(t)∣∣∣2 = 0⇔ ∆̇(t) = 0⇔ ∆(t) = D PB∗ (z(t) x∗(t)) ,

for a matrix (of diagonal nature) D ∈ B∗. Additionally, if z(t) possesses the maximum modulus over the set
∆B∗

ε (M), then the matrix D is positive diagonal matrix.

In [3], the mathematical results for approximation of bounds from below forµ-values for a mixed

type of both real and complex uncertainties and even for more general cases are also presented

and analyzed.



Int. J. Anal. Appl. (2024), 22:232 5

2.2.2. Outer Algorithm. For the outer algorithm, the following Theorem 4 is given in [3] to compute

the change in λ(ε) w.r.t ε > 0.

Theorem 2.6. [3] Let ∆ ∈ B∗, and λ(ε), ε > 0 is simple largest eigenvalue of εM∆(ε). Suppose that x(ε)
and y(ε) are both right and left eigenfunctions corresponding to εM∆(ε). Let z(ε) = M∗y(ε), then

d|λ(ε)|
dε

=
1

|y(ε)∗x(ε)|

 s∑
i=1

∣∣∣zi(ε)
∗xi(ε)

∣∣∣+ F∑
j=1

∥∥∥zs+ j(ε)
∥∥∥ ‖ys+ j(ε)‖

 > 0.

Furthermore, for the numerical statistics, the results obtained by [3] compared with Matlab

function mussv and those obtained with new algorithm are much better than those obtained with

the mussv function.

2.3. Computing µ-values with low-rank ODE’s based techniques. Approximation of bounds

from below corresponding to structured singular values are estimated in [4]. The presented math-

ematical approach is based on an algorithm which is an inner-outer algorithm. The representation

of matrices for a finite symmetric groups Sn on field of numbers (only complex but not real) are

considered, also the numerical testing are carried via use of the Matlab function mussv and that of

an algorithm [3]. The comparison for µ-values bounds show an effectiveness of algorithm given

in [3].

The numerical treatment of µ-values against representations for a class of matrices for the finite

symmetric groups S3 and S4 of the field of numbers (only complex but not real) are presented in [5].

The comparison of results on bounds of µ-values are carried out via numerical experimentation on

a family of matrices corresponding to symmetric groups. For the computation of µ-values, it has

been considered only pure complex perturbations which are in the form block-diagonal structures.

In [6], the computation of µ-values from below are presented and analyzed. In particular

the rotary electrical machines, is presented. The computation of structured singular values are

presented for both real and complex uncertanities in the form of structured and unstructured

matrices. For the numerical experimentation, a low-rank based numerical technical [3] is being

used.

The numerical computation of µ-values from below against companion matrices with a math-

ematical approach based upon ODE’s is developed [7]. The perturbation set consists of block

diagonal matrices, which having both structured blocks (the repeated numbers of real scalar

blocks), and unstructured type of blocks.

2.4. A new mathematical technique for approximation of real µ-values. The study a real uncor-

related parameter uncertanity, a new algorithm to compute lower bounds (to give tighter results)

of structured singular values is presented in [8].

Furthermore, it is conjectured that the solutions corresponding to realµ-valued problems always

look like as a 2-dimensional face of an n-dimensional hypercube in the parameter space. This

conjecture provides the basis of the lower-bound algorithm, which is presented by authors in [8].



6 Int. J. Anal. Appl. (2024), 22:232

In general, the control systems are considered to be robust for the plant dynamics in the sense

that they provide closed loop stability, and the robust performance. The plants transfer function

is represented in term of real valued physical parameters. These physical parameters includes

aerodynamic coefficients, both electrical and mechanical tools.

The real valued physical parameters are modelled as the uncertain gains in the linear feedback

system. These parameters are presented with a block-diagonal structure ∆. These physical real

valued parameters are written along the main diagonal of the perturbation matrix ∆. The rest of

the system interconnections are described with the transfer function matrix M(s) at various level

of frequencies s. For the stability, robustness, and performance of the system, then one can aim to

compute structured singular values of M(s) with respect to ∆.

The main advantages of the new algorithm compared to methods developed by de Gaston and

Chang et al are:

(a) The new algorithm consists of simple matrix operations.

(b) The iteration is on only a single variable.

(c) The new algorithm return the original values of "worst-case" parameters.

(d) The new algorithm does not require computing convex hull for real µ.

(e) For real µ, it provides an exact approximation to µ-values from below for a wide range of

real matrices.

New Algorithm: Let d = (d1, · · ·, dn) ∈ Rn,1, and let ∆ = diag(d). Also, let ||d||∞ = max|di|, which

denotes the size of perturbation matrix ∆. Furthermore, ||d||∞ = σmax(∆). Then, the aim is to find

1
µ
= min{||d||∞ : det(I −M∆) = 0},

where "min" is over d ∈ Rn,1, and M ∈ Cn,n, the given matrix.

By using de Gaston’s method, the exact worst-case solutions d satisfies ||d||∞ = 1
µ , ∆ = diag(d),

which have no more than two elements di from vector d, and does satisfy |di| <
1
µ .

The new algorithm aim to search over the set of solutions d to det(I −M∆) = 0, where two

elements of d satisfies |di| = k. The new algorithm finds a lower bound for µ, and a solution d.

These causes the matrix (I −M∆) to have at-least one of the eigenvalue to be exactly equal to

zero. We refer interested readers [8] for a complete discussion on new algorithm, and numerical

experimentation’s and applications.

2.5. A nonlinear programming based methodology to approximate real structured singular
values from below.
A new formulation of real structured singular values as a mathematical problem for a non-linear

programming problem have been developed in [9]. Furthermore, a new mathematical optimization

based methodology called F-modified sub-gradient (F-MSG) was developed to the approximation

the lower bounds of real µ-values. The F-MSG algorithm consider a much larger class of non-

convex programming models as follows:

For ε ≥ 0 a small parameter η represent the compact hyper-rectangular domain
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(δ1, δ2, · · · , δm,λ1,λ2) ∈ η with δi,λi ∈ R.

Then the quantity µ∆(M) is obtained via following two steps.

Step-1:

min(δ1,··· ,δm, λ1,λ2) maxi

(
|δi|+ (λr

1 + λr
2)

)
λ

such that 
fR(δ1, · · · , δm) − λ

p
1 = 0,

fI(δ1, · · · , δm) − λ
p
2 = 0,

(δ1, · · · , δm,λ1,λ2) ∈ η.

Step-2:

µ∆(M) =


1

max|δi|
if || fR, fI|| < ε,

0 else.

The quantity λ ≥ 105 (called a penalty parameter) is checked and fixed. The powers in step-I are

taken as r ∈ {2, 4, 6, · · · } and p ∈ {1, 3, 5, · · · }. Furthermore, authors need their algorithm to study the

stability analysis of an inverted pendulum while computing real structured singular value lower

bounds.

An algorithm with above steps generalizes the modelling, and F-MSG algorithm is used for the

solution. For M(s), the definition of structured singular value is generalized to

µ∆(M(s)) = Sup µ∆(M(iω)),

with "Sup" taken over ω ∈ R+, R+ denotes an interval [0,∞], and i =
√
−1. The matrix M(s) is

called a transfer function matrix, and ω is the frequency variable. The computation of structured

singular values can be carried out various discrete levels of frequencies [ωL,ωU] ⊂ R+. Then,

structured singular values is obtained by maximizing over ω ∈ [ωL,ωU], that is,

µ∆(M(s)) = max µ∆(M(iω)).

The solution of above optimization problem is given by the following F-MSG algorithm.

F-MSG Algorithm: F-MSG algorithm was developed by Karimbeyli, and is a generalized

version of the modified sub-gradient algorithm. The F-MSG algorithm is given as follows:

Initialization step: Take UB in such a way that UB >> |δi| ∀i = 1 : m, and sufficient small

ε1, ε2 ≥ 0. Take LB = 0, and let q be a positive number.

Step 1: Take n = 1;

Step 2: Take (vn
1 , cn

1) with vn
1 ∈ R2,1, cn

1 > 0, and φ(1) such that 0 < φ(1) < q. Set Hn = LB+UB
2 , j =

1, and then go to Step 3.

Step 3: For given (vn
1 , cn

1) , solve the constraint satisfaction problem:

Find K ∈ Ω such that L(K, vn
j , cn

j ) = f (K) + cn
j ||h(K)|| − vn

j h(K) ≤ Hn.
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If solution does not exist, then go to Step 6. If solution exists, then go to Step 5, otherwise go to

Step 4.

Step 4: Update (vn
1 , cn

1) with

vn
j+1 = vn

j − αh(K j), cn
j+1 = cn

j + (1 + α)p j||h(K j)||,

where p j is a positive scalar step size given as

0 ≤ p j =
δα(Hn − L(K j, vn

j , cn
j ))

(α2 + (1 + α)2||h(K j)||2)
,

with α > 0, 0 < δ < 2.

Step 5: Set UB = f (K j). If ε2 > UB − LB, µ∆(M) = 1
UB

, and STOP; otherwise n = n + 1, and go

back to Step 2.
Step 6: Set LB = Hn. If ε2 > UB − LB, µ∆(M) = 1

UB
, and STOP; otherwise set n = n + 1, and go

back to Step 2.
In the algorithm, LB, and UB are known as lower and upper bounds of the optimization problem

min f (K)

while the constraints are h(K) = 0, K ∈ Ω, where K = (δ1, · · ·, δm,λ1,λ2), f (K) = maxi(δi) + (λr
1 +

λr
2)λ, h(K) = [h1(K)h2(K)]T with h1(K) = fR(δ1, δ2, · · ·, δm) − λ

p
1 = 0, h2(K) = f1(δ1, · · ·, δm) − λ

p
2 =

0, and Ω is a large compact hyper-rectangle having values of K.

The following theorem 2.7 shows that if the value of Hn is feasible, then the sequence K j of the

solutions to problem in Step 3 will start converging to feasible solution of primal problem.

Theorem 2.7. Let Ω, be a compact set and let f and h are continuous functions on Ω. Let p j||h(K j)||+

cn
j − ||v

n
j || > φ( j) holds true. Then, ||h(K j)|| → 0 as j→∞, for every Hn ≥ H̄ if {K j}, j = 1, 2, · · ·.

The following theorem 2.8 gives main convergence result for F-MSG algorithm.

Theorem 2.8. Let (K j, v j, c j) be an iteration calculated at steps 3 and 4 of F-MSG algorithm for Hn = H̄.

Let {h(K j)} denotes the bounded sequence and each (v j+1, c j+1) is determined for δ = 1. Furthermore,
if steps 3-4 generates an infinite sequence L j = L(K j, v j, c j) of augmented Lagrangian, then L j → H̄ as
j→∞.

2.6. Geometrical formulation of bounds of µ-value. Geometrical interpretation-based approach

is presented in [10] to compute µ-value lower bounds against pure real perturbations. An im-

portant feature of the presented geometrical approach is resetting parametric search space. This

search space is very much independent of the number of parameter repetition in the structured

uncertainty matrix. An algorithm (only for lower bounds)is presented that combines the random-

ization and optimization methods to deal with the µ-value problem. The computational algorithm

is successfully used for two extremely challenging high-order real µ-analysis problems. These

problems were taken from the field of aerospace and system biology.
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The geometrical analysis for the subset of the uncertain parametric space satisfy the singularity

constraint in the µ-value lower bound:

det(In −M(iω)∆),

where det(·) denotes the determinant of a matrix, and i =
√
−1, the imaginary unit, and ω ∈ R,

the frequency. The notation ∆ denotes the diagonal matrix representing the uncertainty from the

set of block-diagonal matrices ∆̂.

The singularity condition is written in term of both real and imaginary parts, that is,

fR(∆) = Re{det(In −M(iω))∆},

fI(∆) = Img{det(In −M(iω))∆},

where ∆ ∈ ∆̂ = {diag(δ1Ir1 , · · ·, δpIrp) : δi ∈ R}, ri is an element belonging to set of the natural

numbers, the positive real integers, and Iri is ri × ri identity matrix for i = 1 : p. The singularity

condition can be formulated as

FR = {∆ ∈ ∆̂ : fR(∆) = 0},

FI = {∆ ∈ ∆̂ : fI(∆) = 0},

and then µ−value is defined as

µ∆(M) =
1

min σ̄(∆)
, i f FR ∩ FI , φ,

otherwise it is equal to 0.

For ∆ = 0, the det(In −M∆) = 1, and hence fR(0) = 1, and fI(0) = 0. This implies that the

manifold FI does passes through the origin and the manifold FR does not passes through the

origin. We refer interested readers to see [10] for a complete and detailed discussions on the

solution to the formulation of geometrical problems, and example applications.

2.7. Detailed comparative analysis for µ-lower bound algorithm. In [11], a comparison for sig-

nificant numerical based techniques developed to approximation of µ-values from below are

presented.

2.7.1. Power Method. The power algorithm [12] aims at solving non-convex optimization problem

which is given as: For given M ∈ Cn,n and ∆ = diag(∆1, · · · , ∆N), where ∆ is defined in [12], thus

(1) δi ∈ [−1, 1] if ∆i = δiIni .

(2) ∆∗i ∆i = Ini if ∆i is complex matrix for all i.

The local maximum is approximated via a fixed-point iteration, and the local maximum turns

out to be the lower bound of structured singular values.
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2.7.2. A gain based algorithm for the approximation of µ. In [13], µ-value problem is presented as a

worse-case H∞-problem, and then, using the algorithm developed in [14] to compute µ-values

from below of pure real uncertainties, the power method [12] is used while considering the full

complex blocks for numerical approximation of µ-values from below.

2.7.3. Exponential time methods. In [15], an experimental time method is developed for non-repeated

real type of uncertainties and later generalized in [15] while making use of the theorem (the

mapping theorem) of [17]: the kB∆ is given by an admissible perturbation ∆ → Det(I −M∆)

must possesses in admissible convex hull against 2N vectors of kB∆. The position of these images

with origin yields the computation of µ-values lower bounds. Algebraic methods [8] are used

for the class of non-repeated uncertainties (only real but not complex) searches to destabilize the

set ∆ ∈ kB∆ so that the all δi except 2 attains a maximum magnitude k, which is obtained while

making use of the matrix algebraic operations; see [18] for further details.

2.7.4. Poles migration techniques. In the poles migration techniques, the idea is to make use of the

characterization (first order) of poles variation for the system which uncertainty and are caused by

a minimal change d∆ of ∆. Poles start moving to imaginary axis while computing a series of such

perturbations d∆ of ∆. To each and every pole λ of M(S) in [19], a wast number of programming

problems (quadratic in nature) are being solved. The Frobenius norm of perturbations, that is,

||d∆||F bring λ on the imaginary axis. On contrary, power technique [12] is very fast to approximate

µ-value lower bounds, but most oftenly it is enough from convergence problems once the pure

real uncertainties. It motivates [20] to develop a three-step procedure for pure real uncertainties.

The power method is used for each and every point of the considered domain of the frequency

grid and gives better convergence.

2.7.5. Optimization based techniques. Likewise, the power algorithm [12] and the proposed tech-

niques in [15] solve the µ-value problems while simply replacing ρR having spectral radius ρ, but

they do make use of steepest ascent algorithm and conjugate gradient algorithm. These techniques

solve optimization problem (non-convex) by using the standard optimization tools (the non-linear

once), for instance, the fminon function used in Matlab toolbox

min
∆∈B

F(∆), such that |I −M∆| = 0,

where B, a set of block diagonal matrices and also F(·) denotes maximum singular value of the

matrix. A formulation singular to the above problem is considered in [9] for pure real uncertainties

min
∆∈B
λ1,λ2

F(∆) + (λ
q
1 + λ

q
2) so that


Re(|I −M∆|) = λ1p,

Re(|I −M∆|) = λ2p,

where both quantities p and q are odd and even positive integers, respectively. The quantityλ ≥ 105

is a penalty parameter. A modified sub-gradient algorithm is used to solve the optimization

problem, introduced in [21].



Int. J. Anal. Appl. (2024), 22:232 11

2.8. Gain-based lower bound technique for both real and mixed µ-problems. A novel lower

bound technique to the approximation of both real and mixed µ-problem is presented in [13]. The

new technique uses a related worse-case gain problem for the numerical approximation of real

blocks and the standard power algorithm determine the complex blocks. The testing provides

good bounds for µ-values. The gain-based lower bounds algorithm (LBA) compute the exact

real µ-values in lower dimensions. Furthermore, it switches over to worst-case gain search for

larger-dimensional problems.

Gain-Based Algorithm (GBA): Let M ∈ CnR,nR , and we consider the problem for the computing

the lower bounds for pure real µ− values, that is, µ∆R(MR), with ∆R := {∆ = diag(δ1Ik1 , · · ·, δrIkr) :

δi ∈ R}, MR is the complex valued matrix where R denotes the real block structure used in the

computation of structured singular values. It is clear from the definition of structured singular

values that ∆R does satisfies det(I −MR∆R) = 0, and in turn a lower bound 1
σ̄(∆R)

bounded by

µ∆R(MR) yields. This implies that there exists z ∈ CnR , w ∈ CnR which satisfies z = MRw, and

w = ∆Rz, and such equations can be represented by Linear Fractional Transformations (LFT)

Fu(MR, ∆R) with z, w denoting output of MR and ∆R.

The algebraic equations:

ze
 = M̄R

wd
 , w = ∆Rz, and

M̄R =

 MR ik
iTk MR 1

 ,

here d, e ∈ C, the scalar disturbance and error signals. The above set of algebraic equations are

well-posed and the disturbance to error relation is given by e = Fu(M̄R, ∆R)d if det(I −MR∆R) , 0.

The GBA aims to solve the following optimization problem:

max |Fu(M̄R∆R)|,

where max is taken over ∆R, ¯σ(∆R) ≤ µl, µl denotes the lower bound of structured singular

value. The above optimization problem is non-convex and aims for the global maximizer, which

is computationally expensive. Following theorem provides two interesting relations between

d− to− e gain and the distance of (I −MR∆R) to singularity.

Theorem 2.1. If there exists ∆R such that det(I −MR∆R) , 0, and |Fu(M̄R, ∆R)| ≥ γ ≥ 0, then:
1. ∃ a δ ∈ C, |δ| ≤ 1

γ such that det(I −MR∆R − δikiTk ) = 0.

2. σmin(I −MR∆R) ≤
1
γ .
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Algorithm 1: The GBA for real µ lower bound
Input: MR ∈ Cn,n, ∆R, ub, lb

1 Initilize lb f ac =
3
4 , and cnt = 1

2 while cnt ≤ Ntry AND lb < ub tolstop
3 lbtry = lb + (ub − lb) lb f ac,
4 k := mod(cnt− 1, nR) + 1
5

M̄R =

[
MR ik

iTk MR 1

]
6 ∆R,try := arg max|Fu(M̄R, ∆R)|
7 if rcound(I −MR∆R,try) < tolreal

8 lb = 1
σ̄(∆R,try)

9 ∆R = ∆R,try

10 lb f ac := 1
2

11 else

12 lb f ac := max( 1
32 ,

lb f ac

2 )
13 end
14 cnt = cnt + 1
15 end
16 Return: = ∆R,lb

Algorithm 2: The GBA for mixed µ lower bound
Input: M, ∆, ub, lb

1 Initilize lb f ac =
3
4 , and cnt = 1

2 while cnt ≤ Ntry AND lb < ub tolstop
3 lbtry = lb + (ub − lb) lb f ac,
4 k := mod(cnt− 1, nR) + 1
5

M̄R =

[
MR ik

iTk MR 1

]
6 ∆R,try := arg max|Fu(M̄R, ∆R)|
7 if rcound(I −MR∆R,try) < tolreal

8 lb = 1
σ̄(∆R,try)

9 ∆ = diag(∆R,try, 0)
10 lb f ac := 1

2
11 else
12 M̄C := Fu(M, ∆R)
13 Power iteration on M̄C to find ∆C,try
14 ∆try := diag(∆R,try, ∆C,try)

15 if rcound(I −M∆try) < tolcomplex AND 1
σ̄(∆try)

≥ lb

16 lb := 1
σ̄(∆try)

, Return := ∆, lb
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2.9. Computing tight bounds on the real µ-values. In [23], news tools are presented for the

computation of real µ-values lower bounds. These tools compute tight lower bounds for higher-

order plants which are subject to pure real type of uncertainties. First approach reduces the

order of uncertainty matrix (real) by using the µ-sensitivity function so that the experimental time

lower bounds algorithm can be used. Search for a worse-case real destabilizing uncertainty as a

nonlinear optimization problem is carried out by the second approach. The stability properties

for integrated flight, and population control system for an experimental vertical take-off as well

as landing aircraft configuration are studied with the help of both approaches. The results on the

tight lower bounds for structured singular values are presented.

2.10. Computation of µ via moment LMI relaxation technique. New algorithm based upon

moment LMI relation is presented by [24] in order to approximate µ-values from above to mixed

real, and complex perturbations. The idea is to formulate structured singular value approximation

as a non-convex polynomial optimization problem, this in turn is relaxed into a sequence of

optimization problems (convex type) via moment-based relaxation methodologies. In the paper,

the authors also provide the heuristic to approximateµ-values lower bounds. The numerical results

on bounds for µ-values are provided which yields results for tighter bounds once compared with

well-known Matlab function mussv.

The perturbation ∆ has a block-diagonal structure and is defined in [24]. The constraint ||∆|| < r
can be rewritten as r2I ∆

∆H I

 > 0.

The following theorem provides necessary and sufficient conditions to check the robust non-

singularity of the perturbed matrix (I −M∆) for the set of structured uncertainties.

Theorem 2.9. For r ≥ 0, a real number, the perturbed matrix I −M∆ has at-least one of its eigenvalue to
be zero for all possible uncertainties ∆ if and only if the solution to following optimization problem is

max ||x||22, s.t (I −M∆)x = 0,

r2I ∆

∆H I

 > 0.

The max is taken over x ∈ Cs2 , and ∆ ∈ ∆̂, ∆̂ has a block-diagonal structure.

Result: The structured singular value of M w.r.t ∆̂ is given by

µ∆̂(M) =
1
√

t∗
,

where t∗ is the solution to following optimization problem:

t∗ = min t s.t t ≥ 0, ||x||22 ≥ x̄, (I −M∆)x = 0,

r2I ∆

∆H I

 > 0.

Here, x̄ ≥ 0, is an arbitrary. The min is taken over t ∈ R, x ∈ Cs2 , ∆ ∈ ∆̂.
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The following theorem show how the convergence of t∗ leads to the computation of structured

singular values.

Theorem 2.10. The following results holds true:
1. h ≥ 1, t∗h is the lower bound of t∗, that is, t∗h ≤ t∗.
2. t∗h converges from below to t∗, that is, t∗h ≤ t∗h+1 ≤ t∗, and limh→∞ t∗h = t∗

3. For any h ≥ 1, det(I −M∆) = 0, ∀∆ ∈ ∆̂.

Furthermore, µ∆̂(M) ≤ 1√
t∗h+1

≤
1√
t∗h

, and limh→∞
1√
t∗h
= µ∆̂(M).

For a complete details on the computation of lower bound of structured singular values, and

numericalm experimentations, we refer interested readers to see [24].

3. Conclusion

In this piece of research work, we have reviewed and presented a number of well-known

mathematical methods for the computation of µ-values. Most of these mathematical methods are

iterative. The main aim is to present fair introduction to numerical methods for approximation

of lower bounds of µ-values. Further, we have reviewed a number of articles that discuss the

practical nature of structured singular values, particularly for engineering applications.
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[9] A. Yazıcı, A. Karamancıoğlu, R. Kasimbeyli, A Nonlinear Programming Technique to Compute a Tight

Lower Bound for the Real Structured Singular Value, Optim. Eng. 12 (2011), 445–458. https://doi.org/10.1007/

s11081-010-9120-4.

[10] J. Kim, D.G. Bates, I. Postlethwaite, A Geometrical Formulation of the µ-Lower Bound Problem, IET Control Theory

Appl. 3 (2009), 465–472. https://doi.org/10.1049/iet-cta.2007.0391.

[11] A. Fabrizi, C. Roos, J.-M. Biannic, A Detailed Comparative Analysis of µ Lower Bound Algorithms, in: 2014

European Control Conference (ECC), IEEE, Strasbourg, France, 2014: pp. 220–226. https://doi.org/10.1109/ECC.

2014.6862465.

[12] P.M. Young, J.C. Doyle, A Lower Bound for the Mixed µ Problem, IEEE Trans. Autom. Control 42 (1997), 123–128.

https://doi.org/10.1109/9.553696.

[13] Seiler, Pete and Packard, Andrew and Balas, Gary J, A gain-based lower bound algorithm for real and mixed µ

problems, Automatica-Elsevier, 46 (2010), 493–500. https://doi.org/10.1109/CDC.2006.377123.

[14] A. Packard, G. Balas, R. Liu, Jong-Yeob Shin, Results on Worst-Case Performance Assessment, in: Proceedings of

the 2000 American Control Conference, IEEE, Chicago, IL, USA, 2000: pp. 2425–2427. https://doi.org/10.1109/ACC.

2000.878616.

[15] J. Dehaene, Cheng Yi, B. De Moor, Calculation of the Structured Singular Value with Gradient-Based Optimization

Algorithms on a Lie Group of Structured Unitary Matrices, IEEE Trans. Autom. Control 42 (1997), 1596–1600.

https://doi.org/10.1109/9.649732.

[16] A. Sideris, R.S.S. Pena, Robustness Margin Calculation with Dynamic and Real Parametric Uncertainty, in: 1988

American Control Conference, IEEE, Atlanta, GA, USA, 1988: pp. 1201–1206. https://doi.org/10.23919/ACC.1988.

4789903.

[17] L.A. Zadeh, C.A. Desoer, Linear System Theory, McGraw Hill, New York, (1964).

[18] M. Elgersma, J. Freudenberg, B. Morton, Polynomial Methods for the Structured Singular Value with Real Param-

eters, Int. J. Robust Nonlinear Control 6 (1996), 147–170. https://doi.org/10.1002/(SICI)1099-1239(199603)6:2<147::

AID-RNC143>3.0.CO;2-J.

[19] J.-F. Magni, C. Döll, C. Chiappa, B. Frapard, B. Girouart, Mixed-µ-Analysis for Flexible Systems. Part I: Theory 1,

IFAC Proc. Vol. 32 (1999), 8003–8008. https://doi.org/10.1016/S1474-6670(17)57365-6.

[20] A. Packard, P. Pandey, Continuity Properties of the Real/Complex Structured Singular Value, IEEE Trans. Autom.

Control 38 (1993), 415–428. https://doi.org/10.1109/9.210140.

[21] R. Kasimbeyli, O. Ustun, A.M. Rubinov, The Modified Subgradient Algorithm Based on Feasible Values, Optimiza-

tion 58 (2009), 535–560. https://doi.org/10.1080/02331930902928419.

[22] P. Seiler, G. Balas, A. Packard, A Gain-Based Lower Bound Algorithm for Real and Mixed µ Problems, in: Pro-

ceedings of the 45th IEEE Conference on Decision and Control, IEEE, San Diego, CA, 2006: pp. 3548–3553.

https://doi.org/10.1109/CDC.2006.377123.

[23] M.J. Hayes, D.G. Bates, I. Postlethwaite, New Tools for Computing Tight Bounds on the Real Structured Singular

Value, J. Guid. Control Dyn. 24 (2001), 1204–1213. https://doi.org/10.2514/2.4836.

[24] D. Piga, Computation of the Structured Singular Value via Moment LMI Relaxations, IEEE Trans. Autom. Control

61 (2015), 520–525. https://doi.org/10.1109/TAC.2015.2438452.

https://doi.org/10.1007/s11081-010-9120-4
https://doi.org/10.1007/s11081-010-9120-4
https://doi.org/10.1049/iet-cta.2007.0391
https://doi.org/10.1109/ECC.2014.6862465
https://doi.org/10.1109/ECC.2014.6862465
https://doi.org/10.1109/9.553696
https://doi.org/10.1109/CDC.2006.377123
https://doi.org/10.1109/ACC.2000.878616
https://doi.org/10.1109/ACC.2000.878616
https://doi.org/10.1109/9.649732
https://doi.org/10.23919/ACC.1988.4789903
https://doi.org/10.23919/ACC.1988.4789903
https://doi.org/10.1002/(SICI)1099-1239(199603)6:2<147::AID-RNC143>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1099-1239(199603)6:2<147::AID-RNC143>3.0.CO;2-J
https://doi.org/10.1016/S1474-6670(17)57365-6
https://doi.org/10.1109/9.210140
https://doi.org/10.1080/02331930902928419
https://doi.org/10.1109/CDC.2006.377123
https://doi.org/10.2514/2.4836
https://doi.org/10.1109/TAC.2015.2438452

	1. Introduction
	2. Mathematical methods to compute structured singular values
	2.1. Feedback systems analysis via structured perturbations
	2.2. An iterative method to yield the lower bounds of 
	2.3. Computing -values with low-rank ODE's based techniques
	2.4. A new mathematical technique for approximation of real -values
	2.5. A nonlinear programming based methodology to approximate real structured singular values from below
	2.6. Geometrical formulation of bounds of -value
	2.7. Detailed comparative analysis for -lower bound algorithm
	2.8. Gain-based lower bound technique for both real and mixed -problems
	2.9. Computing tight bounds on the real -values
	2.10. Computation of  via moment LMI relaxation technique

	3. Conclusion
	Acknowledgement:
	Conflicts of Interest:

	References

