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Abstract. This paper introduces a pioneering concept in the realm of metric spaces, specifically focusing on a novel

category termed controlled generalized b-metric spaces (CGbMS). The study delves into the investigation of fixed

points within CGbMS for self-mappings that exhibit both linear and non-linear contraction characteristics. The analysis

establishes the existence and uniqueness of such fixed points, contributing valuable insights into the properties of these

spaces. Moreover, the paper extends its impact by exploring diverse applications and implementations derived from the

established results. One notable application is the application of these findings in solving systems of linear equations.

The comprehensive examination of these applications not only underscores the practical significance of the proposed

concept but also offers a broader understanding of its potential utility in various mathematical contexts. In summary,

this research not only introduces and rigorously defines the concept of controlled generalized b-metric spaces but also

provides a robust theoretical foundation by establishing the existence and uniqueness of fixed points. The exploration

of applications, with a focus on solving linear equations, further highlights the practical implications and versatility of

the proposed framework within the broader mathematical landscape.

1. Introduction

Over the past two decades, the scholarly community has dedicated a substantial volume of

research to the exploration of fixed-point theories within quasi-symmetric spaces, commonly de-

noted as b-metric spaces [13–16]. Recent strides in fixed-point theory, particularly in its application

to solving fractional differential and integral equations, have marked a significant leap forward.

The inherent challenges posed by the nonlocal nature of these equations have necessitated the

development of innovative techniques and methodologies, aimed at establishing both the exis-

tence and uniqueness of solutions [21–23]. This has, in turn, propelled fixed-point theory into a
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position of trust and prominence within the academic realm, attracting the attention and scrutiny

of numerous researchers [2, 17, 21].

Beyond its theoretical foundations, the utility of fixed-point theory extends into a broad array

of applications spanning diverse fields. Researchers have diligently explored the underlying prin-

ciples of the theory, seeking to leverage its potential for effective problem-solving within their

respective domains. As a result, fixed-point theory has emerged not merely as an abstract math-

ematical concept but as a valuable and versatile tool, increasingly recognized for its contribution

to the advancement of research and practical applications.

The historical roots of fixed-point theory trace back to 1922 when Banach pioneered the initial

proof of its existence and uniqueness [1, 2, 5]. Banach’s seminal contribution, encapsulated in

the Banach Contraction Principle (BCP), harnessed the power of contraction mapping over entire

metric spaces, leading to an array of developments in non-linear analysis [6, 17, 20]. Despite

the impressive strides made in this direction, two critical concerns have come to the forefront

of scientific inquiry: the precise definition of proper contraction states and the exploration of

plausible abstract metric spaces [8, 9].

In the ongoing quest for generalizations of metric spaces, several noteworthy concepts have

emerged, each with a distinct focus on enriching fixed-point theory. Notable among these are

the concepts of b-metric space and partial metric space. Czerwic, in collaboration with Bakhtine,

introduced the concept of b-metric space in 1993 [3,17,18]. This innovative concept, characterized

by preserving symmetry while modifying the triangular inequality of metric spaces, has become

a cornerstone for proving the existence of fixed points in a myriad of studies across various

disciplines [1, 4–7, 10, 13, 14, 16–20].

Matthews, in 1994, contributed significantly to this field by introducing partial metric spaces

to study the semantic implications of data flow networks [13]. Acknowledged for their pivotal

role in computational theory model-building, partial metric spaces have played a crucial part in

extending Banach’s contraction theorem [13]. Researchers have since embarked on an exploration

of the topological properties of partial metric spaces, leading to remarkable results in fixed-point

theories for both single and multivalued mappings [9, 10, 12, 15].

This article marks a new frontier in the extension of generalized metric spaces, a concept in-

troduced by Jleli and Samet in 2015 [1]. Building upon the foundational principles of fixed-point

theory, our contribution involves the incorporation of new and robust assumptions, culminating

in the creation of a novel metric space known as Controlled Generalized b-Metric Space (CGbMS).

While upholding the self-distance and symmetry conditions, we introduce modifications to the

inequality condition, thereby establishing a framework that not only enhances the theory’s theo-

retical foundation but also broadens its applicability in diverse mathematical contexts.

The organizational structure of this paper is outlined as follows. In the first section, we present

a comprehensive introduction encompassing the definition, background, assumptions, and topol-

ogy of CGbMS. The second section is dedicated to the rigorous proof of fixed-point theorems for
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self-mappings on CGbMS, emphasizing both linear and nonlinear contractions. Following the the-

oretical exploration, the third section delves into practical examples and applications of our results,

particularly within the realm of solving systems of linear equations. Additionally, we conclude

our discourse by leaving the door open for future avenues of research and exploration, proposing

thought-provoking questions to stimulate further inquiry within the scientific community.

2. Preliminaries

Definition 2.1. Let Ω be a nonempty set and, Θ : Ω2
→ [0,∞), θ(δ, ν) → [0,∞). We say that (Ω, Θ)

Controlled Generalized b-Metric Spaces (CGbMS) if the following conditions are satisfies:

(A1) Θ(δ, ν) = 0⇒ δ = ν for any δ, ν ∈ Ω,
(A2) Θ(δ, ν) = Θ(ν, δ) for any δ, ν ∈ Ω,
(A3) If δn ∈ S(Θ, Ω, δ),

S(Θ, Ω, δ) = {{δn} ⊂ Ω : lim
n→∞

(δn, δ) = 0}

we have

Θ(δ, ν) ≤ θ(δ, ν) lim sup
n→∞

Θ(δn, ν), (2.1)

Remark 2.1. from the definition, we can note that every generalized metric space is a controlled generalized
b-metric space we just have to replace

θ(δ, ν) = b

for all δ, ν ∈ Ω but the converse is not always true

Definition 2.2. Let (Ω, Θ) be a controlled generalized b-metric space and let δn ⊂ Ω, we proposed that δn

converges to δ if {δn} ∈ S(Θ, Ω, δ)

Proposition 2.1. Let (Ω, Θ) be a controlled generalized b metric space if δn → δ, for any ν ∈ Ω, and for
θ(δ, ν) < ∞ then δ = ν

Proof. from the definition of CGbMS

Θ(δ, ν) < θ(δ, ν) lim sup
n→∞

Θ(δn, ν).

since θ(δ, ν) is finite and θ(δ, ν) < ∞, also,

lim sup
n→∞

Θ(δn, ν) = 0

So, Θ(δ, ν) = 0 =⇒ δ = ν �

Hypothesis 2.1. We say that (Ω, Θ) satisfies the hypothesis (H1) if for every sequence say {δn} that
converges to some u in Ω we have θ(u, ν) < ∞ for all ν ∈ Ω.

Definition 2.3. Let (Ω, Θ,θ) be a controlled generalized b-metric space, we say that δn is Cauchy if

lim
n,m→∞

Θ(δn, δm) = 0
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Definition 2.4. Let (Ω, Θ) be a controlled generalized b-metric space we say that (Ω, Θ,θ) is complete, if
every Cauchy sequences converge to some element in Ω.

Next, we intreduce an example of controlled generalized b-metric spaces.

Example 2.1. Let Ω = [1,∞) and Θ(δ, ν) = |δ|+ |ν| for all δ, ν ∈ Ω.
and let θ : Ω2

→ [0,∞), where θ(δ, ν) = max(|δ|, |ν|) Note that, Θ(δ, ν) = 0 implies that |δ|+ |ν| = 0

which is true only if |δ| = |ν| = 0. Also, note that Ω is symmetric. Next, we prove the triangle inequality.
Let δ, ν ∈ Ω and δn a convergent sequence to some δ ∈ Ω. Hence, we have

Θ(δ, ν) = |δ|+ |ν|

≤ |δ||ν|+ |ν||δn|

= |ν|(|δ|+ |δn|)

≤ max(|δ|, |ν|) lim sup
n→∞

Θ(δ, δn)

= θ(δ, ν) lim sup
n→∞

Θ(δ, δn).

Therefore, (Ω, Θ) be a controlled generalized b-metric space as desired (CGbMS).

3. Fixed point results

Theorem 3.1. Let (Ω, Θ) be a complete controlled generalized b-metric space which satisfies the hypothesis
(H1) and Γ a self-mapping on Ω. suppose that there exists k ∈ (0, 1) such that

Θ(Γδ, Γν) ≤ kΘ(δ, ν)

Also, assume that there exists δ0 ∈ Ω such that

sup Θ(Γiδ0, Ψ jδ0) < ∞ f orall i, j ∈N

Then, Γ has a fixed point in Ω. Inaddition, if every two fixed points u,v of Γ have

Θ(u, v) < ∞

it results in a unique fixed point

Proof. Let δ0 ∈ Ω, consider the sequence {δn} defined by

δ1 = Γδ0, δ2 = Γδ1 = Γ2δ0, δ3 = Γδ2 = Γ3δ0, · · · , δn = Γδn−1 = Γnδ0, · · ·
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Θ(δn, δn+1) = Θ(Γδn−1 , Γδn)

≤ kΘ(δn−1, δn)

= kΘ(Γδn−2 , Γδn−1)

≤ k2Θ(δn−2, δn−1)

...

≤ knΘ(δ0, δ1)

when n → ∞, k ∈ (0, 1), and Θ(δn, δn+1) → 0 without loss of generality supposing that n < m
where m = n + p for some natural number p.

Θ(δn, δn+p) ≤ kΘ(δn−1, δn−1+p) ≤ k2Θ(δn−2, δn−2+p) ≤ knΘ(δ0, δp)

k ∈ (0, 1), and since sup Θ(δ0, δp) < ∞ as n, p → ∞ we deduce that Θ(δn, δn+p) → 0, as n → ∞
Thus δn is Cauchy sequence. Considering , (Ω, Θ) is a complete controlled generalized b-metric

space we deduce that δn converges to the same u ∈ Ω

Θ(δn+1, Γu) = Θ(Γδn , Γu) ≤ kΘ(δn, u)

as n→∞ , we have, Θ(δn+1, Γu) = 0

This implies that δn converges to Γu as n→∞ But, δn converges to u
So, by the uniqueness of the limit, we conclude that Γu = u. Hence, Γ has a fixed point in Ω.

Now assume that there exists another fixed point of Γ in Ω, say v, by our assumption Θ(u, v) < ∞.

Hence,

Θ(u, v) = Θ(Γu, Γv) ≤ kΘ(u, v) < Θ(u, v)

Θ(u, v) = 0.

Therefore, u = v �

Next, we subtitle Ciric’s fixed point theorem for quasicontraction-type mappings in the occur-

rence of controlled generalized b-metric spaces. Let(Ω, Θ) be a controlled generalized b-metric

space, and T : Ω −→ Ω, be a mapping.

Definition 3.1. Let k ∈ (0, 1). we denoted that Γ is a k-quasicontraction if

Θ(Γδ, Γν) ≤ k max {Θ(δ, ν), Θ(δ, Γδ), Θ(ν, Γν), Θ(δ, Γν), Θ(ν, Γδ)},

for all (δ, ν) ∈ Ω2

Proposition 3.1. Assume that Γ is a k-quasicontraction for k ∈ (0, 1).So, any fixed point ϑ ∈ Ω of Γ

satisfies

Θ(ϑ,ϑ) < ∞ =⇒ Θ(ϑ,ϑ) = 0
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Proof. Let ϑ ∈ Ω be a fixed point of Γ such that Θ(ϑ,ϑ) < ∞. Since Γ is a k-quasicontraction.Hence,

we have

Θ(ϑ,ϑ) = Θ(Γϑ, Γϑ) ≤ kΘ(ϑ,ϑ),

Which implies that Θ(ϑ,ϑ) = 0, since k ∈ (0, 1). �

Next, we prove the following theorem, that is a generalization of many results in the literature.

Theorem 3.2. Let (Ω, Θ) be a complete controlled generalized b-metric space which satisfies the hypothesis
(H1) and Γ a self-mapping on Ω. Assume that the following conditions satisfied:

(N1) Θ(δ, ν) is complete;
(N2) Γ is a k-quasicontraction of some k ∈ (0, 1);

(N3) there exist δ0 ∈ Ω such that Ψ(Θ, Γ, δ0) < ∞; for every (δ, ν) ∈ Ω2, let θ(δ0, ν) < 1/k, k ∈ (0, 1).

Then {Γnδ0} converges to some ϑ ∈ Ω, if Θ(δ0, Γϑ) < ∞, then ϑ is a unique fixed point of Γ.

Proof. Let n ∈N (n ≥ 1). Considering Γ is a k-quasicontraction, for all i, j ∈N, we get

Θ(Γn+i
δ0 , Γn+ j

δ0 ) ≤ kmax{Θ(Γn−1+i
δ0 , Γn−1+ j

δ0 ), Θ(Γn−1+i
δ0 , Γn+i

δ0 ),

Θ(Γn−1+i
δ0 , Γn+ j

δ0 ), Θ(Γn−1+ j
δ0 , Γn+ j

δ0 ), Θ(Γn−1+ j
δ0 , Γn+i

δ0 ))}

If we consider each case from the above equation we will reach to the following inequality

Ψ(Θ, Γ, Γn
δ0
) ≤ kΨ(Θ, Γ, Γn−1

δ0
)

Hence, for any n ≥ 1, we can conclude that

Ψ(Θ, Γ, Γn
δ0
) ≤ knΨ(Θ, Γ, δ0) {∗}

Using this results in {∗}, for every n, m ∈N, we have

Θ(Γn
δ0

, Γn+m
δ0

) ≤ Ψ(Θ, Γ, Γn
δ0
) ≤ knΨ(Θ, Γ, δ0).

Now, Since Ψ(Θ, Γ, δ0) < ∞ and k ∈ (0, 1), we deduce to the following

lim
n,m→∞

Θ(Γnδ0, Γn+mδ0) = 0

That will implies {Γn
δ0
} is a Θ-Cauchy sequence.

Since (Ω, Θ) is a Θ-complete, there exist some ϑ ∈ Ω where {Γn
δ0
} is Θ-convergent to ϑ.

So, by our assumption, Θ(δ0, Γϑ) < ∞, using the inequality we will get

Θ(Γn
δ0

, Γn+m
δ0

) ≤ knΨ(Θ, Γ, δ0)

for every m, n ∈N, by recall the property from the definition of CGbMS.

Θ(ϑ, Γnδ0) ≤ θ(ϑ, Γδ0) lim sup
m→∞

Θ(Γnδ0, Γn+mδ0). ≤ θ(ϑ, Γδ0)knδ(Θ, Γ, δ0).

for each n ∈N.

Side by side, we have

Θ(Γδ0, Γϑ) ≤ kmax{Θ(δ0,ϑ), Θ(δ0, Γδ0), Θ(ϑ, Γϑ), Θ(Γδ0,ϑ), Θ(δ0, Γϑ}.
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Using the above two inequality {∗}, we get

Θ(Γδ0, Γϑ) ≤ max{kθ(ϑ, Γδ0)Ψ(Θ, Γ, δ0), kΨ(Θ, Γ, δ0), kΘ(ϑ, Γϑ), kΘ(δ0, Γϑ)}.

Once again, recall the above inequality

Θ(Γ2δ0, Γϑ) ≤ max{k2θ(ϑ, Tδ0)Ψ(Θ, Γ, δ0), k2Ψ(Θ, Γ, δ0), kΘ(ϑ, Γϑ), k2Θ(δ0, Γϑ)}.

If we continue in this process , we will get,

Θ(Γnδ0, Γϑ) ≤ max{knθ(ϑ, Γδ0)Ψ(Θ, Γ, δ0), knΨ(Θ, Γ, δ0), kΘ(ϑ, Γϑ), knΘ(δ0, Γϑ)}.

For every n ≥ 1.

Also by using our assumption of θ(ϑ, Tδ0) < 1/k and k ∈ (0, 1)

Θ(Γnδ0, Γϑ) ≤ max{kn−1Ψ(Θ, Γ, δ0), knΨ(Θ, Γ, δ0), kΘ(ϑ, Tϑ), knΘ(δ0, Γϑ)}.

and for n ≥ 1

lim sup
n→∞

Θ(Γnδ0, Γϑ) ≤ kΘ(ϑ, Γϑ)

Since Θ(δ0, Γϑ) < ∞ and Ψ(Θ, Γ, δ0) < ∞. we will get

Θ(Γϑ,ϑ) ≤ θ(ϑ, Γϑ) lim sup
n→∞

Θ(Γn
δ0

, Γϑ)

≤ 1/k lim sup
n→∞

Θ(Γn
δ0

, Γϑ)

< (1/k)kΘ(ϑ, Γϑ)

This implies that Θ(Γϑ,ϑ) = 0,

and since we have Θ(ϑ, Γϑ) < ∞ and k ∈ (0, 1). This means a is ϑ fixed point of Γ. Now by

proposition we have Θ(Γϑ, Θ) = 0.

Assume that there is another fixed point for Γ, let say $ ∈ Ω such that Θ(ϑ,$) < ∞ and

Θ($,$) < ∞ so we will get that Θ($,$) = 0 and since Γ is a k-quasicontraction, that means

Θ(ϑ,$) = Θ(Γϑ, Γ$) ≤ kΘ(ϑ,$)

Which is mean ϑ = $ �

In the next section, we introduce an application about results to a system of linear equations.
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4. Linear system of equations

Consider the set Ω = [1,∞)n where n is a natural number. Now, consider controlled generalized

b-metric space (Ω, Θ) in Example 2.1, and that is

Θ(δ, ν) = max
1≤i≤n

|δi|+ |νi|

for all δ = (δ1, ..., δn), ν = (ν1, ..., νn) ∈ Ω.

Theorem 4.1. Recognize the following system

s11δ1 + s12δ2 + s13δ3 + s1nδn = r1

s21δ1 + s22δ2 + s23δ3 + s2nδn = r2
...

sn1δ1 + sn2δ2 + sn3δ3 + snnδn = rn

if k = max
1≤i≤n

( n∑
j=1, j,i

|si j|+ |1 + sii|

)
< 1, then the aforementioned linear system has a unique solution.

Proof. Understand the map Γ : Ω→ Ω identified by Γδ = (B + In)δ− r in which

B =


s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
. . .

...

sn1 sn2 · · · snn


δ = (δ1, δ2, · · · , δn) and ν = (ν1, ν2, · · · , νn) ∈ [1,∞)n, In is the identity matrix of n× n matrices then

r = (r1, r2, · · · , rn) ∈ Cn. to prove that Θ(Γδ, Γν) ≤ kΘ(δ, ν), ∀δ, ν ∈ [1,∞)n.

We recall by

B̃ = B + In = (b̃i j), i, j = 1, ..., n,

with b̃i j =

 si j, j , i
1 + sii, j = i

Hence,

max
1≤i≤n

n∑
j=1

|b̃i j| = max
1≤i≤n

( n∑
j=1, j,i

|si j|+ |1 + sii|

)
= k < 1.

Therefore,

Θ(Γδ, Γν) = max
1≤i≤n

(
|(Γδ)i|+ |(Γν)i|

)
≤ max

1≤i≤n

( n∑
j=1

|b̃i j||δ j|+ |ν j|
)

≤ max
1≤i≤n

n∑
j=1

|b̃i j|max
1≤k≤n

(
|δk|+ |νk|

)
= kΘ(δ, ν),
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Bering in mind all Theorem 3.1 hypotheses are accomplished . However, Γ has fixed point

that is unique. Furthermore, the aforementioned linear system has a desired unique solution as

expected. �

5. Conclusions

In the culmination of this scholarly discourse, we have unveiled a novel iteration of metric

spaces, wherein we have rigorously established fixed-point results for self-mapping. Our en-

deavor extends beyond the theoretical framework, as we also introduce a practical application

within the context of solving linear equations, thereby contributing to the burgeoning field of

applied mathematics. Furthermore, our study serves as a catalyst for the generalization of several

established findings within the existing literature, underscoring the versatility and adaptability of

the proposed metric space.

As we bring this article to a close, it is incumbent upon us to offer not only a summary of

our contributions but also to lay the groundwork for future inquiries. One of the noteworthy

contributions lies in the formulation and proof of fixed-point theorems for self-mappings within

our introduced metric space. This theoretical advance has implications beyond the confines of

our specific study and holds the potential for applications in various mathematical and scientific

domains.

Moreover, the application we introduce for solving systems of linear equations adds a pragmatic

dimension to our theoretical findings. By providing a real-world context for the utility of our

metric space, we aim to bridge the gap between theoretical abstraction and practical relevance.

This application not only enriches our understanding of the proposed metric space but also opens

avenues for interdisciplinary collaborations and practical implementations.

In a broader context, our work contributes to the ongoing dialogue within the academic com-

munity, presenting an innovative perspective on metric spaces and their applicability. We extend a

metaphorical bridge to connect our findings with the existing body of literature, thereby contribut-

ing to the collective knowledge in this domain. The generalization of established results further

attests to the robustness and adaptability of our proposed metric space, reinforcing its potential

significance in various mathematical inquiries.

As we look ahead, it is customary to conclude with an invitation for further exploration. We

posit an open question that beckons as a beacon for future research endeavors: Can we identify a

set of weaker hypotheses to supplant hypothesis (H1) in Theorem (3.1) and (3.4)? This question

serves as a call to action, prompting researchers to delve into the intricacies of the proposed

metric space and its underlying assumptions. Addressing this query may lead to refinements in

the theory, widening its scope and applicability, and fostering a continued trajectory of scholarly

investigation. In this way, our work not only contributes to the current state of knowledge but also

sets the stage for ongoing discourse and exploration within the dynamic realm of metric spaces

and fixed-point theorems.
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[15] V. Berinde, M. Păcurar, 2022. The Early Developments in Fixed Point Theory on b-Metric Spaces, Carpathian J.

Math. 38 (2022), 523–538. https://www.jstor.org/stable/27150504.

[16] D. Santina, W.A. Mior Othman, K.B. Wong, N. Mlaiki, New Generalization of Metric-Type Spaces-Strong Con-

trolled, Symmetry 15 (2023), 416. https://doi.org/10.3390/sym15020416.

[17] A. Aloqaily, D.S. Sagheer, I. Urooj, S. Batul, N. Mlaiki, Solving Integral Equations via Hybrid Interpolative <

=-Type Contractions in b-Metric Spaces, Symmetry 15 (2023), 465. https://doi.org/10.3390/sym15020465.

[18] I.A. Bakhtin, The Contraction Mapping Principle in Quasi-Metric Spaces, Funct. Anal. 30 (1989), 26–37.

[19] L.C. Ceng, C.F. Wen, Y.C. Liou, J.C. Yao, A General Class of Differential Hemivariational Inequalities Systems in

Reflexive Banach Spaces, Mathematics 9 (2021), 3173. https://doi.org/10.3390/math9243173.

[20] M. Jleli, E. Karapınar, B. Samet, Further Generalizations of the Banach Contraction Principle, J. Inequal. Appl. 2014

(2014), 439. https://doi.org/10.1186/1029-242X-2014-439.

https://doi.org/10.1186/s13663-015-0312-7
https://doi.org/10.3934/math.2022980
https://doi.org/10.3934/math.2022980
https://eudml.org/doc/23748
https://eudml.org/doc/23748
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.3390/math11030677
https://doi.org/10.3390/math10060856
https://doi.org/10.2298/FIL1501063S
https://doi.org/10.1007/s13398-014-0173-7
https://doi.org/10.1007/s13398-014-0173-7
https://doi.org/10.3390/sym14051016
https://doi.org/10.1186/1687-1812-2011-68
https://doi.org/10.22436/jnsa.009.05.128
https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
https://doi.org/10.1155/2017/1072750
https://www.jstor.org/stable/27150504
https://doi.org/10.3390/sym15020416
https://doi.org/10.3390/sym15020465
https://doi.org/10.3390/math9243173
https://doi.org/10.1186/1029-242X-2014-439


Int. J. Anal. Appl. (2024), 22:227 11

[21] A. Aloqaily, N. Souayah, K. Matawie, N. Mlaiki, W. Shatanawi, A New Best Proximity Point Results in Partial

Metric Spaces Endowed with a Graph, Symmetry 15 (2023), 611. https://doi.org/10.3390/sym15030611.
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