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Abstract. In this paper, we examine the Donoho–Stark uncertainty principle in the context of the fractional Dunkl

transform. We rigorously derive a formulation of the Donoho–Stark uncertainty principle for the fractional Dunkl

transform and provide an application that illustrates its practical significance. Furthermore, we introduce a signal

restoration algorithm tailored for the fractional Dunkl transform.

1. Introduction

The Fractional Fourier Transform (FrFT) has emerged as a powerful generalization of the classical

Fourier Transform, extending its capabilities by introducing an additional degree of freedom, as a

tool in harmonic analysis, building upon the works of Wiener [20] and Condon [2]. Namias was

the first to formally introduce the term "Fractional Fourier Transform" in 1982 [12]. Later, in 1987,

McBride refined Namias’ fractional operators [10], establishing new theorems for these modified

operators and developing an operational calculus.. This extension allows the FrFT to interpolate

between the time and frequency domains, providing a more flexible framework for signal analysis,

particularly in areas such as optics, quantum mechanics, and signal processing . Over the years,

the FrFT has evolved from a theoretical concept into a versatile tool for solving practical problems

in various scientific and engineering fields.

The evolution of the FrFT has sparked interest in further generalizations, aimed at broadening

its applicability and improving its adaptability to specific domains. These generalizations include

the fractional Hankel transform [9], fractional Dunkl transform [6], fractional Jacobi-Dunkl trans-

form [7], fractional Opdam-Cherednik transform [1], Hardy type theorems for fractional Dunkl

transform [16] and fractional Bessel-Fourier wavelet transform as aprticular case in [11]. Each gen-

eralization carries distinct properties and offers unique advantages for specialized applications.
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An important aspect of the fractional Fourier transform (FrFT) and its generalizations is their

connection to the uncertainty principle, a foundational concept in harmonic analysis and quantum

mechanics. The classical Fourier transform inherently expresses the uncertainty principle, which

states that a signal cannot be simultaneously localized in both time and frequency domains.

The FrFT extends this principle by offering a continuous spectrum between time and frequency

representations, allowing for a more flexible distribution of uncertainty. This property makes the

FrFT a valuable tool for analyzing signals with varying levels of localization, offering new insights

into time-frequency analysis and paving the way for advanced applications in fields such as signal

processing, quantum mechanics, and optics. Through its generalizations, the uncertainty principle

is further adapted to non-Euclidean spaces and systems with additional symmetries, expanding

the range of problems that can be addressed.

As a continuation of our investigation into uncertainty principles in the behavior of various

operators, such as the Weinstein transform [14, 17], the Weinstein wavelet transform [15, 18], and

the Weinstein-Gabor transform [8], our main objective in the present paper is to study several

uncertainty principles for the fractional Dunkl transform.

The layout of this article is as follows. Section 2 is dedicated to providing an overview of the

fractional Dunkl transform and its basic properties. In section 3, we explore a formulation of the

Donoho–Stark uncertainty principle for the fractional Dunkl transform and provide an application.

Finally, we introduce a signal restoration algorithm tailored for the fractional Dunkl transform, in

Section 4.

2. Preliminaires

Let us consider the following functional spaces along this paper:

• C0(R) denote the space of continuous functions on R vanish at infinity.

• Lp
ν(R) denote the space of all measurable functions on R such that:

‖h‖ν,p =

(∫
R

|h(ξ)|p|ξ|2ν+1dξ
) 1

p

< +∞, if p ∈ [1,∞),

‖h‖ν,∞ = ess sup
ξ∈R

|h(ξ)| < ∞.

Dunkl operators are differential-difference operators linked to finite reflection groups in Eu-

clidean space. C.F. Dunkl first introduced these operators in his works [3–5], where he established

the foundation for a theory of special functions and integral transforms in multiple variables within

the context of reflection groups. The fractional Dunkl operator Λθ
ν introduced by Ghazouani and

Bouzeffour [6] is defined for all f ∈ C1(R) as below:

Λθ
νh(ξ) :=

d
dξ

h(ξ) +
2ν+ 1
ξ

[
h(ξ) − h(−ξ)

2

]
+ i cot(θ)ξh(ξ)

= Λνh(ξ) + i cot(θ)ξh(ξ),

where θ ∈ R\πZ, ν ≥ −1/2 and
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Λνh(ξ) =
d

dξ
h(ξ) +

2ν+ 1
ξ

[
h(ξ) − h(−ξ)

2

]
denoted the classical Dunkl operator of parameter ν related to the reflection group Z2 on R (see [3]).

The fractional Dunkl operator Λθ
ν extends a broad range of integral transforms, depending

on the choice of the parameter θ, the multiplicity function ν, and the specific function spaces,

including:

(1) If ν = −1/2, then the fractional Dunkl operator Λθ
ν is reduced to:

(a) the operator d
dξ ( when θ = π/2) which is closely associated with the classical Fourier

transform.

(b) the operator d
dξ + i cot(θ)ξ, which is closely related to the classical fractional Fourier

transform [10].

(2) If ν > −1/2 then the fractional Dunkl operator Λθ
ν is reduced to:

(a) Λθ
ν coincides, for θ = π/2, with the Dunkl operator Λν which is closely associated

with the Dunkl transform [3–5].

(b) The fractional Hankel operator

Bν,θ =
d2

dξ2 +
(2ν+ 1

ξ
+ 2i cot(θ)ξ

) d
dξ

+ 2i(ν+ 1) cot(θ) − cot2(θ)ξ2,

on the even subspace C2(R)e =
{
h ∈ C2(R) : h(ξ) = h(−ξ)

}
of the square

(
Λθ
ν

)2
, which

is closely associated with the fractional Hankel transform [9].

(c) The Bessel operator (when θ = π/2 )

Bν =
d2

dξ2 +
2ν+ 1
ξ

d
dξ

,

on the even subspace C2(R)e =
{
h ∈ C2(R) : h(ξ) = h(−ξ)

}
of the square

(
Λθ
ν

)2
, which

is closely associated with the Hankel transform.

Definition 2.1. For n ∈ Z and h a function in L1
ν(R), the fractional Dunkl transform Dθ

ν is defined as
below [6]:

(1) D2nπ
ν = h(ξ)

(2) D(2n+1)π
ν h(ξ) = h(−ξ)

(3) D(θ+2n)π
ν h(ξ) = Dθ

νh(ξ), with θ ∈ R

(4) If θ ∈ ((2n− 1)π, (2n + 1))π, then

Dθ
νh(λ) = cθν

∫
R

h(ξ)Ψθ
ν (λ, ξ)|ξ|2ν+1dξ,

where

cθν =
ei(ν+1)(θ̂π/2−θ)αν
| sin(θ)|ν+1

, αν =
1

2ν+1Γ(ν+ 1)
, θ̂ := sgn(sin(θ)),
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and Ψθ
ν (λ, ξ) denote the fractional Dunkl kenrel defined by

Ψθ
ν (λ, ξ) = e−

i
2 (λ

2+ξ2)cot(θ)Eν

(
iλξ

sin(θ)

)
, (2.1)

which is the unique analytic solution of the following differential–difference system, for all ξ ∈ R: Λθ
νh = iξ

sin(θ)h

f (0) = e−
i
2ξ

2 cot(θ).

Note that Eν(z) is the Dunkl kernel of type A2 given by (see [13])

Eν(z) = jν(iz) +
z

2(ν+ 1)
jν+1(iz),

and jν is the normalized spherical Bessel function

jν(λ) := 2νΓ(ν+ 1)
Jν(λ)
λν

= Γ(ν+ 1)
+∞∑
n=0

(−1)n(λ/2)2n

n!Γ(n + ν+ 1)
. (2.2)

Note that Jν is the classical Bessel function (see [19]).

In the next proposition, we highlight several important properties of the fractional Dunkl kernel

that will be beneficial for the rest of the paper (see [6]).

Proposition 2.1. Let θ ∈ R\πZ.

(1) For each λ ∈ R and ξ ∈ C, the fractional Dunkl kenrel have the integral representation

Ψθ
ν (λ, ξ) =

Γ(ν+ 1)
√
πΓ(ν+ 1

2 )
e−

i
2 (λ

2+ξ2)cot(θ)
∫ 1

−1
e

iλξt
sin(θ) (1− t2)ν−

1
2 (1 + t)dt. (2.3)

As particular case, we have the following inequality:

∀λ ∈ R,∀ξ ∈ R; |Ψθ
ν (λ, ξ)| ≤ 1. (2.4)

(2) There exists a positive constant K(ν,θ) > 0 such that for all λ and ξ ∈ R, we have the following
inequality:

|Ψθ
ν (λ, ξ)| ≤ K(ν,θ)min(1, |λξ|−(ν+

1
2 )). (2.5)

In the next proposition, we highlight several important properties of the fractional Dunkl trans-

form that will be beneficial for the rest of the paper (see [6]).

Proposition 2.2. (1) Suppose that θ < πZ, for all h ∈ L1
ν(R), its Fractional Dunkl transform Dθ

νh
belongs to C0(R) and verifies:

||D
θ
νh||ν,∞ ≤

1
Γ(ν+ 1)(2|sin(θ)|)ν+1

||h||ν,1. (2.6)

(2) Let θ, β be in R and let h ∈ L1
ν(R) withDβ

ν(h) ∈ L1
ν(R), then:

D
θ
ν ◦D

β
ν(h) = D

θ+β
ν (h). (2.7)

with equality almost everywhere when θ+ β ∈ πZ.
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(3) Let θ ∈ R. If h ∈ L1
ν(R)∩ L2

ν(R), thenDθ
νh ∈ L2

ν(R) and

||D
θ
νh||2,ν = ||h||2,ν. (2.8)

(4) Let θ ∈ R. The fractional Dunkl transform Dθ
ν has a unique extension to an unitary operator on

L2
ν(R), with inverse (Dθ

ν )
−1 = D−θν .

3. Donoho–stark Uncertainty Principle

Let Ω and Σ be two measurable subsets of R. Let us define the time-limiting operator PΩ as

below

PΩh = hXΩ,

and, we define the partial sum operator SΣ by

D
θ
ν (SΣh) = XΣD

θ
νh.

We denote by Bp
ν(Σ), with 1 ≤ p ≤ 2, the set of all functions h ∈ Lp

ν(R) that are bandlimited to Σ,

h ∈ Bp
ν(E)⇔ SΣh = h.

Definition 3.1. Let ε ∈ (0, 1) and (Σ, Ω) be a pair of measurable subsets of R. For all h ∈ L1
ν(R)∩ L2

ν(R),
we say that

(1) h is ε-timelimited on Σ, if∫
R\Σ
|h(ξ)||ξ|2ν+1dξ ≤ ε

∫
R

|h(ξ)||ξ|2ν+1dξ. (3.1)

(2) h is ε-bandlimited on Ω, if(∫
R\Ω

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ
) 1

2

≤ ε

(∫
R

|h(ξ)|2|ξ|2ν+1dξ
) 1

2

. (3.2)

Definition 3.2. Let Ω and Σ be two measurable subsets of R. Let 1 < p ≤ 2, such that q =
p

p−1 and h in
Lp
ν(R). We say that:

(1) h is ε-concentrated to Ω in Lp
ν(R), if there exists a measurable function g vanishing outside Ω such

that

‖h− g‖ν,p ≤ ε‖h‖ν,p.

(2) Dθ
νh is ε-concentrated to Σ in Lq

ν(R), if there exists a measurable function ϕ vanishing outside Σ

such that ∥∥∥Dθ
νh−ϕ

∥∥∥
ν,q ≤ ε

∥∥∥Dθ
νh

∥∥∥
ν,q .

Remark 3.1. (1) If h is ε−concentrated to Ω in Lp
ν(R), then we have

‖h− PΩh‖ν,p =

(∫
R\Ω
|h(ξ)|p|ξ|2ν+1dξ

) 1
p

≤ ‖h− g‖ν,p ≤ εΩ‖h‖ν,p.

(3.3)
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(2) IfDθ
νh is εΣ-concentrated to Σ in Lq

ν(R), then we have

∥∥∥Dθ
νh−Dθ

ν (SΣ f )
∥∥∥
ν,q =

(∫
R\Σ

∣∣∣Dθ
νh(ξ)

∣∣∣q |ξ|2ν+1dξ
) 1

q

≤

∥∥∥Dθ
νh−ϕ

∥∥∥
ν,q ≤ εΣ

∥∥∥Dθ
νh

∥∥∥
ν,q .

(3.4)

Now, we state a Donoho-Stark uncertainty principle for the fractional Dunkl transform.

Theorem 3.1. Let Σ and Ω be two measurable subsets of R satisfies 0 < |Σ| < ∞ and 0 < |Ω| < ∞. We
consider that h belongs to L1

ν(R) ∩ L2
ν(R). If f is εΣ-timelimited on Σ and εΩ-bandlimited on Ω, then we

have

(1− εΣ)
2
(
1− ε2

Ω

)
|sin(θ)|2ν+2

≤ α2
ν|Σ||Ω|. (3.5)

Proof. Let h be a function belongs to L1
ν(R)∩ L2

ν(R). Then, we have∫
Σ
|h(ξ)||ξ|2ν+1dξ =

∫
R

|h(ξ)||ξ|2ν+1dξ−
∫

R\Σ
|h(ξ)||ξ|2ν+1dξ.

Since h is ε-timelimited on Σ, hence according to inequality (3.1), it follows that∫
Σ
|h(ξ)||ξ|2ν+1dξ ≥ (1− εΣ)

∫
R

|h(ξ)||ξ|2ν+1dξ.

By squaring the last inequality, we get(∫
Σ
|h(ξ)||ξ|2ν+1dξ

)2

≥ (1− εΣ)
2
(∫

R

|h(ξ)||ξ|2ν+1dξ
)2

.

Furthermore, according to the Cauchy-Schwarz inequality, we obtain(∫
Σ
|h(ξ)||ξ|2ν+1dξ

)2

≤

(∫
Σ
|h(ξ)|2|ξ|2ν+1dξ

) (∫
Σ
|ξ|2ν+1dξ

)
≤ |Σ|

∫
R

|h(ξ)|2|ξ|2ν+1dξ.

(3.6)

Therefore,

|Σ|
∫

R

|h(ξ)|2|ξ|2ν+1dξ ≥ (1− εΣ)
2
(∫

R

|h(ξ)||ξ|2ν+1dξ
)2

.

Since h is ε-bandlimited on Ω, then according to inequality (3.2) and Plancherel theorem for the

fractional Dunkl transform, we obtain∫
Ω

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ =

∫
R

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ−
∫

R\Ω

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ

≥

∫
R

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ− ε2
Ω

∫
R

|h(ξ)|2|ξ|2ν+1dξ

=
(
1− ε2

Ω

) ∫
R

|h(ξ)|2|ξ|2ν+1dξ.

(3.7)
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After that, according to Riemann-Lebesgue lemma (2.6), it becomes that∫
Ω

∣∣∣Dθ
νh(ξ)

∣∣∣2 |ξ|2ν+1dξ ≤
∥∥∥Dθ

νh
∥∥∥2
∞

∫
Ω
|ξ|2ν+1dξ

≤
α2
ν

|sin(θ)|2ν+2 |Ω|
(∫

R

|h(ξ)||ξ|2ν+1dξ
)2

.
(3.8)

Which means that

α2
ν

|sin(θ)|2ν+2 |Ω|
(∫

R

|h(ξ)||ξ|2ν+1dξ
)2

≥

(
1− ε2

Ω

) ∫
R

|h(ξ)|2|ξ|2ν+1dξ. (3.9)

Finally, combining the inequalities (3.7) and (3.9), we get the desired result. �

Proposition 3.1. Let Ω and Σ be two measurable subsets of R such that 0 < |Σ| < ∞ and 0 < |Σ| < ∞.
Let h ∈ L2

ν(R)∩ L2
ν(R). Assume that h is εΩ-concentrated to Ω and its fractional Dunkl transformDθ

νh is
εΣ-concentrated to Σ, then we have

(1− εΩ) (1− εΣ) |sin(θ)|2(ν+1)
‖h‖ν,2 ≤ α

2
ν|Σ||Ω|

1
2 ‖h‖ν,1.

Proof. Let h be a function belongs to L2
ν(R)∩ L2

ν(R). Then, we have

∥∥∥XΣD
θ
νh

∥∥∥
ν,2 ≤

∥∥∥Dθ
νh

∥∥∥
∞

(∫
Σ
|ξ|2ν+1dξ

) 1
2

≤ |Σ|
1
2

αν
|sin(θ)|ν+1

‖h‖ν,1.

Since the fractional Dunkl transformDθ
νh is εΣ-concentrated to Σ, it becomes that∥∥∥XΣD

θ
νh

∥∥∥
ν,2 ≥

∥∥∥Dθ
νh

∥∥∥
ν,2 −

∥∥∥XR\ΣD
θ
νh

∥∥∥
ν,2

≥

∥∥∥Dθ
νh

∥∥∥
ν,2 − εΣ

∥∥∥Dθ
νh

∥∥∥
ν,2 .

Therefore, we obtain

(1− εΣ)
∥∥∥Dθ

νh
∥∥∥
ν,2 ≤

∥∥∥XΣD
θ
νh

∥∥∥
ν,2 ≤ |Σ|

1
2

αν
|sin(θ)|ν+1

‖h‖ν,1. (3.10)

On the other hand, as the function h is εΩ-concentrated to Ω, it becomes that

(1− εΩ) ≤ ‖PΩh‖ν,2 ≤ |Σ|
1
2 |Ω|

1
2

αν
|sin(θ)|ν+1

. (3.11)

Finally, according to the inequalities (3.10) and (3.11), we get the desired result. �

Theorem 3.2. Let Σ and Ω be two measurable subsets of R satisfies 0 < |Σ| < ∞ and 0 < |Ω| < ∞.
Suppose that εΩ + εΣ < 1. If h is εΩ-concentrated to Ω in L2

ν(R) and its fractional Dunkl transformDθ
νh

is εΣ-concentrated to Σ in L2
ν(R), then we have

(1− εΩ − εΣ) |sin(θ)|ν+1
≤ αν

√
|Σ||Ω|.
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Proof. Consider that h belongs L2
ν(R). We assume that ‖h‖ν,2 = ‖Dθ

νh‖ν,2 = 1. As though h is

εΩ-concentrated to Ω, it becomes from the inequality (3.11):

‖PΩh‖ν,2 ≤ |Σ|
1
2 |Ω|

1
2

αν
|sin(θ)|ν+1

.

SinceDθ
νh is εΣ-concentrated to Σ in L2

ν(R), it becomes that∥∥∥Dθ
νh−Dθ

ν (SΣPΩh)
∥∥∥
ν,2 ≤

∥∥∥Dθ
νh−Dθ

ν (SΣ f )
∥∥∥
ν,2 +

∥∥∥Dθ
ν (SΣ f ) −Dθ

ν (SΣPΩh)
∥∥∥
ν,2

≤ εΣ +
∥∥∥Dθ

νSΣ
∥∥∥
ν,2 ‖h− PΩh‖ν,2

≤ εΣ + εΩ.

Therefore, ∥∥∥Dθ
ν (SΣPΩh)

∥∥∥
ν,2 ≥

∥∥∥Dθ
νh

∥∥∥
ν,2 −

∥∥∥Dθ
νh−Dθ

ν (SΣPΩh)
∥∥∥
ν,2 ≥ 1− εΣ − εΩ. (3.12)

On the other hand, since we have∥∥∥Dθ
ν (SΣPΩh)

∥∥∥
ν,2 =

∥∥∥(SΣPΩh)
∥∥∥
ν,2 ≤

∥∥∥(PΩh)
∥∥∥
ν,2 ,

hence, we obtain ∥∥∥Dθ
ν (SΣPΩh)

∥∥∥
ν,2 ≤ |Σ|

1
2 |Ω|

1
2

αν
|sin(θ)|ν+1

. (3.13)

Finally, according to the inequalities (3.12) and (3.13), we obtain the desired result. �

Applications. As mentioned in beginning of this paper that the fractional Dunkl operator Λθ
ν

extends a broad range of integral transforms, depending on the choice of the parameter θ, the

multiplicity function ν, and the specific function spaces. We obtain the Donoho–Stark uncertainty

principle for some particular cases including:

(1) If ν = −1/2, then the fractional Dunkl operator Λθ
ν is reduced to:

(a) Ifθ = π/2 we find the Donoho–Stark uncertainty principle associated with the classical

Fourier transform.

(b) If θ ∈ R\πZ, we find the Donoho–Stark uncertainty principle associated with the

classical fractional Fourier transform.

(2) If ν > −1/2 then the fractional Dunkl operator Λθ
ν is reduced to:

(a) Ifθ = π/2, we find the Donoho–Stark uncertainty principle associated with the Dunkl

transform.

(b) If θ ∈ R\πZ, we find the Donoho–Stark uncertainty principle related to the fractional

Hankel transform, on the even subspace

C
2(R)e =

{
h ∈ C2(R) : h(ξ) = h(−ξ)

}
,

of the square
(
Λθ
ν

)2
.
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(c) Ifθ = π/2, we find the Donoho–Stark uncertainty principle related to the Hankel

transform, on the even subspace

C
2(R)e =

{
h ∈ C2(R) : h(ξ) = h(−ξ)

}
,

of the square
(
Λθ
ν

)2
.

4. Signal Restoration Algorithm

In this section, we present an algorithm for signal recovery. Consider a signal h ∈ L2
ν(R) that is

transmitted to a receiver and concentrated on Ω. Now, assume that the receiver cannot observe

the complete data of h, and the signal is not detected on Ω. Additionally, the observed signal is

affected by observational noise % ∈ L2
ν(R). Consequently, the received signal ρ is expressed as

follows:

ρ(ξ) =

h(ξ) + %(ξ), x ∈ Ωc

0, x ∈ Ω,

where Ωc is the complement of Ω. We suppose that, without loss of data, % = 0 on Ω. Which

implies,

ρ(ξ) = (I − PΩ) h(ξ) + %(ξ).

Theorem 4.1. Let f be a function in L2
ν(R) such that h = SΣh and hn =

∑n
k=0 (PΩSΣ)

k ρ. If Σ and Ω be
two measurable subsets of R satisfying:

αν|Ω|
1
2 |Σ|

1
2 < |sin(θ)|ν+1, (4.1)

then, the information of a function h over ξ ∈ Ω can then be retrieved using the following algorithm h0 = ρ

hn+1 = ρ+ PΩSΣhn.

Then, hn converges to h as n→∞ in L2
ν(R)-norm.

Proof. We put A = (I − PΩSΣ)
−1. Firstly, we show that the operator A is bounded. According to

the inequality (3.13) and the Plancherel formula for the fractional Dunkl transform, we obtain

‖PΩSΣ‖ = sup

∥∥∥PΩSΣ f
∥∥∥
ν,2

‖h‖ν,2
≤ |Σ|

1
2 |Ω|

1
2

αν
|sin(θ)|ν+1

< 1.

Therefore, the operator (I − PΩSΣ) is invertible and the series
∑
∞

k=0 (PΩSΣ)
k converges for the

operator norm ‖ · ‖.

Next, we propose an algorithm for calculating Aρ. We put

hn =
n∑

k=0

(PΩSΣ)
k ρ, and Rn =

∞∑
k=n

(PΩSΣ)
k .
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As Rn is the remainder of a converging series, therefore, ‖Rn‖ → 0 as n → ∞. Furthermore, we

obtain

lim
n→∞

∥∥∥hn −Aρ
∥∥∥
ν,2 = lim

n→∞

∥∥∥∥∥∥∥
∞∑

k=n

(PΩSΣ)
k ρ

∥∥∥∥∥∥∥
ν,2

= lim
n→∞

∥∥∥Rnρ
∥∥∥
ν,2 ≤ lim

n→∞
‖Rn‖ ‖ρ‖ν,2 = 0.

Hence, hn converges to Aρ as n → ∞ in L2
ν(R)-norm. After that, we prove that Aρ = h for ξ ∈ Ω.

Since h = SΣh, we obtain that

ρ = (I − PΩ) h + % = (I − PΩSΣ) h + %.

On other hand, according to the hypothesis that the noise % = 0 on Ω, we get

Aæ(ξ) = A (I − PΩSΣ) h(ξ) = (I − PΩSΣ)
−1 (I − PΩSΣ) h(ξ) = h(ξ), ξ ∈ Ω.

Therefore hn → h as n → ∞ in L2
ν(R)-norm and the loss information of h over ξ ∈ Ω can be

recovered by the above algorithm. �
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