International Journal of Analysis and Applications

Bipolar Fuzzy Quasi-Ideals in Γ-Semirings: A Study

Madhulatha Parvatham^{1,2}, Yella Bhargavi¹, Aiyared Iampan^{3,*}

¹Department of Mathematics, Koneru Lakshmaiah Education Foundation, Green Fileds, Vaddeswaram, Andhra Pradesh-522302, India
²Department of Basic Sciences and Humanities, Dhanekula Institute of Engineering and Technology, Vijayawada, Andhra Pradesh-521139, India
³Department of Mathematics, School of Science, University of Phayao, 19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand

*Corresponding author: aiyared.ia@up.ac.th

Abstract. This paper investigates bipolar fuzzy quasi-ideals in the context of Γ -semirings, offering new insights into their structural properties. Our results reveal that bipolar fuzzy quasi-ideals serve as a generalization of bipolar fuzzy ideals, while bipolar fuzzy bi-ideals extend this framework further. We also establish that in regular Γ -semirings, the two concepts coincide, leading to a unified interpretation. Notably, the intersection of a bipolar fuzzy right ideal and a bipolar fuzzy left ideal forms a bipolar fuzzy quasi-ideal, highlighting key properties that deepen our understanding of ideal structures in Γ -semirings.

1. INTRODUCTION

The concept of Γ -rings, introduced by Nobusawa [10], represents a key generalization of classical ring theory, marking a significant development in algebraic structures. Semirings, another essential algebraic framework, were rigorously studied by Vandiver [12], who established foundational principles for their exploration. Building on these contributions, Rao [9] proposed the concept of Γ -semirings, a more expansive and versatile structure that unifies the characteristics of rings, Γ -rings, and semirings, offering a more comprehensive algebraic model. This progression illustrates the dynamic evolution of algebraic theory, encouraging further research and broader applications.

Received: Oct. 1, 2024.

²⁰²⁰ Mathematics Subject Classification. 03E72, 16Y80.

Key words and phrases. Γ-Semiring; bipolar fuzzy set; bipolar fuzzy ideal; bipolar fuzzy quasi-ideal; bipolar fuzzy bi-ideal.

In 1965, Zadeh introduced the concept of fuzzy sets [14], which has since inspired numerous extensions, including intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, and neutrosophic sets. Mandal [8] contributed to this area by investigating fuzzy ideals and fuzzy interior ideals in ordered semirings. Zhang [15], in 1994, introduced bipolar-valued fuzzy sets, extending the membership degree interval from [0,1] to [-1,1], thus expanding the fuzzy set framework. Further development of fuzzy concepts within Γ -semirings has been pursued by scholars such as Bhargavi [1] and Eswarlal, who explored fuzzy notions in this extended algebraic context.

Parvatham and colleagues [6,7,11] advanced the study of bipolar fuzzy Γ -semirings (BFGSRs), bipolar fuzzy ideals (BFIs), and bipolar fuzzy bi-ideals (BFBIs). Vijay Kumar et al. [13] introduced the concepts of bipolar fuzzy quasi-ideals (BFQIs) and bipolar *N* subgroups in near rings. Bhargavi et al. [2–5] explored vague bi-ideals, vague quasi-ideals, vague interior ideals, and various hybrid fuzzy structures in Γ -semirings, further enriching the field.

In this paper, we introduce the concept of bipolar fuzzy quasi-ideals (BFQIs) within the framework of Γ -semirings and examine their key properties. Our analysis shows that in regular Γ semirings, the notions of BFQIs and bipolar fuzzy bi-ideals (BFBIs) coincide. Furthermore, we establish that the intersection of a bipolar fuzzy right ideal (BFRI) and a bipolar fuzzy left ideal (BFLI) in a Γ -semiring always results in a BFQI, reinforcing the structural coherence of these concepts.

2. Preliminaries

In this section, we revisit key concepts and foundational definitions that are essential for the subsequent analysis. To provide context, we begin with an overview of Γ -semirings, which serve as an extension of classical ring and semiring structures. These algebraic systems incorporate the operations of both rings and semirings, offering a more versatile framework for studying various generalizations. By establishing these preliminary notions, we ensure a comprehensive understanding of the algebraic foundation necessary for the detailed exploration of bipolar fuzzy quasi-ideals and bi-ideals in the following sections.

Definition 2.1. [1] Let \lor and Γ be two additive commutative semigroups. Then \lor is called a Γ -semiring if there exists a mapping $\lor \times \Gamma \times \lor \to \lor$ image denoted by $\ddot{c}\alpha\ddot{p}$ for $\ddot{c}, \ddot{p} \in \lor$ and $\alpha \in \Gamma$, satisfying the following conditions: for all $\ddot{c}, \ddot{p}, \ddot{u} \in \lor$ and $\alpha, \beta \in \Gamma$,

(i) $\ddot{c}\alpha(\ddot{p}+\ddot{u}) = \ddot{c}\alpha\ddot{p} + \ddot{c}\alpha\ddot{u}$, (ii) $(\ddot{c}+\ddot{p})\alpha\ddot{u} = \ddot{c}\alpha\ddot{u} + \ddot{p}\alpha\ddot{u}$, (iii) $\ddot{c}(\alpha+\beta)\ddot{u} = \ddot{c}\alpha\ddot{u} + \ddot{c}\beta\ddot{u}$, (iv) $\ddot{c}\alpha(\ddot{p}\beta\ddot{u}) = (\ddot{c}\alpha\ddot{p})\beta\ddot{u}$.

Definition 2.2. [3] An element v of a Γ -semiring \vee is said to be regular if $v \in v\Gamma \vee \Gamma v$. If all the elements of a Γ -semiring \vee are regular, then \vee is known as a regular Γ -semiring.

Definition 2.3. [3] An element v of a Γ -semiring \vee is said to be intra-regular if $v \in \vee \Gamma v \Gamma v \Gamma \vee$. If all the elements of a Γ -semiring \vee are regular, then \vee is known as an intra-regular Γ -semiring.

Definition 2.4. [1] A non-empty subset I of a Γ -semiring \lor is called idempotent if I is an additive subsemigroup of \lor and $I\Gamma I = I$.

Definition 2.5. [1] A non-empty subset I of a Γ -semiring \lor is called a quasi-ideal (QI) of \lor if I is a Γ -subsemiring of \lor and I $\Gamma \lor \cap \lor \Gamma I \subseteq I$.

Definition 2.6. [14] Let \lor be any non-empty set. A mapping $\xi : \lor \to [0,1]$ is called a fuzzy set of \lor .

Definition 2.7. [15] Let \lor be the universe of discourse. A bipolar fuzzy set (BFS) ξ in \lor is an object having the form $\xi := \{(\ddot{v}, \xi^{-}(\ddot{v}), \xi^{+}(\ddot{v})) : \ddot{v} \in \lor\}$, where $\xi^{-} : \lor \to [-1, 0]$ and $\xi^{+} : \lor \to [0, 1]$ are mappings.

For the sake of simplicity, we shall use the symbol $\xi = (\lor; \xi^-, \xi^+)$ for the BFS $\xi := \{(\ddot{v}, \xi^-(\ddot{v}), \xi^+(\ddot{v})) : \dot{v} \in \lor\}$.

Definition 2.8. [15] Let $\xi = (\vee; \xi^-, \xi^+)$ be a BFS and $s \times t \in [-1, 0] \times [0, 1]$, the sets $\xi_s^- = \{ \ddot{v} \in \vee : \xi^-(\ddot{v}) \le s \}$ and $\xi_t^+ = \{ \ddot{v} \in \vee : \xi^+(\ddot{v}) \ge t \}$ are called negative s-cut and positive t-cut, respectively. For $s \times t \in [-1, 0] \times [0, 1]$, the set $\xi_{(s,t)} = \xi_s^- \cap \xi_t^+$ is called the (s, t)-set of $\xi = (\vee; \xi^-, \xi^+)$.

Definition 2.9. [15] Let $\xi = (\lor; \xi^-, \xi^+)$ and $\eta = (\lor; \eta^-, \eta^+)$ be two BFSs in a universe of discourse \lor . The intersection of ξ and η is defined as

 $(\xi^{-} \cap \eta^{-})(\ddot{v}) = \min\{\xi^{-}(\ddot{v}), \eta^{-}(\ddot{v})\} \text{ and } (\xi^{+} \cap \eta^{+})(\ddot{v}) = \min\{\xi^{+}(\ddot{v}), \eta^{+}(\ddot{v})\}, \forall \ddot{v} \in \vee.$

The union of ξ *and* η *is defined as*

$$(\xi^- \cup \eta^-)(\ddot{v}) = \max\{\xi^-(\ddot{v}), \eta^-(\ddot{v})\} \text{ and } (\xi^+ \cup \eta^+)(\ddot{v}) = \max\{\xi^+(\ddot{v}), \eta^+(\ddot{v})\}, \forall \ddot{v} \in \vee.$$

A BFS ξ is contained in another bipolar fuzzy set η , written with $\xi \subseteq \eta$ if

$$\xi^{-}(\ddot{v}) \geq \eta^{-}(\ddot{v}) \text{ and } \xi^{+}(\ddot{v}) \leq \eta^{+}(\ddot{v}), \forall \ddot{v} \in \vee.$$

Definition 2.10. [6] Let D be a subset of a Γ -semiring \vee . The bipolar fuzzy characteristic function δ_D of D is given by

$$\delta_D^+(\ddot{v}) = \begin{cases} 1 \text{ if } \ddot{v} \in D\\ 0 \text{ otherwise} \end{cases} \text{ and } \delta_D^-(\ddot{v}) = \begin{cases} -1 \text{ if } \ddot{v} \in D\\ 0 \text{ otherwise} \end{cases}$$

Definition 2.11. [1] A BFS $\xi = (\lor; \xi^-, \xi^+)$ in a Γ -semiring \lor is called a bipolar fuzzy Γ -semiring (BFGSR) of \lor if it satisfies the following properties: for all $\ddot{c}, \ddot{p} \in \lor$ and $\gamma \in \Gamma$,

(*i*) $\xi^{-}(\ddot{c}+\ddot{p}) \leq \max\{\xi^{-}(\ddot{c}),\xi^{-}(\ddot{p})\},\$ (*ii*) $\xi^{-}(\ddot{c}\gamma\ddot{p}) \leq \max\{\xi^{-}(\ddot{c}),\xi^{-}(\ddot{p})\},\$ (*iii*) $\xi^{+}(\ddot{c}+\ddot{p}) \geq \min\{\xi^{+}(\ddot{c}),\xi^{+}(\ddot{p})\},\$ (*iv*) $\xi^{+}(\ddot{c}\gamma\ddot{p}) \geq \min\{\xi^{+}(\ddot{c}),\xi^{+}(\ddot{p})\}.$

Definition 2.12. [3] A BFS $\xi = (\lor; \xi^-, \xi^+)$ in a Γ -semiring \lor is called a bipolar fuzzy left (resp., right) ideal (BFL(R)I) of \lor if it satisfies the following properties: for any $\ddot{e}, \ddot{o} \in \lor$ and $\varrho \in \Gamma$, (i) $\xi^-(\ddot{e}+\ddot{o}) \leq \max{\{\xi^-(\ddot{e}), \xi^-(\ddot{o})\}},$ (ii) $\xi^-(\ddot{e}\varrho\ddot{o}) \leq \xi^-(\ddot{o})$ (resp., $\leq \xi^-(\ddot{e})$), (iii) $\xi^+(\ddot{e}+\ddot{o}) \geq \min{\{\xi^+(\ddot{e}), \xi^+(\ddot{o})\}},$ (*iv*) $\xi^+(\ddot{e}\varrho\ddot{o}) \ge \xi^+(\ddot{o})$ (resp., $\ge \xi^+(\ddot{e})$). Also, ξ is a bipolar fuzzy ideal (BFI) of \lor if it is both a BFLI and a BFRI of \lor .

Definition 2.13. [11] A BFS $\xi = (\lor; \xi^-, \xi^+)$ in a Γ -semiring \lor is called a bipolar fuzzy bi-ideal (BFBI) of \lor if it satisfies the following properties: for any $\ddot{c}, \ddot{p}, \ddot{u} \in \lor$ and $\alpha, \beta \in \Gamma$,

 $(i) \xi^{-}(\ddot{c}+\ddot{p}) \leq \max\{\xi^{-}(\ddot{c}),\xi^{-}(\ddot{p})\},\$

(*ii*) $\xi^-(\ddot{c}\alpha\ddot{p}\beta\ddot{u}) \le \max\{\xi^-(\ddot{c}),\xi^-(\ddot{u})\},\$

(*iii*) $\xi^+(\ddot{c}+\ddot{p}) \ge \min\{\xi^+(\ddot{c}), \xi^+(\ddot{p})\},\$

 $(iv) \ \xi^+(\ddot{c}\alpha\ddot{p}\beta\ddot{u}) \geq \min\{\xi^+(\ddot{c}),\xi^+(\ddot{u})\}.$

3. MAIN RESULTS

In this section, we introduce and thoroughly examine the concept of bipolar fuzzy quasi-ideals, focusing on their unique properties and defining characteristics. Building on this foundation, we further investigate the impact of replacing the join operation \lor with a Γ -semiring operation, analyzing how this modification affects the structure and behavior of these quasi-ideals within the broader algebraic framework. This approach provides deeper insight into the versatility and adaptability of bipolar fuzzy quasi-ideals in the context of Γ -semirings.

Definition 3.1. A BFS $\xi = (\lor; \xi^-, \xi^+)$ in \lor is called a bipolar fuzzy quasi-ideal (BFQI) of \lor if it satisfies the following properties: for any $\ddot{e}, \ddot{o} \in \lor$, (i) $\xi^-(\ddot{e}+\ddot{o}) \leq \max\{\xi^-(\ddot{e}), \xi^-(\ddot{o})\},$ (ii) $(\xi^-\Gamma\delta^-) \cup (\delta^-\Gamma\xi^-) \supseteq \xi^-,$ (iii) $\xi^+(\ddot{e}+\ddot{o}) \geq \min\{\xi^+(\ddot{e}), \xi^+(\ddot{o})\},$ (iv) $(\xi^+\Gamma\delta^+) \cap (\delta^+\Gamma\xi^+) \subseteq \xi^+.$

Example 3.1. Let \lor be the set of all natural numbers with zero and Γ be the set of all negative even integers. Then \lor and Γ are additive commutative semigroups. Define a mapping $\lor \times \Gamma \times \lor$ by $\ddot{e}\varrho\ddot{o}$ as usual product of $\ddot{e}, \ddot{o} \in \lor$ and $\varrho \in \Gamma$. Then \lor is a Γ -semiring. Define a BFS $\xi = (\lor; \xi^-, \xi^+)$ in \lor as follows:

$$\xi^{-}(\psi) = \begin{cases} -0.8 \text{ if } \psi \text{ is even or zero} \\ -0.5 \text{ otherwise} \end{cases} \text{ and } \xi^{+}(\psi) = \begin{cases} 0.8 \text{ if } \psi \text{ is even or zero} \\ 0.5 \text{ otherwise.} \end{cases}$$

Then ξ *is a* BFQI of \vee .

Theorem 3.1. A BFS $\xi = (\lor; \xi^-, \xi^+)$ in \lor is a BFLI of \lor if and only if for all $\ddot{e}, \ddot{o} \in \lor$, (i) $\xi^-(\ddot{e}+\ddot{o}) \le \max\{\xi^-(\ddot{e}), \xi^-(\ddot{o})\},$ (ii) $\delta^-\Gamma\xi^- \supseteq \xi^-,$ (iii) $\xi^+(\ddot{e}+\ddot{o}) \ge \min\{\xi^+(\ddot{e}), \xi^+(\ddot{o})\},$ (iv) $\delta^+\Gamma\xi^+ \subseteq \xi^+.$

Proof. Suppose ξ is a BFLI of \vee . Then (i) and (iii) hold. Let $\ddot{v} \in \vee$. Then $(\delta^{-}\Gamma\xi^{-})(\ddot{v}) = \inf\{\max\{\delta^{-}(\ddot{v}), \xi^{-}(\ddot{o}) : \ddot{v} = \ddot{e}\varrho\ddot{o}\}\} = \xi^{-}(\ddot{o}) \ge \xi^{-}(\ddot{v}), \text{ so } \delta^{-}\Gamma\xi^{-} \supseteq \xi^{-}.$ Also, $(\delta^{+}\Gamma\xi^{+})(\ddot{v}) = \sup\{\min\{\delta^{+}(\ddot{e}), \xi^{+}(\ddot{o}) : \ddot{v} = \ddot{e}\varrho\ddot{o}\}\} = \xi^{+}(\ddot{o}) \le \xi^{+}(\ddot{v}), \text{ so } \delta^{+}\Gamma\xi^{+} \subseteq \xi^{+}.$ Conversely, suppose that all four conditions hold. Let $\ddot{e}, \ddot{o} \in \vee$. Then $\xi^{-}(\ddot{e}\varrho\ddot{o}) \leq (\delta^{-}\Gamma\xi^{-})(\ddot{e}\varrho\ddot{o}) = \inf\{\max\{\delta^{-}(\ddot{e}), \xi^{-}(\ddot{o})\}\} = \xi^{-}(\ddot{o}) \text{ and } \xi^{+}(\ddot{e}\varrho\ddot{o}) \geq (\delta^{+}\Gamma\xi^{+})(\ddot{e}\varrho\ddot{o}) = \sup\{\min\{\delta^{+}(\ddot{e}), \xi^{+}(\ddot{o})\}\} = \xi^{+}(\ddot{o}).$ Hence, ξ is a BFLI of \vee .

Theorem 3.2. Any BFI of \lor is a BFQI of \lor and any BFQI of \lor is a BFBI of \lor .

Proof. Suppose ξ is a BFI of ∨. Then for any ë, ö ∈ ∨ and ρ ∈ Γ,
(i) ξ⁻(ë + ö) ≤ max{ξ⁻(ë), ξ⁻(ö)},
(ii) ξ⁻(ëqö) ≤ ξ⁻(ö) and ξ⁻(ëqö) ≤ ξ⁻(ë),
(iii) ξ⁺(ë + ö) ≥ min{ξ⁺(ë), ξ⁺(ö)},
(iv) ξ⁺(ëqö) ≥ ξ⁺(ö) and ξ⁺(ëqö) ≥ ξ⁺(ë).
Thus, (ξ⁻Γδ⁻) ∪ (δ⁻Γξ⁻) ⊇ δ⁻Γξ⁻ ⊇ ξ⁻ and (ξ⁺Γδ⁺) ∩ (δ⁺Γξ⁺) ⊆ δ⁺Γξ⁺ ⊆ ξ⁺. Also, (ξ⁻Γδ⁻) ∪
(δ⁻Γξ⁻) ⊇ ξ⁻Γδ⁻ ⊇ ξ⁻ and (ξ⁺Γδ⁺) ∩ (δ⁺Γξ⁺) ⊆ ξ⁺Γδ⁺ ⊆ ξ⁺. Hence, ξ is a BFQI of ∨.
Now, suppose ξ is a BFQI of ∨. Let ë, ö, ë ∈ ∨ and ρ, τ ∈ Γ. Then
(i) ξ⁻(ë + ö) ≥ min{ξ⁺(ë), ξ⁻(ö)}.

Also,

$$\begin{split} \xi^{-}(\ddot{e}\varrho\ddot{o}) &\leq \left[(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-}) \right] (\ddot{e}\varrho\ddot{o}) \\ &= \max\{ (\xi^{-}\Gamma\delta^{-}) (\ddot{e}\varrho\ddot{o}), (\delta^{-}\Gamma\xi^{-}) (\ddot{e}\varrho\ddot{o}) \} \\ &= \max\{ \inf\{\max\{\xi^{-}(\ddot{e}), \delta^{-}(\ddot{o})\} \}, \inf\{\max\{\delta^{-}(\ddot{e}), \xi^{-}(\ddot{o})\} \} \\ &= \max\{\xi^{-}(\ddot{e}), \xi^{-}(\ddot{o})\}, \\ \xi^{+}(\ddot{e}\varrho\ddot{o}) &\geq \left[(\xi^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\xi^{+}) \right] (\ddot{e}\varrho\ddot{o}) \\ &= \min\{ (\xi^{+}\Gamma\delta^{+}) (\ddot{e}\varrho\ddot{o}), (\delta^{+}\Gamma\xi^{+}) (\ddot{e}\varrho\ddot{o}) \} \end{split}$$

 $= \min\{\sup\{\min\{\xi^+(\ddot{e}), \delta^+(\ddot{o})\}\}, \sup\{\min\{\delta^+(\ddot{e}), \xi^+(\ddot{o})\}\}\}$

 $=\min\{\xi^+(\ddot{e}),\xi^+(\ddot{o})\}.$

Therefore, ξ is a BFGSR of \vee . Also,

$$\begin{split} \xi^{-}(\ddot{e}\varrho\ddot{o}\tau\ddot{v}) &\leq [(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-})](\ddot{e}\varrho\ddot{o}\tau\ddot{v}) \\ &= \max\{(\xi^{-}\Gamma\delta^{-})(\ddot{e}\varrho\ddot{o}\tau\ddot{v}), (\delta^{-}\Gamma\xi^{-})(\ddot{e}\varrho\ddot{o}\tau\ddot{v})\} \\ &= \max\{\inf\{\max\{\xi^{-}(\ddot{e}), \delta^{-}(\ddot{o}\tau\ddot{v})\}\}, \inf\{\max\{\delta^{-}(\ddot{e}\varrho\ddot{o}), \xi^{-}(\ddot{v})\}\}\} \\ &= \max\{\xi^{-}(\ddot{e}), \xi^{-}(\ddot{v})\}, \end{split}$$

$$\begin{split} \xi^{+}(\ddot{e}\varrho\ddot{o}\tau\ddot{v}) &\geq [(\xi^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\xi^{+})](\ddot{e}\varrho\ddot{o}\tau\ddot{v}) \\ &= \min\{(\xi^{+}\Gamma\delta^{+})(\ddot{e}\varrho\ddot{o}\tau\ddot{v}), (\delta^{+}\Gamma\xi^{+})(\ddot{e}\varrho\ddot{o}\tau\ddot{v})\} \\ &= \min\{\sup\{\min\{\xi^{+}(\ddot{e}), \delta^{+}(\ddot{o}\tau\ddot{v})\}\}, \sup\{\min\{\delta^{+}(\ddot{e}\varrho\ddot{o}), \xi^{+}(\ddot{v})\}\}\} \\ &= \min\{\xi^{+}(\ddot{e}), \xi^{+}(\ddot{v})\}. \end{split}$$

Hence, ξ is a BFBI of \vee .

Theorem 3.3. *If* \lor *is regular, then every BFBI of* \lor *is a BFQI of* \lor *.*

Proof. Given \lor is regular. Suppose ξ is a BFBI of \lor . Then for any $\ddot{e}, \ddot{o} \in \lor$,

(i) $\xi^{-}(\ddot{e} + \ddot{o}) \le \max\{\xi^{-}(\ddot{e}), \xi^{-}(\ddot{o})\},\$

(ii) $\xi^+(\ddot{e}+\ddot{o}) \ge \min\{\xi^+(\ddot{e}), \xi^+(\ddot{o})\}.$

We shall show that $(\xi^+\Gamma\delta^+) \cap (\delta^+\Gamma\xi^+) \subseteq \xi^-$ and $(\xi^-\Gamma\delta^-) \cup (\delta^-\Gamma\xi^-) \supseteq \xi^-$. Case 1: Suppose $(\xi^+\Gamma\delta^+)(\ddot{p}) \leq \xi^+(\ddot{p})$. Then

$$\begin{aligned} (\xi^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\xi^{+})(\ddot{p}) &= \min\{(\xi^{+}\Gamma\delta^{+})(\ddot{p}), (\delta^{+}\Gamma\xi^{+})(\ddot{p}) : \ddot{p} = \ddot{e}\varrho\ddot{o}\tau\ddot{v}\} \\ &\leq (\xi^{+}\Gamma\delta^{+})(\ddot{p}) \\ &\leq \xi^{+}(\ddot{p}). \end{aligned}$$

Case 2: Suppose $(\xi^+\Gamma\delta^+)(\vec{p}) > \xi^+(\vec{p})$. Then $\xi^+(\vec{p}) < (\xi^+\Gamma\delta^+)(\vec{p}) = \sup\{\{\min\{(\xi^+(\vec{e}), \delta^+(\vec{o}) : \vec{p} = \vec{e}\varrho\vec{o}\}\} = \xi^+(\vec{e})$. Also, $(\delta^+\Gamma\xi^+)(\vec{p}) = \sup\{\{\min\{(\delta^+(\vec{f}), \xi^+(\vec{m}) : \vec{p} = \vec{f}\tau\vec{m}\}\} = \xi^+(\vec{m})$. Since \lor is regular, there exist $\vec{s} \in \lor$ and $\varphi, \eta \in \Gamma$ such that $\vec{p} = \vec{p}\varphi\vec{s}\eta\vec{p}$. Since ξ is a BFBI of \lor , we have

$$\begin{split} \xi^{+}(\ddot{p}) &= \xi^{+}(\ddot{p}\varphi\ddot{s}\eta\ddot{p}) \\ &= \xi^{+}((\ddot{e}\varrho\ddot{o})\varphi\ddot{s}\eta(\ddot{f}\tau\ddot{m})) \\ &= \xi^{+}(\ddot{e}\varrho(\ddot{o}\varphi\ddot{s}\eta\ddot{f})\tau\ddot{m}) \\ &\geq \min\{\xi^{+}(\ddot{e}),\xi^{+}(\ddot{m})\}. \end{split}$$

If min{ $\xi^+(\ddot{e}), \xi^+(\ddot{m})$ } = $\xi^+(\ddot{e})$, then $\xi^+(\ddot{p}) \ge \xi^+(\ddot{e})$ which is a contradiction. Thus, min{ $\xi^+(\ddot{e}), \xi^+(\ddot{m})$ } = $\xi^+(\ddot{m})$, so $\xi^+(\ddot{p}) \ge \xi^+(\ddot{m})$. Now,

$$\begin{split} [(\xi^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\xi^{+})](\ddot{p}) &= \min\{(\xi^{+}\Gamma\delta^{+})(\ddot{p}), (\delta^{+}\Gamma\xi^{+})(\ddot{p})\}\\ &\leq (\delta^{+}\Gamma\xi^{+})(\ddot{p})\\ &= \xi^{+}(\ddot{m})\\ &\leq \xi^{+}(\ddot{p}). \end{split}$$

Hence, $(\xi^+\Gamma\delta^+) \cap (\delta^+\Gamma\xi^+) \subseteq \xi^+$. Case 3: Suppose $(\xi^-\Gamma\delta^-)(\ddot{p}) \ge \xi^(\ddot{p})$. Then

$$\begin{split} [(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-})](\ddot{p}) &= \max\{(\xi^{-}\Gamma\delta^{-})(\ddot{p}), (\delta^{-}\Gamma\xi^{-})(\ddot{p})\}\\ &\geq (\xi^{-}\Gamma\delta^{-})(\ddot{p})\\ &\geq \xi^{-}(\ddot{p}). \end{split}$$

Thus, $(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-}) \supseteq \xi^{-}$.

Case 4: Suppose $(\xi^{-}\Gamma\delta^{-})(\ddot{p}) < \xi^{-}(\ddot{p})$. Then $\xi^{-}(\ddot{p}) > (\xi^{-}\Gamma\delta^{-})(\ddot{p}) = \inf\{\{\max\{(\xi^{-}(\ddot{e}), \delta^{-}(\ddot{o}) : \ddot{p} = \ddot{e}\varrho\ddot{o}\}\} = \xi^{-}(\ddot{e})$. Also, $(\delta^{-}\Gamma\xi^{-})(\ddot{p}) = \inf\{\{\max\{(\delta^{-}(\ddot{f}), \xi^{-}(\ddot{m}) : \ddot{p} = \ddot{f}\tau\ddot{m}\}\} = \xi^{-}(\ddot{m})$. Since \lor is regular,

6

there exist $\ddot{s} \in \lor$ and $\varphi, \eta \in \Gamma$ such that $\ddot{p} = \ddot{p}\varphi \ddot{s}\eta \ddot{p}$. Since ξ is a BFBI of \lor , we have

$$\begin{split} \xi^{-}(\ddot{p}) &= \xi^{-}(\ddot{p}\varphi\ddot{s}\eta\ddot{p}) \\ &= \xi^{-}((\ddot{e}\varrho\ddot{o})\varphi\ddot{s}\eta(\ddot{f}\tau\ddot{m})) \\ &= \xi^{-}(\ddot{e}\varrho(\ddot{o}\varphi\ddot{s}\eta\ddot{f})\tau\ddot{m}) \\ &\leq \max\{\xi^{-}(\ddot{e}),\xi^{-}(\ddot{m})\}. \end{split}$$

If $\max{\xi^{-}(\ddot{e}), \xi^{-}(\ddot{m})} = \xi^{-}(\ddot{e})$, then $\xi^{-}(\ddot{p}) \le \xi^{-}(\ddot{e})$ which is a contradiction. Thus, $\max{\xi^{-}(\ddot{e}), \xi^{-}(\ddot{m})} = \xi^{-}(\ddot{m})$, so $\xi^{-}(\ddot{p}) \ge \xi^{-}(\ddot{m})$. Now,

$$[(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-})](\ddot{p}) = \max\{(\xi^{-}\Gamma\delta^{-})(\ddot{p}), (\delta^{-}\Gamma\xi^{-})(\ddot{p})\}$$
$$\geq (\delta^{-}\Gamma\xi^{-})(\ddot{p})$$
$$= \xi^{-}(\ddot{m})$$
$$= ge\xi^{-}(\ddot{p}).$$

Hence, $(\xi^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\xi^{-}) \supseteq \xi^{-}$. Therefore, ξ is a BFQI of \vee .

Theorem 3.4. *The intersection of a BFRI and a BFLI of* \lor *is a BFQI of* \lor *.*

Proof. Let ξ be a BFRI and \varkappa be a BFLI of \lor . Then for any $\ddot{e}, \ddot{o} \in \lor$, (i) $(\xi^+ \cap \varkappa^+)(\ddot{e} + \ddot{o}) \ge \min\{(\xi^+ \cap \varkappa^+)(\ddot{e}), (\xi^+ \cap \varkappa^+)(\ddot{o})\},$ (ii) $(\xi^- \cap \varkappa^-)(\ddot{e} + \ddot{o}) \ge \max\{(\xi^- \cap \varkappa^-)(\ddot{e}), (\xi^- \cap \varkappa^-)(\ddot{o})\}.$ Since ξ is a BFRI of \lor , we have $\xi^+ \Gamma \delta^+ \subseteq \xi^+$ and $\xi^- \Gamma \delta^- \supseteq \xi^-$. Since \varkappa is a BFLI of \lor , we have $\delta^+ \Gamma \varkappa^+ \subseteq \varkappa^+$ and $\delta^- \Gamma \varkappa^- \supseteq \varkappa^-$. Now,

$$[(\xi^{+} \cap \varkappa^{+})\Gamma\delta^{+}] \cap [\delta^{+}\Gamma(\xi^{+} \cap \varkappa^{+})] \subseteq (\xi^{+}\Gamma\delta^{+}) \cap (\varkappa^{+}\Gamma\delta^{+})$$
$$\subseteq \xi^{+} \cap \varkappa^{+},$$
$$[(\xi^{-} \cap \varkappa^{-})\Gamma\delta^{-}] \cup [\delta^{-}\Gamma(\xi^{+} \cap \varkappa^{-})] \supseteq (\xi^{-}\Gamma\delta^{-}) \cup (\varkappa^{-}\Gamma\delta^{-})$$

 $\supseteq \xi^- \cup \varkappa^-$.

Hence, $\xi \cap \varkappa$ is a BFQI of \lor .

Theorem 3.5. Let κ be a nonempty subset of \vee . Then δ_{κ} is a BFQI of \vee if and only if κ is a QI of \vee .

Proof. Let δ_{κ} is a BFQI of \vee . Then for any $\ddot{e}, \ddot{o} \in \vee$, (i) $\delta_{\kappa}^{-}(\ddot{e}+\ddot{o}) \leq \max\{\delta_{\kappa}^{-}(\ddot{e}), \delta_{\kappa}^{-}(\ddot{o})\} = \max\{-1, -1\} = -1,$ (ii) $\delta_{\kappa}^{+}(\ddot{e}+\ddot{o}) \geq \min\{\delta_{\kappa}^{+}(\ddot{e}), \delta_{\kappa}^{+}(\ddot{o})\} = \min\{1, 1\} = 1.$ Thus, $\ddot{e} + \ddot{o} \in \kappa$. Let $\ddot{p} \in (\vee\Gamma\kappa) \cap (\kappa\Gamma\vee)$. Then $\ddot{p} \in \vee\Gamma\kappa$ and $\ddot{p} \in \kappa\Gamma\vee$. Thus, $\ddot{p} = \ddot{e}\varrho\ddot{o}$ and $\ddot{p} = \ddot{f}\tau\ddot{m}$ for some $\ddot{e}, \ddot{m} \in \vee, \ddot{o}, \ddot{f} \in \kappa$, and $\varrho, \tau \in \Gamma$. Also,

$$\begin{split} \delta_{\kappa}^{-}(\ddot{p}) &\leq \left[(\delta_{\kappa}^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\delta_{\kappa}^{-}) \right](\ddot{p}) \\ &= \max\{ (\delta_{\kappa}^{-}\Gamma\delta^{-})(\ddot{p}), (\delta^{-}\Gamma\delta_{\kappa}^{-})(\ddot{p}) \} \\ &= \max\{ \inf\{\max\{\delta_{\kappa}^{-}(\ddot{e}), \delta^{-}(\ddot{o})\}\}, \inf\{\max\{\delta^{-}(\ddot{f}), \delta_{\kappa}^{-}(\ddot{m})\}\}\} \\ &= \max\{-1, -1\} \\ &= -1, \\ \delta_{\kappa}^{+}(\ddot{p}) &\geq \left[(\delta_{\kappa}^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\delta_{\kappa}^{+}) \right](\ddot{p}) \end{split}$$

$$= \min\{(\delta_{\kappa}^{+}\Gamma\delta^{+})(\ddot{p}), (\delta^{+}\Gamma\delta_{\kappa}^{+})(\ddot{p})\}$$

$$= \min\{\sup\{\min\{\delta_{\kappa}^{+}(\ddot{e}), \delta^{+}(\ddot{o})\}\}, \sup\{\min\{\delta^{+}(\ddot{f}), \delta_{\kappa}^{+}(\ddot{m})\}\}\}$$

$$= \min\{1, 1\}$$

$$= 1.$$

Thus, $\ddot{p} \in \kappa$. Hence, κ is a QI of \vee .

Conversely, suppose that κ is a QI of \lor . Let $\ddot{e}, \ddot{o} \in \lor$.

If $\ddot{e}, \ddot{o} \in \kappa$, then $\ddot{e} + \ddot{o} \in \kappa$. Thus, $\delta_{\kappa}^{-}(\ddot{e} + \ddot{o}) = -1 = [-1, -1] = \max\{\delta_{\kappa}^{-}(\ddot{e}), \delta_{\kappa}^{-}(\ddot{o})\}$ and $\delta_{\kappa}^{+}(\ddot{e} + \ddot{o}) = 1 = [1, 1] = \min\{\delta_{\kappa}^{+}(\ddot{e}), \delta_{\kappa}^{+}(\ddot{o})\}$.

If $\ddot{e}, \ddot{o} \notin \kappa$, then $\delta_{\kappa}^{-}(\ddot{e}) = 0 = \delta_{\kappa}^{-}(\ddot{o})$ and $\delta_{\kappa}^{+}(\ddot{e}) = 0 = \delta_{\kappa}^{+}(\ddot{o})$. Thus, $\delta_{\kappa}^{-}(\ddot{e}+\ddot{o}) = 0 \leq \max\{\delta_{\kappa}^{-}(\ddot{e}), \delta_{\kappa}^{-}(\ddot{o})\}$ and $\delta_{\kappa}^{+}(\ddot{e}+\ddot{o}) = 0 \geq \min\{\delta_{\kappa}^{+}(\ddot{e}), \delta_{\kappa}^{+}(\ddot{o})\}$.

If $\ddot{e} \notin \kappa, \ddot{o} \in \kappa$, then $\delta_{\kappa}^{-}(\ddot{e}) = 0 = \delta_{\kappa}^{+}(\ddot{e}), \delta_{\kappa}^{-}(\ddot{o}) = -1$, and $\delta_{\kappa}^{+}(\ddot{o}) = 1$. Thus, $\delta_{\kappa}^{-}(\ddot{e}+\ddot{o}) \leq \max\{\delta_{\kappa}^{-}(\ddot{e}), \delta_{\kappa}^{-}(\ddot{o})\}$ and $\delta_{\kappa}^{+}(\ddot{e}+\ddot{o}) \geq \min\{\delta_{\kappa}^{+}(\ddot{e}), \delta_{\kappa}^{+}(\ddot{o})\}$.

If $\ddot{e} \in \kappa$, then $\delta_{\kappa}^{-}(\ddot{e}) = -1$ and $\delta_{\kappa}^{+}(\ddot{e}) = 1$. Also, $[(\delta_{\kappa}^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\delta_{\kappa}^{-})](\ddot{e}) \ge (\delta_{\kappa}^{-}\Gamma\delta^{-})(\ddot{e}) = \delta_{\kappa}^{-}(\ddot{e}) = -1$ and $[(\delta_{\kappa}^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\delta_{\kappa}^{+})](\ddot{e}) \le (\delta_{\kappa}^{+}\Gamma\delta^{+})(\ddot{e}) = \delta_{\kappa}^{+}(\ddot{e}) = 1$.

If $\ddot{e} \notin \kappa$, then $\delta_{\kappa}^{-}(\ddot{e}) = 0$, $\delta_{\kappa}^{+}(\ddot{e}) = 0$, and $\ddot{e} \notin \kappa$. Thus, $\ddot{e} \notin (\vee \Gamma \kappa) \cap (\kappa \Gamma \vee)$. Then the following three cases arise:

Case 1: Suppose $\ddot{e} \notin \nabla \Gamma \kappa$ and $\ddot{e} \notin \kappa \Gamma \nabla$. Then $\ddot{e} = \ddot{p}\varrho \ddot{o}$ and $\ddot{f}\tau \ddot{m}$ for some $\ddot{p}, \ddot{m} \in \nabla, \ddot{o}, \ddot{f} \notin \kappa$, and $\varrho, \tau \in \Gamma$. Now,

$$[(\delta_{\kappa}^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\delta_{\kappa}^{-})](\ddot{e}) = \max\{(\delta_{\kappa}^{-}\Gamma\delta^{-})(\ddot{e}), (\delta^{-}\Gamma\delta_{\kappa}^{-})(\ddot{e})\}$$

= max{inf{max}{ $\delta_{\kappa}^{-}(\ddot{f}), \delta^{-}(\ddot{m})\}}, inf{max}{{\delta_{\kappa}^{-}(\ddot{p}), \delta_{\kappa}^{-}(\ddot{o})}\}}$
= max{0, 0}
= 0
= $\delta_{\kappa}^{-}(\ddot{e}),$

$$\begin{split} [(\delta_{\kappa}^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\delta_{\kappa}^{+})](\ddot{e}) &= \min\{(\delta_{\kappa}^{+}\Gamma\delta^{+})(\ddot{e}), (\delta^{+}\Gamma\delta_{\kappa}^{+})(\ddot{e})\} \\ &= \min\{\sup\{\min\{\delta_{\kappa}^{+}(\ddot{f}), \delta^{+}(\ddot{m})\}\}, \sup\{\min\{\delta^{+}(\ddot{p}), \delta_{\kappa}^{+}(\ddot{o})\}\}\} \end{split}$$

Case 2: Suppose $\ddot{e} \in \vee \Gamma \kappa$ and $\ddot{e} \notin \kappa \Gamma \vee$. Then $\ddot{e} = \ddot{p}\varrho\ddot{o}$ and $\ddot{f}\tau\ddot{m}$ for some $\ddot{p}, \ddot{m} \in \vee, \ddot{o} \in \kappa, \ddot{f} \notin \kappa$, and $\varrho, \tau \in \Gamma$. Now,

$$[(\delta_{\kappa}^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\delta_{\kappa}^{-})](\ddot{e}) = \max\{(\delta_{\kappa}^{-}\Gamma\delta^{-})(\ddot{e}), (\delta^{-}\Gamma\delta_{\kappa}^{-})(\ddot{e})\}$$

$$= \max\{\inf\{\max\{\delta_{\kappa}^{-}(\ddot{f}), \delta^{-}(\ddot{m})\}\}, \inf\{\max\{\delta^{-}(\ddot{p}), \delta_{\kappa}^{-}(\ddot{o})\}\}\}$$

$$= \max\{0, 0\}$$

$$= 0$$

$$= \delta_{\kappa}^{-}(\ddot{e}),$$

$$[(\delta_{\kappa}^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\delta_{\kappa}^{+})](\ddot{e}) = \min\{(\delta_{\kappa}^{+}\Gamma\delta^{+})(\ddot{e}), (\delta^{+}\Gamma\delta_{\kappa}^{+})(\ddot{e})\}$$

$$= \min\{\sup\{\min\{\delta_{\kappa}^{+}(\ddot{f}), \delta^{+}(\ddot{m})\}\}, \sup\{\min\{\delta^{+}(\ddot{p}), \delta_{\kappa}^{+}(\ddot{o})\}\}\}$$

$$= \min\{0, 0\}$$

$$= 0$$

$$= \delta_{\kappa}^{+}(\ddot{e}).$$

Case 3: Suppose $\ddot{e} \notin \nabla \Gamma \kappa$ and $\ddot{e} \in \kappa \Gamma \nabla$. Then $\ddot{e} = \ddot{p}\varrho\ddot{o}$ and $\ddot{f}\tau\ddot{m}$ for some $\ddot{p}, \ddot{m} \in \nabla, \ddot{o} \notin \kappa, \ddot{f} \in \kappa$, and $\varrho, \tau \in \Gamma$. Now,

$$[(\delta_{\kappa}^{-}\Gamma\delta^{-}) \cup (\delta^{-}\Gamma\delta_{\kappa}^{-})](\ddot{e}) = \max\{(\delta_{\kappa}^{-}\Gamma\delta^{-})(\ddot{e}), (\delta^{-}\Gamma\delta_{\kappa}^{-})(\ddot{e})\}$$

$$= \max\{\inf\{\max\{\delta_{\kappa}^{-}(\ddot{f}), \delta^{-}(\ddot{m})\}\}, \inf\{\max\{\delta^{-}(\ddot{p}), \delta_{\kappa}^{-}(\ddot{o})\}\}\}$$

$$= \max\{0, 0\}$$

$$= 0$$

$$= \delta_{\kappa}^{-}(\ddot{e}),$$

$$[(\delta_{\kappa}^{+}\Gamma\delta^{+}) \cap (\delta^{+}\Gamma\delta_{\kappa}^{+})](\ddot{e}) = \min\{(\delta_{\kappa}^{+}\Gamma\delta^{+})(\ddot{e}), (\delta^{+}\Gamma\delta_{\kappa}^{+})(\ddot{e})\}$$

$$= \min\{\sup\{\min\{\delta_{\kappa}^{+}(\ddot{f}), \delta^{+}(\ddot{m})\}\}, \sup\{\min\{\delta^{+}(\ddot{p}), \delta_{\kappa}^{+}(\ddot{o})\}\}\}$$

$$= \min\{0, 0\}$$

$$= 0$$

$$= \delta_{\kappa}^{+}(\ddot{e}).$$

Hence, in all the above three cases, $(\delta^+_{\kappa}\Gamma\delta^+) \cap (\delta^+\Gamma\delta^+_{\kappa}) \subseteq \delta^+_{\kappa}$ and $(\delta^-_{\kappa}\Gamma\delta^-) \cup (\delta^-\Gamma\delta^-_{\kappa}) \supseteq \delta^-_{\kappa}$. Therefore, δ_{κ} is a BFQI of \vee .

Theorem 3.6. Every QI of \lor is idempotent if and only if every BFQI of \lor is idempotent.

Proof. Suppose every QI of \lor is idempotent. Let ξ be a BFQI of \lor . Then $\xi^+\Gamma\xi^+ \subseteq (\xi^+\Gamma\delta^+) \cap (\delta^+\Gamma\xi^+) \subseteq \xi^+$ and $\xi^-\Gamma\xi^- \supseteq (\xi^-\Gamma\delta^-) \cup (\delta^-\Gamma\xi^-) \supseteq \xi^-$. By theorem 4.8 of [2], \lor is regular and intra-regular. Let $\ddot{p} \in \lor$. Then $\ddot{p} = \ddot{p}\varrho\ddot{m}\tau\ddot{p}$ and $\ddot{p} = \ddot{e}\varphi\ddot{p}\phi\ddot{p}\eta\ddot{o}$ for some $\ddot{m}, \ddot{e}, \ddot{o} \in \lor$ and $\varrho, \tau, \varphi, \phi, \eta \in \Gamma$. Now, $\ddot{p} = \ddot{p}\varrho\ddot{m}\tau\ddot{p} = \ddot{p}\varrho\ddot{m}\tau\ddot{p}\varrho\ddot{m}\tau\ddot{p} = \ddot{p}\varrho\ddot{m}\tau(\ddot{e}\varphi\ddot{p}\phi\ddot{p}\eta\ddot{o})\varrho\ddot{m}\tau\ddot{p} = (\ddot{p}\varrho\ddot{m}\tau\ddot{e}\varphi\ddot{p})\phi(\ddot{p}\eta\ddot{o}\varrho\ddot{m}\tau\ddot{p})$. Since any BFQI of \lor is a BFBI of \lor , we have

$$\begin{split} (\xi^{+}\Gamma\xi^{+})(\ddot{p}) &= (\xi^{+}\Gamma\xi^{+})((\ddot{p}\varrho\ddot{m}\tau\ddot{e}\varphi\ddot{p})\phi(\ddot{p}\eta\ddot{o}\varrho\ddot{m}\tau\ddot{p})) \\ &= \sup\{\{\min\{(\xi^{+}(\ddot{p}\varrho\ddot{m}\tau\ddot{e}\varphi\ddot{p}),\xi^{+}(\ddot{p}\eta\ddot{o}\varrho\ddot{m}\tau\ddot{p})\}\} \\ &\geq \sup\{\{\min\{\min\{\xi^{+}(\ddot{p}),\xi^{+}(\ddot{p})\},\min\{\xi^{+}(\ddot{p}),\xi^{+}(\ddot{p})\}\}\} \\ &= \xi^{+}(\ddot{p}). \end{split}$$

Thus, $\xi^+\Gamma\xi^+ \supseteq \xi^+$, so $\xi^+\Gamma\xi^+ = \xi$. Also,

$$\begin{split} (\xi^{-}\Gamma\xi^{-})(\ddot{p}) &= (\xi^{-}\Gamma\xi^{-})((\ddot{p}\varrho\ddot{m}\tau\ddot{e}\varphi\ddot{p})\phi(\ddot{p}\eta\ddot{o}\varrho\ddot{m}\tau\ddot{p})) \\ &= \inf\{\{\max\{(\xi^{-}(\ddot{p}\varrho\ddot{m}\tau\ddot{e}\varphi\ddot{p}),\xi^{-}(\ddot{p}\eta\ddot{o}\varrho\ddot{m}\tau\ddot{p})\}\} \\ &\leq \inf\{\{\max\{\max\{\xi^{-}(\ddot{p}),\xi^{-}(\ddot{p})\},\max\{\xi^{-}(\ddot{p}),\xi^{-}(\ddot{p})\}\}\} \\ &= \xi^{-}(\ddot{p}). \end{split}$$

Thus, $\xi^{-}\Gamma\xi^{-} \subseteq \xi^{+}$, so $\xi^{-}\Gamma\xi^{-} = \xi$. Hence, every BFQI of \lor is idempotent.

Conversely, suppose that every BFQI of \lor is idempotent. Let κ be a QI of \lor . By Theorem 3.5, we have δ_{κ} is a BFQI of \lor . Thus, $\delta_{\kappa}^{+} = \delta_{\kappa}^{+}\Gamma\delta^{+}$ and $\delta_{\kappa}^{-} = \delta_{\kappa}^{-}\Gamma\delta^{-}$. Therefore, $\kappa\Gamma\kappa = \kappa$. Hence, every QI of \lor is idempotent.

4. CONCLUSION

This research provides a comprehensive analysis of BFQIs in Γ -semirings, highlighting their generalization of BFIs. We establish that BFBIs extend BFQIs, broadening their applicability within the Γ -semiring structure. In regular Γ -semirings, we show that the two concepts coincide, offering a unified perspective. Additionally, the study identifies that the intersection of a BFRI and a BFLI always forms a BFQI. These findings contribute significantly to the understanding of fuzzy ideal theory in Γ -semirings.

Acknowledgment: This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2025, Grant No. 5027/2567).

Conflicts of Interest: The author(s) declare that there are no conflicts of interest regarding the publication of this paper.

References

- Y. Bhargavi, T. Eswarlal, Fuzzy Γ-Semirings, Int. J. Pure Appl. Math. 98 (2015), 339-349. https://doi.org/10.12732/ ijpam.v98i3.6.
- [2] Y. Bhargavi, T. Eswarlal, Vague Bi-Ideals and Vague Quasi-Ideals of a Γ-Semiring, Int. J. Sci. Res. 4 (2015), 2694-2699.

- [3] Y. Bhargavi, A. Iampan, Vague Interior Ideals of Γ-Semirings, ICIC Express Lett. 18 (2024), 1023-1030. https://doi.org/10.24507/icicel.18.10.1023.
- [4] Y. Bhargavi, A. Iampan, B. Nageswararao, Vague Bi-Quasi-Interior Ideals of Γ-Semirings, Int. J. Anal. Appl. 21 (2023), 98. https://doi.org/10.28924/2291-8639-21-2023-98.
- [5] Y. Bhargavi, S. Ragamayi, T. Eswarlal, G. Jayalalitha, Vague Bi-Interior Ideals of a Γ-Semiring, Adv. Math.: Sci. J. 9 (2020), 4425-4435. https://doi.org/10.37418/amsj.9.7.13.
- [6] P. Madhulatha, Y. Bhargavi, Bipolar Fuzzy Γ-Semirings, AIP Conf. Proc. 2707 (2023), 020006. https://doi.org/10. 1063/5.0143364.
- [7] P. Madhulatha, Y. Bhargavi, A. Iampan, Bipolar Fuzzy Ideals of Γ-Semirings, Asia Pac. J. Math. 10 (2023), 38. https://doi.org/10.28924/APJM/10-38.
- [8] D. Mandal, Fuzzy Ideals and Fuzzy Interior Ideals in Ordered Semirings, Fuzzy Inf. Eng. 6 (2014), 101–114. https://doi.org/10.1016/j.fiae.2014.06.008.
- [9] M.M.K. Rao, Γ-Semiring, Southeast Asian Bull. Math. 19 (1995), 49-54.
- [10] N. Nobusawa, On a Generalization of the Ring Theory, Osaka J. Math. 1 (1964), 81-89.
- [11] M. Parvatham, Y. Bhargavi, A. Iampan, Bipolar Fuzzy Bi-Ideals of Γ-Semirings, Asia Pac. J. Math. 11 (2024), 69. https://doi.org/10.28924/APJM/11-69.
- [12] H.S. Vandiver, Note on a Simple Type of Algebra in Which the Cancellation Law of Addition Does Not Hold, Bull. Amer. Math. Soc. 40 (1934), 916-920.
- [13] K.V. Kumar, B. Jyothi, P.N. Swamy, T. Nagaiah, G. Omprakasham, Characterization on Bipolar Fuzzy Quasi Ideals and Bipolar N-Subgroups of near Rings, AIP Conf. Proc. 2246 (2020), 020053. https://doi.org/10.1063/5.0014444.
- [14] L.A. Zadeh, Fuzzy Sets, Inf. Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- [15] W.R. Zhang, Bipolar Fuzzy Sets and Relations: A Computational Framework for Cognitive Modeling and Multiagent Decision Analysis, in: Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, IEEE, San Antonio, TX, USA, 1994: pp. 305–309. https://doi.org/10.1109/IJCF.1994.375115.