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Abstract. We develop and examine the pre-modular space of null variable exponent-weighted backward generalized

difference gai sequences of fuzzy functions in this paper. These sequences of fuzzy functions are important contributions

to the concept of modular spaces because they have exponent weighting. Using extended s−fuzzy functions as well as

this sequence space of fuzzy functions, it has been possible to accomplish an idealization of the mappings. We have

presented some topological and geometric properties of this new space, as well as the ideal mappings that correspond

to them.

1. Introduction

The mappings’ ideal theory is well regarded in functional analysis. The closed mappings’ ideals

are certain to play an important function in the principle of Banach lattices. Fixed point theory,

Banach space geometry, normal series theory, approximation theory, ideal transformations, etc.

all use mappings’ ideal. Using s-numbers is an essential technique. Pietsch [1–4] developed and

studied the theory of s-numbers of linear bounded mappings between Banach spaces. He offered

and explained some topological and geometric structures of the quasi ideals of `p type mappings.
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Then, Constantin [5], generalized the class of `p type mappings to the class of cesp type mappings.

Makarov and Faried [6], showed some inclusion relations of `p type mappings. As a generalization

of `p type mappings, Stolz mappings and mappings’ ideal were examined by Tita [7,8]. In [9], Maji

and Srivastava studied the class A(s)
p of s-type cesp mappings using s-number sequence and Cesàro

sequence spaces and they introduced a new classA(s)
p,q of s-type ces(p, q) mappings by weighted cesp

with 1 < p < ∞. In [10], the class of s-type Z(u, v; `p) mappings was defined and some of their

properties were explained. Yaying et al. [11], defined and studied χηr , whose its r-Cesàro matrix

in `η, with r ∈ (0, 1] and 1 ≤ η ≤ ∞. They explained the quasi Banach ideal of type χηr , with

r ∈ (0, 1] and 1 < η < ∞. Pre-quasi mappings’ ideals are more extensive than quasi mappings’

ideals, according to Faried and Bakery [12].

After Zadeh [13] established the concept of fuzzy sets and fuzzy set operations, many researchers

adopted the concept of fuzziness in cybernetics and artificial intelligence as well as in expert

systems and fuzzy control. Javed et al. [14] investigated the Banach contraction in R-fuzzy b-

metric spaces and discussed some related fixed point results to ensure a fixed point’s existence and

uniqueness. A nontrivial example is given to illustrate the feasibility of the proposed methods.

They offered an application to solve the first kind of Fredholm-type integral equation. In [15],

Rehman and Aydi proved some common fixed point theorems for mappings involving generalized

rational-type fuzzy cone-contraction conditions in fuzzy cone metric spaces. They gave a common

solution of two definite Fredholm integral equations. The concept of orthogonal partial b-metric

spaces was pioneered by Javed et al. [16]. They presented a unique fixed point for some orthogonal

contractive mappings with some examples and an application. Humaira et al. [17], discussed the

existence theorem for a unique solution to a coupled system of impulsive fractional differential

equations in complex-valued fuzzy metric spaces and the fuzzy version of some fixed point results

by using the definition and presented some properties of a complex-valued fuzzy metric space

with some applications. In this study, Rome et al. [18] looked into the concept of extended fuzzy

rectangular b-metric space. They explained that some fixed point results in the literature could

be generalized by α-admittance in this space. They used this to show solutions for a group of

integral equations. Many researchers in sequence spaces and summability theory studied fuzzy

sequence spaces and their properties. Different classes of sequences of fuzzy real numbers have

been discussed by Nanda [19], Nuray and Savas [20], Matloka [21], Altinok et al. [22], Colak et

al. [23], Hazarika and Savas [24] and many others. In [20], the Nakano sequences of fuzzy integers

were defined and analyzed. Tripathy and Baruah [25], introduced and examined some properties

of a new type of difference sequence spaces of fuzzy real numbers. Subramanian and Misra [26,27],

defined and studied the generalized double difference of Gai Sequence Spaces and the generalized

semi-normed difference of double gai sequence spaces defined by a modulus function. In [28],

Subramanian et al. introduced and offered some properties of the generalized difference gai

sequences of fuzzy numbers defined by Orlicz functions. Bakery and Mohamed [29], introduced

the certain space of sequences of fuzzy numbers, in short (cssf), under a certain function to be
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pre-quasi (cssf). This space and s− numbers have been used to describe the structure of the ideal

operators. They defined and studied the weighted Nakano sequence spaces of fuzzy functions.

They constructed the ideal generated by extended s−fuzzy functions and the sequence spaces of

fuzzy functions. They presented some topological and geometric structures of this class of ideal and

multiplication mappings acting on this sequence space of fuzzy functions. Moreover, the existence

of Caristi’s fixed point was examined. Many fixed point theorems are effective when applied

to a given space because they either enlarge the self-mapping acting on it or expand the space

itself. In this paper, we have defined and studied the pre-modular space of null variable exponent-

weighted backward generalized difference gai sequences spaces of fuzzy numbers, which are

important extensions of the concept of modular spaces. The Fatou property of various pre-quasi

norms on this new space has been investigated. Extended s−fuzzy functions and this sequence

space of fuzzy functions have been used to create the mappings’ ideal. The topological and

geometric characteristics of mappings’ ideal are offered.

2. Definitions and Preliminaries:

Remember that Matloka [21], introduced bounded and convergent fuzzy numbers, investi-

gated some of their properties, and demonstrated that any convergent fuzzy number sequence is

bounded. Nanda [19], researched fuzzy number sequences and demonstrated that the set of all

convergent fuzzy number sequences forms a complete metric space. Kumar et al. [30], presented

the concept limit points and cluster points of sequences of fuzzy numbers. If Ω is the set of all

closed and bounded intervals on the real line R. Assume f = [ f1, f2] and g = [g1, g2] in Ω, let

f ≤ g if and only if f1 ≤ g1 and f2 ≤ g2.

Define a metric ρ on Ω by

ρ( f , g) = max{| f1 − g1|, | f2 − g2|}.

Matloka [21] proved that ρ is a metric on Ω and (Ω,ρ) is a complete metric space. The relation ≤

is a partial order on Ω.

Definition 2.1. A fuzzy number f is a fuzzy subset of R i.e., a mapping f : R → [0, 1] that verifies the
four conditions:

(a): f is fuzzy convex, i.e., for x, y ∈ R and α ∈ [0, 1], f (αx + (1− α)y) ≥ min{ f (x), f (y)};
(b): f is normal, i.e., there is y0 ∈ R such that f (y0) = 1;
(c): f is an upper-semi continuous, i.e., for all α > 0, f−1([0, x + α)) for all x ∈ [0, 1] is open in the

usual topology of R;
(d): the closure of f 0 := {y ∈ R : f (y) > 0} is compact.

The β-level set of a fuzzy real number f , 0 < β < 1, denoted by f β, is defined as

f β = {y ∈ R : f (y) ≥ β}.
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The set of all upper semi-continuous, normal, convex fuzzy number, and f β is compact, is marked

by R([0, 1]). The set R can be embedded in R([0, 1]), if we define r ∈ R([0, 1]) by

r(t) =

1, t = r

0, t , r.

The additive identity and multiplicative identity in R[0, 1] are denoted by 0 and 1, respectively.

Assume f , g ∈ R[0, 1] and the β-level sets are [ f ]β = [ f β1 , f β2 ], [g]
β = [gβ1, gβ2], β ∈ [0, 1]. A partial

ordering for any f , g ∈ R[0, 1] as follows: f � g if and only if f β ≤ gβ, for all β ∈ [0, 1].

Assume ρ : R[0, 1] ×R[0, 1]→ R+
∪ {0} is defined by ρ( f , g) = sup

0≤β≤1
ρ( f β, gβ).

Recall that:

(1) (R[0, 1],ρ) is a complete metric space.

(2) ρ( f + k, g + k) = ρ( f , g) for all f , g, k ∈ R[0, 1].

(3) ρ( f + k, g + l) ≤ ρ( f , g) + ρ(k, l).
(4) ρ(ξ f , ξg) = |ξ|ρ( f , g), for all ξ ∈ R.

By c0, `∞ and `r, we denote the space of null, bounded and r-absolutely summable sequences of

real numbers. Letω(F) denote the classes of all sequence spaces of fuzzy real numbers. A sequence

X = (Xk) ∈ ω(F) is called analytic sequence of fuzzy numbers if supk |Xk|
1

k+1 < ∞. A sequence

X = (Xk) ∈ ω(F) is called gai sequence of fuzzy numbers if (k!ρ(Xk, 0̄))
1

k+1 → 0 , as k→∞. Let CN

denote the space of all sequences of complex numbers, whereN is the set of non-negative integers.

Tripathy et al. [31], defined and examined the forward and backward generalized difference

sequence spaces: U(∆(m)
n ) =

{
(wk) ∈ CN : (∆(m)

n wk) ∈ U
}

and U(∆m
n ) =

{
(wk) ∈ CN : (∆m

n wk) ∈ U
}
,

where m, n ∈ N , U = `∞, c or c0, with ∆(m)
n wk =

m∑
ν=0

(−1)νCm
ν wk+νn, and ∆m

n wk =
m∑
ν=0

(−1)νCm
ν wk−νn,

respectively. If n = 1, the generalized difference sequence spaces reduced to U(∆(m)) defined and

investigated by Et and Çolak [32]. If m = 1, the generalized difference sequence spaces reduced

to U(∆n) defined and investigated by Tripathy and Esi [33]. While, if n = 1 and m = 1, the

generalized difference sequence spaces reduced to U(∆) defined and studied by Kizmaz [34].

Definition 2.2. [35] The backward generalized difference ∆m
n+1 is said to be an absolute non-decreasing, if

|xi| ≤ |yi| for all i ∈N, then
∣∣∣∣∆m

n+1|xi|

∣∣∣∣ ≤ ∣∣∣∣∆m
n+1|yi|

∣∣∣∣.
We indicate the space of all bounded, finite rank linear mappings from an infinite dimensional

Banach space ∆ into an infinite dimensional Banach space Λ by L(Ω, Λ), and F(Ω, Λ) and when

∆ = Λ, we inscribe L(Ω) and F(Ω). The space of approximable and compact bounded linear

mappings from Ω into Λ will be denoted by Υ(Ω, Λ) and Lc(Ω, Λ), and if Ω = Λ, we mark Υ(Ω)

and Lc(Ω), respectively.

Definition 2.3. [36] An s-number function is a mapping s : L(Ω, Λ)→ R+N that gives all V ∈ L(Ω, Λ)

a (sd(V))∞d=0 holds the following conditions:
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(a): ‖V‖ = s0(V) ≥ s1(V) ≥ s2(V) ≥ ... ≥ 0, for every V ∈ L(Ω, Λ),
(b): sl+d−1(V1 + V2) ≤ sl(V1) + sd(V2), for every V1, V2 ∈ L(Ω, Λ) and l, d ∈ N ,
(c): sd(VYW) ≤ ‖V‖sd(Y) ‖W‖, for every W ∈ L(∆0, ∆), Y ∈ L(Ω, Λ) and V ∈ L(Λ, Λ0), where

Ω0 and Λ0 are arbitrary Banach spaces,
(d): assume V ∈ L(Ω, Λ) and γ ∈ R, then sd(γV) = |γ|sd(V),
(e): if rank(V) ≤ d, then sd(V) = 0, for all V ∈ L(Ω, Λ),
(f): sl≥a(Ia) = 0 or sl<a(Ia) = 1, where Ia indicates the unit mapping on the a-dimensional Hilbert

space `a
2.

We give here some examples of s-numbers:

(1): The q-th Kolmogorov number, denoted by dq(X), is marked by

dq(X) = infdim J≤q sup
‖ f ‖≤1 infg∈J ‖X f − g‖.

(2): The q-th approximation number, indicated by αq(X), is marked by

αq(X) = inf
{
‖X −Y‖ : Y ∈ L(Ω, Λ) and rank(Y) ≤ q

}
.

Definition 2.4. [3] Let L be the class of all bounded linear operators within any two arbitrary Banach
spaces. A sub classU of L is said to be a mappings’ ideal, if everyU(Ω, Λ) = U∩L(Ω, Λ) satisfies the
following setups:

(i): IΓ ∈ U, where Γ indicates Banach space of one dimension.
(ii): The spaceU(Ω, Λ) is linear over R.
(iii): If W ∈ L(∆0, ∆), X ∈ U(Ω, Λ) and Y ∈ L(Λ, Λ0), then YXW ∈ U(∆0, Λ0).

Notations 2.5. [29]

zU :=
{
zU(Ω, Λ)

}
, where zU(Ω, Λ) :=

{
V ∈ L(Ω, Λ) : ((s j(V))∞j=0 ∈ U

}
,

zαU :=
{
zαU(Ω, Λ)

}
, where zαU(Ω, Λ) :=

{
V ∈ L(Ω, Λ) : ((α j(V))∞j=0 ∈ U

}
,

zd
U :=

{
zd

U(Ω, Λ)
}
, where zd

U(Ω, Λ) :=
{
V ∈ L(Ω, Λ) : ((d j(V))∞j=0 ∈ U

}
,

where

s j(V)(x) =

1, x = s j(V)

0, x , s j(V).

Definition 2.6. [12] A function H ∈ [0,∞)U is said to be a pre-quasi norm on the idealU if the following
conditions hold:

(1): Assume V ∈ U(Ω, Λ), H(V) ≥ 0 and H(V) = 0, if and only if, V = 0,
(2): one has Q ≥ 1 with H(αV) ≤ D|α|H(V), for all V ∈ U(Ω, Λ) and α ∈ R,
(3): there are P ≥ 1 such that H(V1 + V2) ≤ P[H(V1) + H(V2)], for all V1, V2 ∈ U(Ω, Λ),
(4): there are σ ≥ 1 so that if V ∈ L(∆0, ∆), X ∈ U(Ω, Λ) and Y ∈ L(Λ, Λ0) then H(YXV) ≤

σ ‖Y‖H(X) ‖V‖.

Theorem 2.1. [12] H is a pre-quasi norm on the idealU, whenever H is a quasi norm on the idealU.
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Lemma 2.1. [37] If τa > 0 and va, ta ∈ R, for all a ∈ N , then |va + ta|
τa ≤ 2K−1(|va|

τa + |ta|
τa), where

K = max{1, supa τa}.

3. Some characteristics of χF
0(∆

m
n+1, τ, η)

We have offered in this section sufficient conditions of the space of null variable exponent-

weighted generalized difference gai sequences of fuzzy numbers, χF
0(∆

m
n+1, τ, η), equipped with

definite function h to be pre-quasi Banach (cssf). We have examined some algebraic and topological

properties like completeness, solidness, symmetry, convergence-free etc. The Fatou property of

various pre-quasi norms h on χF
0(∆

m
n+1, τ, η) has been presented.

If τ = (τa), η = (ηa) ∈ R+N , where R+N is the space of positive reals. The space of null variable

exponent-weighted generalized difference gai sequences of fuzzy numbers is defined as:

χF
0(∆

m
n+1, τ, η) =

{
v = (va) ∈ ω(F) : lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|µva|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0 , for some µ > 0
}
, where

va = 0 for a < 0, ∆m
n+1|va| = ∆m−1

n+1 |va| − ∆m−1
n+1 |va−1| and ∆0va = va, for all a, n, m ∈ N .

Theorem 3.1. If (τa) ∈ `∞, then

χF
0(∆

m
n+1, τ, η) =

{
v = (va) ∈ ω(F) : lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|µva|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0 , for any µ > 0
}
.

Proof.

χF
0(∆

m
n+1, τ, η) =

{
v = (va) ∈ ω(F) : lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|µva|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0 , for some µ > 0
}

=
{
v = (va) ∈ ω(F) : lim

a→∞
|µ|

τa
a+1 lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|va|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0 , for some µ > 0
}

=
{
v = (va) ∈ ω(F) : lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|va|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0
}

=
{
v = (va) ∈ ω(F) : lim

a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|µva|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0 , for any µ > 0
}
.

�

It is clear to see that if (τa) ∈ `∞, then

lim
a→∞

[
ρ

(
ηa

(
a!

∣∣∣∆m
n+1|va|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0⇒ lim
a→∞

[
ρ

(
ηa

(∣∣∣∆m
n+1|va|

∣∣∣) 1
a+1 , 0

)] τa
K

= 0

⇒ lim
a→∞

[
ρ
(
ηa

∣∣∣∆m
n+1|va|

∣∣∣ , 0
)] τa

K = 0.

For X = (Xk), a given sequence S(X) denotes the set of all permutation of the elements of (Xk),

that is S(X) =
{
(Xπ(k))

}
.

Definition 3.1. (1): A sequence space of fuzzy numbers U is said to be symmetric, if S(X) ∈ U, for
all X ∈ U.
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(2): A sequence space of fuzzy numbers U is said to be convergence free if (Yk) ∈ U whenever (Xk) ∈ U
and Xk = 0̄ implies Yk = 0̄.

Theorem 3.2. If (τa) ∈ `∞, then the space
(
χF

0(∆, τ, η)
)

h
is symmetric.

Proof. It is easy, so omitted. �

Theorem 3.3. If (τa) ∈ `∞, then the space
(
χF

0(∆
m+2
n+1 , τ, η)

)
h

is not symmetric.

Proof. Consider the sequence (Xk) = (0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, · · · ). Then (Xk) ∈
(
χF

0(∆
2, τ, η)

)
h
. Now if (Yk)

is the rearrangement of (Xk) defined by (Yk) = (0̄, 6̄, 2̄, 1̄, 4̄, 3̄, 5̄, · · · ). Then (Yk) <
(
χF

0(∆
2, τ, η)

)
h
.

Therefore, the space
(
χF

0(∆
2, τ, η)

)
h

is not symmetric. �

Theorem 3.4. If (τa) ∈ `∞, then the space
(
χF

0(∆
m+1
n+1 , τ, η)

)
h

is not convergence free.

Proof. Consider the sequence (Xk) = (1̄, 1̄, · · · ). Then (Xk) ∈
(
χF

0(∆
2, τ, η)

)
h
. Again if (Yk) = (k2).

Clearly, (Yk) <
(
χF

0(∆
2, τ, η)

)
h
. Hence the space

(
χF

0(∆
m+1
n+1 , τ, η)

)
h

is not convergence free. �

Let us mark the space of all functions h : U −→ [0,∞) by [0,∞)U.

Definition 3.2. [38] If U is a vector space. A function h ∈ [0,∞]U is said to be modular if the following
conditions hold:

(a): Assume Y ∈ U, Y = ϑ⇔ h(Y) = 0 with h(Y) ≥ 0, where ϑ = (0, 0, 0, . . .),
(b): h(ηZ) = h(Z) verifies, for every Z ∈ U and |η| = 1,
(c): the inequality h(αY + (1− α)Z) ≤ h(Y) + h(Z) holds, for every Y, Z ∈ U and α ∈ [0, 1].

Definition 3.3. [29] The linear space U is called a certain space of sequences of fuzzy numbers (cssf), when

(1): {bq}q∈N ⊆ U, where bq = (0, 0, ..., 1, 0, 0, · · · ), while 1 displays at the qth place,
(2): U is solid i.e., if Y = (Yq) ∈ ω(F), Z = (Zq) ∈ U and |Yq| ≤ |Zq|, for every q ∈ N , then Y ∈ U,
(3): (Y[

q
2 ]
)∞q=0 ∈ U, where [ q

2 ] denotes the integral part of q
2 , if (Yq)∞q=0 ∈ U.

Definition 3.4. [29] A subclass Uh of U is said to be a pre-modular (cssf), if there is h ∈ [0,∞)U satisfies
the following conditions:

(i): Assume Y ∈ U, Y = ϑ⇔ h(Y) = 0 with h(Y) ≥ 0, where ϑ = (0, 0, 0, . . .),
(ii): one has Q ≥ 1, the inequality h(αY) ≤ Q|α|h(Y) holds, for all Y ∈ U and α ∈ R,
(iii): one has P ≥ 1, the inequality h(Y + Z) ≤ P(h(Y) + h(Z)) verifies, for all Y, Z ∈ U,
(iv): suppose |Yq| ≤ |Zq|, for all q ∈ N , then h((Yq)) ≤ h((Zq)),
(v): the inequality, h((Yq)) ≤ h((Y[

q
2 ]
)) ≤ P0h((Yq)) verifies, for some P0 ≥ 1,

(vi): if E is the space of finite sequences of fuzzy numbers, then the closure of E = Uh,
(vii): one has σ > 0 with h(α, 0, 0, 0, ...) ≥ σ|α|h(1, 0, 0, 0, ...), where

α(y) =

1, y = α

0, y , α.
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Note that the notion of pre-modular vector spaces is more general than modular vector spaces.

Some examples of pre-modular vector spaces but not modular vector spaces.

Example 3.5. The function h(Z) = sup
q

[
ρ

(
1

q + 1

(∣∣∣∆3
2|Zq|

∣∣∣) 1
q+1 , 0

)] 4q+4
3q+4

is a pre-modular (not a modular)

on the vector space χF
0

(
∆3

2,
( q+1

3q+4

)
,
(
(q + 1)−1 (q!)

−1
q+1

))
.

As for every Z, Y ∈ χF
0

(
∆3

2,
( q+1

3q+4

)
,
(
(q + 1)−1 (q!)

−1
q+1

))
, one has

h
(Z + Y

2

)
= sup

q

ρ
 1

q + 1

(∣∣∣∣∣∣∆3
2

∣∣∣∣∣∣Zq + Yq

2

∣∣∣∣∣∣
∣∣∣∣∣∣
) 1

q+1

, 0




4q+4
3q+4

≤ 8(h(Z) + h(Y)).

Example 3.6. The function h(Z) = sup
q

[
ρ

(
q + 1
q + 2

(∣∣∣∆|Zq|
∣∣∣) 1

q+1 , 0
)] 2q+3

q+4

is a pre-modular (not a modular)

on the vector space χF
0

(
∆,

(2q+3
q+4

)
,
(
(q + 1)(q + 2)−1 (q!)

−1
q+1

))
.

As for every Z, Y ∈ χF
0

(
∆,

(2q+3
q+4

)
,
(
(q + 1)(q + 2)−1 (q!)

−1
q+1

))
, one has

h
(Z + Y

2

)
= sup

q

ρ
q + 1

q + 2

(∣∣∣∣∣∣∆
∣∣∣∣∣∣Zq + Yq

2

∣∣∣∣∣∣
∣∣∣∣∣∣
) 1

q+1

, 0




2q+3
q+4

≤ 2(h(Z) + h(Y)).

An example of pre-modular vector space and modular vector space.

Example 3.7. The function h(Y) = inf
{
α > 0 : sup

q

ρ
q + 1

q + 2

(∣∣∣∣∣∣∆|Yq

α
|

∣∣∣∣∣∣
) 1

q+1

, 0




2q+3
q+2

≤ 1
}

is a pre-modular

(modular) on the vector space χF
0

(
∆,

(2q+3
q+2

)
,
(
(q + 1)(q + 2)−1 (q!)

−1
q+1

))
.

Definition 3.8. [29] If U is a (cssf). The function h ∈ [0,∞)U is said to be a pre-quasi norm on U, if it
verifies the following settings:

(i): Suppose Y ∈ U, Y = ϑ⇔ h(Y) = 0 with h(Y) ≥ 0, where ϑ = (0, 0, 0, . . .),
(ii): we have Q ≥ 1, the inequality h(αY) ≤ Q|α|h(Y) holds, for all Y ∈ U and α ∈ R,
(iii): one has P ≥ 1, the inequality h(Y + Z) ≤ P(h(Y) + h(Z)) verifies, for all Y, Z ∈ U.

Theorem 3.5. [29] Suppose U is a pre-modular (cssf), then it is pre-quasi normed (cssf).

Theorem 3.6. [29] U is a pre-quasi normed (cssf), if it is quasi-normed (cssf).

Definition 3.9. (a): The function h on χF
0(∆

m
n+1, τ, η) is named h-convex, if

h(αY + (1− α)Z) ≤ αh(Y) + (1− α)h(Z),

for every α ∈ [0, 1] and Y, Z ∈ χF
0(∆

m
n+1, τ, η).

(b): {Yq}q∈N ⊆

(
χF

0(∆
m
n+1, τ, η)

)
h

is h-convergent to Y ∈
(
χF

0(∆
m
n+1, τ, η)

)
h
, if and only if, limq→∞ h(Yq−

Y) = 0. When the h-limit exists, then it is unique.
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(c): {Yq}q∈N ⊆

(
χF

0(∆
m
n+1, τ, η)

)
h

is h-Cauchy, if limq,r→∞ h(Yq −Yr) = 0.

(d): Γ ⊂
(
χF

0(∆
m
n+1, τ, η)

)
h

is h-closed, when for all h-converges {Yq}a∈N ⊂ Γ to Y, then Y ∈ Γ.

(e): Γ ⊂
(
χF

0(∆
m
n+1, τ, η)

)
h

is h-bounded, if δh(Γ) = sup
{
h(Y −Z) : Y, Z ∈ Γ

}
< ∞.

(f): The h-ball of radius ε ≥ 0 and center Y, for every Y ∈
(
χF

0(∆
m
n+1, τ, η)

)
h
, is described as:

Bh(Y, ε) =
{
Z ∈

(
χF

0(∆
m
n+1, τ, η)

)
h

: h(Y −Z) ≤ ε
}
.

(g): A pre-quasi norm h on χF
0(∆

m
n+1, τ, η) holds the Fatou property, if for every sequence {Zq

} ⊆(
χF

0(∆
m
n+1, τ, η)

)
h

under limq→∞ h(Zq
−Z) = 0 and all Y ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, one has h(Y−Z) ≤

supr infq≥r h(Y −Zq).

Recall that the Fatou property gives the h-closedness of the h-balls. We will denote the space of

all increasing and decreasing sequences of real numbers by I and D, respectively.

Theorem 3.7.
(
χF

0(∆
m
n+1, τ, η)

)
h
, where h(Y) = sup

q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

, for every

Y ∈ χF
0(∆

m
n+1, τ, η), is a pre-modular (cssf), if the following conditions are satisfied:

a.: (τq)q∈N ∈ `∞ ∩ I with τ0 > 0,
b.: ∆m

n+1 is an absolute non-decreasing,

c.:
(
ηq(q!)

1
q+1

)∞
q=0
∈ D or,

(
ηq(q!)

1
q+1

)∞
q=0
∈ I∩ `∞ and there is C ≥ 1 so that η2q+1((2q + 1)!)

1
2q+2 ≤

Cηq(q!)
1

q+1 .

Proof. (i) Clearly, h(Y) ≥ 0 and h(Y) = 0⇔ Y = ϑ.

(1-i) Assume Y, Z ∈ χF
0(∆

m
n+1, τ, η). We have

h(Y + Z) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq + Zq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

+ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Zq|

∣∣∣) 1
q+1 , 0

)] τq
K

= h(Y) + h(Z) < ∞,

then Y + Z ∈ χF
0(∆

m
n+1, τ, η).

(iii) There are P ≥ 1 with h(Y + Z) ≤ P(h(Y) + h(Z)), for every Y, Z ∈ χF
0(∆

m
n+1, τ, η).

(1-ii) If α ∈ R and Y ∈ χF
0(∆

m
n+1, τ, η), one has

h(αY) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|αYq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ sup
q
|α|

τq
(q+1)K sup

q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ Q|α|h(v) < ∞.

SinceαY ∈ χF
0(∆

m
n+1, τ, η), hence from parts (1-i) and (1-ii), we haveχF

0(∆
m
n+1, τ, η) is linear. Also bp ∈

χF
0(∆

m
n+1, τ, η), for every p ∈ N , as h(bp) = sup

q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|(bp)q|

∣∣∣∣) 1
q+1

, 0
)] τq

K

= sup
q

(
ηq(q!)

1
q+1

) τq
K
<

∞.
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(ii) One has Q = max
{
1, supq |α|

τq
(q+1)K−1

}
≥ 1 with h(αY) ≤ Q|α|h(Y), for every Y ∈ χF

0(∆
m
n+1, τ, η)

and α ∈ R.

(2) If |Yq| ≤ |Zq|, for every q ∈ N and Z ∈ χF
0(∆

m
n+1, τ, η). We obtain

h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Zq|

∣∣∣) 1
q+1 , 0

)] τq
K

= h(Z) < ∞,

then Y ∈ χF
0(∆

m
n+1, τ, η).

(iv) Evidently, from (2).

(3) Assume (Yq) ∈ χF
0(∆

m
n+1, τ, η),

(
ηq(q!)

1
q+1

)∞
q=0
∈ I∩ `∞ and one has C ≥ 1 such that η2q+1((2q +

1)!)
1

2q+2 ≤ Cηq(q!)
1

q+1 , one can see

h
(
(Y[

q
2 ]
)
)
= sup

q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|Y[

q
2 ]
|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ sup
q

[
ρ

(
η2q

(
2q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
2q+1 , 0

)] τ2q
K

+ sup
q

[
ρ

(
η2q+1

(
(2q + 1)!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
2q+2 , 0

)] τ2q+1
K

≤ sup
q

[
ρ

(
η2q

(
2q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
2q+1 , 0

)] τq
K

+ sup
q

[
ρ

(
η2q+1

(
(2q + 1)!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
2q+2 , 0

)] τq
K

≤ 2C
supq τq

K sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

= 2C
supq τq

K h
(
(Yq)

)
,

then (Y[
q
2 ]
) ∈ χF

0(∆
m
n+1, τ, η). (v) From (3), one has P0 = 2C

supq τq
K ≥ 1.

(vi) Clearly, the closure of E = χF
0(∆

m
n+1, τ, η).

(vii) One gets 0 < σ ≤ supq |α|
τq

(q+1)K−1, for α , 0 or σ > 0, for α = 0 with

h(α, 0, 0, 0, ...) ≥ σ|α|h(1, 0, 0, 0, ...).

�

Theorem 3.8. If the conditions of theorem 3.7 are satisfied, then
(
χF

0(∆
m
n+1, τ, η)

)
h

is a pre-quasi Banach

(cssf), where h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

, for all Y ∈ χF
0(∆

m
n+1, τ, η).

Proof. According to Theorem 3.7 and Theorem 3.5, the space
(
χF

0(∆
m
n+1, τ, η)

)
h

is a pre-quasi normed

(cssf). If Yl = (Yl
q)
∞

q=0 is a Cauchy sequence in
(
χF

0(∆
m
n+1, τ, η)

)
h
, hence for all ε ∈ (0, 1), then l0 ∈ N

such that for every l, m ≥ l0, we have

h(Yl
−Ym) = sup

q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Y

l
q −Ym

q |
∣∣∣) 1

q+1 , 0
)] τq

K

< ε.
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Therefore, ρ
((∣∣∣∆m

n+1|Y
l
q −Ym

q |
∣∣∣) 1

q+1 , 0
)
< ε. Since (R[0, 1],ρ) is a complete metric space. So (Ym

q )

is a Cauchy sequence in R[0, 1], for fixed q ∈ N . This gives limm→∞ Ym
q = Y0

q , for fixed q ∈ N .

Then h(Yl
− Y0) < ε, for all l ≥ l0. As h(Y0) = h(Y0

− Yl + Yl) ≤ h(Yl
− Y0) + h(Yl) < ∞. Then

Y0
∈ χF

0(∆
m
n+1, τ, η). �

Theorem 3.9. The function h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] τq
K

holds the Fatou property, when

the conditions of theorem 3.7 are satisfied.

Proof. Let {Zr
} ⊆

(
χF

0(∆
m
n+1, τ, η)

)
h

such that limr→∞ h(Zr
− Z) = 0. Since

(
χF

0(∆
m
n+1, τ, η)

)
h

is a pre-

quasi closed space, we have Z ∈
(
χF

0(∆
m
n+1, τ, η)

)
h
. For every Y ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, then

h(Y −Z) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq −Zq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq −Zr

q|
∣∣∣) 1

q+1 , 0
)] τq

K

+ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Z

r
q −Zq|

∣∣∣) 1
q+1 , 0

)] τq
K

≤ sup
m

inf
r≥m

h(Y −Zr).

�

Theorem 3.10. The function h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)]τq

does not hold the Fatou property,

for all Y ∈ χF
0(∆

m
n+1, τ, η), if the conditions of theorem 3.7 are satisfied with τ0 > 1.

Proof. Assume {Zr
} ⊆

(
χF

0(∆
m
n+1, τ, η)

)
h

such that limr→∞ h(Zr
− Z) = 0. As

(
χF

0(∆
m
n+1, τ, η)

)
h

is a

pre-quasi closed space, we have Z ∈
(
χF

0(∆
m
n+1, τ, η)

)
h
. For all Z ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, then

h(Y −Z) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq −Zq|

∣∣∣) 1
q+1 , 0

)]τq

≤ 2supq τq−1
sup

q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq −Zr

q|
∣∣∣) 1

q+1 , 0
)]τq

+ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Z

r
q −Zq|

∣∣∣) 1
q+1 , 0

)]τq


≤ 2supq τq−1 sup
m

inf
r≥m

h(Y −Zr).

�

Example 3.10. For (τq) ∈ [1,∞)N , the function h(Y) = inf

α > 0 : sup
q

ρ
ηq

(
q!

∣∣∣∣∣∣∆m
n+1

∣∣∣∣∣∣Yq

α

∣∣∣∣∣∣
∣∣∣∣∣∣
) 1

q+1

, 0



τq

≤ 1


is a norm on χF

0(∆
m
n+1, τ, η).

Example 3.11. The function h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] 3q+2
3q+3

is a pre-quasi norm (not a norm)

on χF
0(∆

m
n+1, ( 3q+2

q+1 )
∞

q=0), η).
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Example 3.12. The function h(Y) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)] 3q+2
q+1

is a pre-quasi norm (not a quasi

norm) on χF
0(∆

m
n+1, ( 3q+2

q+1 )
∞

q=0), η).

Example 3.13. The function h(Y) = sup
q
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|Yq|

∣∣∣) 1
q+1 , 0

)
is a pre-quasi norm, quasi norm and

not a norm on χF
0(∆

m
n+1, (d), η), for 0 < d < 1.

4. Structure of mappings’ ideal

The structure of the mappings’ ideal by
(
χF

0(∆
m
n+1, τ, η)

)
h
, where h(g) = sup

q

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|gq|

∣∣∣) 1
q+1 , 0

)] τq
K

,

for all g ∈ χF
0(∆

m
n+1, τ, η), and extended s−fuzzy functions have been explained. We study enough

setups on
(
χF

0(∆
m
n+1, τ, η)

)
h

such that the classz(
χF

0(∆
m
n+1,τ,η)

)
h

is complete. We investigate conditions

setups (not necessary) on
(
χF

0(∆
m
n+1, τ, η)

)
h

such that the closure of F = zα(
χF

0(∆
m
n+1,τ,η)

)
h

. This gives

a negative answer of Rhoades [39] open problem about the linearity of s− type
(
χF

0(∆
m
n+1, τ, η)

)
h

spaces. We explain enough setups on
(
χF

0(∆
m
n+1, τ, η)

)
h

such that z(
χF

0(∆
m
n+1,τ,η)

)
h

is strictly con-

tained for different powers, weights and backward generalized differences, the classz(
χF

0(∆
m
n+1,τ,η)

)
h

is simple, and the space of every bounded linear mappings which sequence of eigenvalues in(
χF

0(∆
m
n+1, τ, η)

)
h

equalsz(
χF

0(∆
m
n+1,τ,η)

)
h

.

Theorem 4.1. [29] If U is a (cssf), thenzU is a mappings’ ideal.

In view of Theorem 3.7 and Theorem 4.1, one has the following theorem.

Theorem 4.2. If the conditions of theorem 3.7 are satisfied, thenz(
χF

0(∆
m
n+1,τ,η)

)
h

is a mappings’ ideal.

Theorem 4.3. If the conditions of theorem 3.7 are satisfied, then the function H is a pre-quasi norm on

z(
χF

0(∆
m
n+1,τ,η)

)
h

, with H(Z) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(Z)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

, for every Z ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ).

Proof. (1): Suppose X ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ), H(X) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(X)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≥

0 and H(X) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(X)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

= 0, if and only if, sq(X) = 0, for all

q ∈ N , if and only if, X = 0,
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(2): one has Q ≥ 1 with H(αX) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(αX)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ Q|α|H(X), for all

X ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ) and α ∈ R,

(3): there are PP0 ≥ 1 so that for X1, X2 ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ), we have

H(X1 + X2) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(X1 + X2)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ P
(
h(s[ q

2 ]
(X1))

∞

q=0 + h(s[ q
2 ]
(X2))

∞

q=0

)
≤ PP0

(
h(sq(X1))

∞

q=0 + h(sq(X2))
∞

q=0

)
,

(4): there are % ≥ 1, if X ∈ L(∆0, ∆), Y ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ) and Z ∈ L(Λ, Λ0), then

H(ZYX) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(ZYX)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ h( ‖X‖ ‖Z‖sq(Y))∞q=0 ≤ % ‖X‖H(Y) ‖Z‖.

�

In the next theorems, we will use the notation
(
z(

χF
0(∆

m
n+1,τ,η)

)
h

, H
)
, where H(V) = h

(
(sq(V))∞q=0

)
,

for all V ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

.

Theorem 4.4. Assume the conditions of theorem 3.7 are satisfied, then
(
z(

χF
0(∆

m
n+1,τ,η)

)
h

, H
)

is a pre-quasi

Banach mappings’ ideal.

Proof.
Let (Va)a∈N be a Cauchy sequence in z(

χF
0(∆

m
n+1,τ,η)

)
h

(Ω, Λ). Since L(Ω, Λ) ⊇ S(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ),

then

H(Vr−Va) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(Vr −Va)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

≥ h
(
s0(Vr −Va), 0, 0, 0, ...

)
≥ η

τ0
K

0 ‖Vr−Va‖
τ0
K ,

this implies (Va)a∈N is a Cauchy sequence in L(Ω, Λ). Since L(Ω, Λ) is a Banach space, one has

V ∈ L(Ω, Λ) such that lim
a→∞

‖Va −V ‖ = 0 and as (sq(Va))∞q=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, for every a ∈ N

and
(
χF

0(∆
m
n+1, τ, η)

)
h

is a pre-modular (cssf). Then we have

H(V) = h
(
(sq(V))∞q=0

)
≤ h

(
(s[ q

2 ]
(V −Va)

)∞
q=0

) + h
(
(s[ q

2 ]
(Va)

∞

q=0)
)

≤ h
(
( ‖Va −V ‖1)∞q=0

)
+ 2C

supq τq
K h

(
(sq(Va))

∞

q=0

)
< ε,
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for some C ≥ 1, hence one has (sq(V))∞q=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, hence V ∈ z(

χF
0(∆

m
n+1,τ,η)

)
h

(Ω, Λ). �

Definition 4.1. A pre-quasi norm H on the ideal zUh holds the Fatou property if for all {Tq}q∈N ⊆

zUh(Ω, Λ) such that limq→∞H(Tq − T) = 0 and M ∈ zUh(Ω, Λ), then

H(M− T) ≤ sup
q

inf
j≥q

H(M− T j).

Theorem 4.5. If the conditions of theorem 3.7 are satisfied, then

z(
χF

0(∆
m
n+1,τ,η)

)
h

, H

 does not hold the

Fatou property.

Proof. Let {Tq}q∈N ⊆ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ) with limq→∞H(Tq − T) = 0. Since z(
χF

0(∆
m
n+1,τ,η)

)
h

is a

pre-quasi closed ideal, then T ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ), hence for all M ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ), we

have

H(M− T) = sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1sq(M− T)

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1s[ q

2 ]
(M− Ti)

∣∣∣∣) 1
q+1

, 0
)] τq

K

+ sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1s[ q

2 ]
(Ti − T)

∣∣∣∣) 1
q+1

, 0
)] τq

K

≤ 2C
supq τq

K sup
r

inf
i≥r

sup
q

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1s[ q

2 ]
(M− Ti)

∣∣∣∣) 1
q+1

, 0
)] τq

K

.

�

Theorem 4.6. zα(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ) = the closure of F(Ω, Λ), if the conditions of theorem 3.7 are

satisfied. But the converse is not necessarily true.

Proof. As bx ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, for all x ∈ N and

(
χF

0(∆
m
n+1, τ, η)

)
h

is a linear space. If Z ∈ F(Ω, Λ),

one has (αx(Z))∞x=0 ∈ E. Then the closure of F(Ω, Λ) ⊆ zα(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ). Suppose Z ∈

zα(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ), one has (αx(Z))∞x=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
. Since h(αx(Z))∞x=0 < ∞, if ρ ∈ (0, 1),

one has x0 ∈ N − {0} so that h((αx(Z))∞x=x0
) <

ρ
4 . As (αx(Z))∞x=0 is decreasing, one gets

2x0sup
x=x0+1

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1α2x0(Z)

∣∣∣∣) 1
x+1

, 0
)] τx

K

≤
2x0sup

x=x0+1

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z)

∣∣∣∣) 1
x+1

, 0
)] τx

K

≤
∞

sup
x=x0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z)

∣∣∣∣) 1
x+1

, 0
)] τx

K

<
ρ

4
.

(4.1)
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Then one has Y ∈ F2x0(Ω, Λ) such that rank(Y) ≤ 2x0 and

3x0sup
x=2x0+1

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

≤
2x0sup

x=x0+1

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

<
ρ

4
, (4.2)

as (τq)q∈N ∈ `∞ ∩ I with τ0 > 0, take

x0sup
x=0

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

<
ρ

4
. (4.3)

According to inequalities 4.1-4.3, then

d(Z, Y) =
∞

sup
x=0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z−Y)

∣∣∣∣) 1
x+1

, 0
)] τx

K

≤
3x0−1
sup
x=0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z−Y)

∣∣∣∣) 1
x+1

, 0
)] τx

K

+
∞

sup
x=3x0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z−Y)

∣∣∣∣) 1
x+1

, 0
)] τx

K

≤
3x0sup
x=0

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

+

∞

sup
x=x0

[
ρ

(
ηx+2x0

(
(x + 2x0)!

∣∣∣∣∆m
n+1αx+2x0(Z−Y)

∣∣∣∣) 1
x+2x0+1

, 0
)] τx+2x0

K

≤
3x0sup
x=0

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

+
∞

sup
x=x0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z)

∣∣∣∣) 1
x+1

, 0
)] τx

K

≤ 3
x0sup

x=0

[
ρ

(
ηx

(
x!

∣∣∣∆m
n+1‖Z−Y‖

∣∣∣) 1
x+1 , 0

)] τx
K

+
∞

sup
x=x0

[
ρ

(
ηx

(
x!

∣∣∣∣∆m
n+1αx(Z)

∣∣∣∣) 1
x+1

, 0
)] τx

K

< ρ.

This implies zα(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ) ⊆ the closure of F(Ω, Λ). Contrarily, one has a counter exam-

ple as I6 ∈ z
α(
χF

0

(
∆,(0,0,1,1,··· ),

(
(x+1)−1(x!)

−1
x+1

))(Ω, Λ), but τ0 > 0 is not satisfied. �

Theorem 4.7. Assume the conditions of theorem 3.7 are satisfied with τ(1)x < τ(2)x and η(2)x < η(1)x , for every
x ∈ N , then

z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ) & z(
χF

0(∆
m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ) $ L(Ω, Λ).

Proof. Suppose Z ∈ z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ), then (sx(Z)) ∈
(
χF

0(∆
m
n+2, (τ(1)x ), (η(1)x )

)
h
. We have

sup
x

[
ρ

(
η(2)x

(
x!

∣∣∣∣∆m+1
n+1 sx(Z)

∣∣∣∣) 1
x+1

, 0
)]τ(2)x

< sup
x

[
ρ

(
η(1)x

(
x!

∣∣∣∣∆m
n+2sx(Z)

∣∣∣∣) 1
x+1

, 0
)]τ(1)x

< ∞,
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then Z ∈ z(
χF

0(∆
m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ). Next, if we take (sx(Z))∞x=0 with
(
∆m

n+2sx(Z)
)
= (1, 1, · · · ),

hence
(
∆m+1

n+1 sx(Z)
)
= (1, 0, 0, · · · ), one has Z ∈ L(Ω, Λ) so that

lim
x→∞

[
ρ

(
η(1)x

(
x!

∣∣∣∣∆m
n+2sx(Z)

∣∣∣∣) 1
x+1

, 0
)]τ(1)x

, 0,

and

lim
x→∞

[
ρ

(
η(2)x

(
x!

∣∣∣∣∆m+1
n+1 sx(Z)

∣∣∣∣) 1
x+1

, 0
)]τ(2)x

= 0.

Therefore, Z < z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ) and Z ∈ z(
χF

0(∆
m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ).

Evidently,z(
χF

0(∆
m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ) ⊂ L(Ω, Λ). After, if we choose (sx(Z))∞x=0 so that(
∆m+1

n+1 sx(Z)
)
= (1, 1, · · · ). One has Z ∈ L(Ω, Λ) such that Z < z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ). �

Lemma 4.1. [3] Suppose B ∈ L(Ω, Λ) and B < Υ(Ω, Λ), then D ∈ L(Ω) and M ∈ L(Λ) with
MBDeb = eb, with b ∈ N .

Theorem 4.8. [3] In general, one has

F(Ω) & Υ(Ω) & Lc(Ω) & L(Ω).

Theorem 4.9. If the conditions of theorem 3.7 are satisfied with τ(1)x < τ(2)x and η(2)x < η(1)x , for all x ∈ N ,
then

L

(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)

= Υ
(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)
.

Proof. Let X ∈ L
(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)

and

X < Υ
(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)
. In view of Lemma 4.1, one has

Y ∈ L
(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ)
)

and Z ∈ L
(
z(

χF
0(∆

m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)

so that ZXYIb = Ib, then

with b ∈ N , we have

‖Ib‖z(
χF

0 (∆
m
n+2,(τ

(1)
x ),(η

(1)
x )

)
h

(Ω,Λ)
= sup

x

[
ρ

(
η(1)x

(
x!

∣∣∣∣∆m
n+2sx(Ib)

∣∣∣∣) 1
x+1

, 0
)]τ(1)x

≤ ‖ZXY‖‖Ib‖z(
χF

0 (∆
m+1
n+1 ,(τ

(2)
x ),(η

(2)
x )

)
h

(Ω,Λ)

≤ sup
x

[
ρ

(
η(2)x

(
x!

∣∣∣∣∆m+1
n+1 sx(Ib)

∣∣∣∣) 1
x+1

, 0
)]τ(2)x

.
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This contradicts Theorem 4.7. As X ∈ Υ
(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)
.

�

Corollary 4.1. Suppose the conditions of theorem 3.7 are satisfied with τ(1)x < τ(2)x and η(2)x < η(1)x , for
every x ∈ N , then

L

(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)

= Lc

(
z(

χF
0(∆

m+1
n+1 ,(τ(2)x ),(η(2)x )

)
h

(Ω, Λ),z(
χF

0(∆
m
n+2,(τ(1)x ),(η(1)x )

)
h

(Ω, Λ)
)
.

Proof. Obviously, since Υ ⊂ Lc. �

Definition 4.2. [3] A Banach space Ω is said to be simple, if there is only one non-trivial closed ideal in
L(Ω).

Theorem 4.10. Assume the conditions of theorem 3.7 are verified, thenz(
χF

0(∆
m
n+1,τ,η)

)
h

is simple.

Proof. Let X ∈ Lc(z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ)) and X < Υ(z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ)). From Lemma 4.1, there

exist Y, Z ∈ L(z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ)) with ZXYIb = Ib.

This implies I
z(

χF
0 (∆

m
n+1,τ,η)

)
h

(Ω,Λ)
∈ Lc(z(

χF
0(∆

m
n+1,τ,η)

)
h

(Ω, Λ)). Then L(z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ)) =

Lc(z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ)), thenz(
χF

0(∆
m
n+1,τ,η)

)
h

is simple Banach space. �

Notations 4.3.(
zU

)λ
:=

{ (
zU

)λ
(Ω, Λ); ∆and Λ are Banach Spaces

}
, where(

zU
)λ

(Ω, Λ) :=
{
X ∈ L(Ω, Λ) : ((λx(X))∞x=0 ∈ U and ‖X − ρ(λx(X), 0)I‖ is not invertible, with x ∈ N

}
.

Theorem 4.11. If the conditions of theorem 3.7 are satisfied, thenz(
χF

0(∆
m
n+1,τ,η)

)
h


λ

(Ω, Λ) = z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ).

Proof.

Let X ∈

z(
χF

0(∆
m
n+1,τ,η)

)
h


λ

(Ω, Λ), then (λx(X))∞x=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h

and ‖X − ρ(λx(X), 0)I‖ = 0,

for all x ∈ N . Therefore, lim
q→∞

[
ρ

(
ηq

(
q!

∣∣∣∆m
n+1|λq(X)|

∣∣∣) 1
q+1 , 0

)] τq
K

= 0. One has X = ρ(λx(X), 0)I, for

every x ∈ N , so

ρ(sx(X), 0) = ρ(sx(ρ(λx(X), 0)I), 0) = ρ(λx(X), 0),
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for every x ∈ N . Hence (sx(X))∞x=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
, then X ∈ z(

χF
0(∆

m
n+1,τ,η)

)
h

(Ω, Λ). After,

assume X ∈ z(
χF

0(∆
m
n+1,τ,η)

)
h

(Ω, Λ). Hence (sx(X))∞x=0 ∈

(
χF

0(∆
m
n+1, τ, η)

)
h
. We have

lim
q→∞

[
ρ

(
ηq

(
q!

∣∣∣∣∆m
n+1|sq(X)|

∣∣∣∣) 1
q+1

, 0
)] τq

K

= 0.

As ∆m
n+1 is continuous, then limx→∞ ρ(sx(X), 0) = 0. Suppose ‖X − ρ(sx(X), 0)I‖−1 exists, with

x ∈ N . Hence ‖X − ρ(sx(X), 0)I‖−1 exists and bounded, for every x ∈ N . As limx→∞ ‖X −

ρ(sx(X), 0)I‖−1 = ‖X‖−1 exists and bounded. As
(
z(

χF
0(∆

m
n+1,τ,η)

)
h

, H
)

is a pre-quasi Mappings’

ideal, one gets

I = XX−1
∈ z(

χF
0(∆

m
n+1,τ,η)

)
h

(Ω, Λ)⇒ (sx(I))∞x=0 ∈ χ
F
0(∆

m
n+1, τ, η)⇒ lim

x→∞
ρ(sx(I), 0) = 0.

We have a contradiction, since limx→∞ ρ(sx(I), 0) = 1. Then ‖X − ρ(sx(X), 0)I‖ = 0, with x ∈ N .

Which proves that X ∈

z(
χF

0(∆
m
n+1,τ,η)

)
h


λ

(Ω, Λ). �

Theorem 4.12. For s− type Uh :=
{

f = (sr(X)) ∈ ω(F) : X ∈ L(Ω, Λ) and h( f ) < ∞
}
. If zUh is a

mappings’ ideal, then the following conditions are verified:

1. E ⊂ s− type Uh.
2. Assume

(
sr(X1)

)∞
r=0
∈ s− type Uh and

(
sr(X2)

)∞
r=0
∈ s− type Uh, then

(
sr(X1 + X2)

)∞
r=0
∈ s− type

Uh.
3. If λ ∈ R and

(
sr(X)

)∞
r=0
∈ s− type Uh, then |λ|

(
sr(X)

)∞
r=0
∈ s− type Uh.

4. The sequence space Uh is solid. i.e., if
(
sr(Y)

)∞
r=0
∈ s− type Uh and sr(X) ≤ sr(Y), for all r ∈ N

and X, Y ∈ L(Ω, Λ), then
(
sr(X)

)∞
r=0
∈ s− type Uh.

Proof. IfzUh is a mappings’ ideal.

(i): We have F(Ω, Λ) ⊂ zUh(Ω, Λ). Hence for all X ∈ F(Ω, Λ), we have
(
sr(X)

)∞
r=0
∈ E. This

gives
(
sr(X)

)∞
r=0
∈ s− type Uh. Hence E ⊂ s− type Uh.

(ii): The spacezUh(Ω, Λ) is linear over R. Hence for each λ ∈ R and X1, X2 ∈ zUh(Ω, Λ), we

have X1 + X2 ∈ zUh(Ω, Λ) and λX1 ∈ zUh(Ω, Λ). This implies(
sr(X1)

)∞
r=0
∈ s− type Uh and

(
sr(X2)

)∞
r=0
∈ s− type Uh ⇒

(
sr(X1 + X2)

)∞
r=0
∈ s− type Uh

and

λ ∈ R and
(
sr(X1)

)∞
r=0
∈ s− type Uh ⇒ |λ|

(
sr(X1)

)∞
r=0
∈ s− type Uh.
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(iii): If A ∈ L(Ω0, Ω), B ∈ zUh(Ω, Λ) and D ∈ L(Λ, Λ0), then DBA ∈ zUh(Ω0, Λ0), where

Ω0 and Λ0 are arbitrary Banach spaces. Therefore, since
(
sr(B)

)∞
r=0
∈ s − type Uh, then(

sr(DBA)
)∞

r=0
∈ s − type Uh. Since sr(DBA) ≤ ‖D‖sr(B) ‖A‖. By using condition 3, if(

‖D‖ ‖A‖sr(B)
)∞

r=0
∈ Uh, we have

(
sr(DBA)

)∞
r=0
∈ s − type Uh. This means s − type Uh is

solid.

�

In view of Theorem 4.2 and Theorem 4.12, we conclude the following properties of the s −
type

(
χF

0(∆
m
n+1, τ, η)

)
h

space.

Theorem 4.13. If s− type
(
χF

0(∆
m
n+1, τ, η)

)
h

:=
{

f = (sr(X)) ∈ ω(F) : X ∈ L(Ω, Λ) and h( f ) < ∞
}
,

then the following conditions are verified:

1. E ⊂ s− type
(
χF

0(∆
m
n+1, τ, η)

)
h
.

2. Assume
(
sr(X1)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h

and
(
sr(X2)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h
, then(

sr(X1 + X2)
)∞

r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h
.

3. Ifλ ∈ R and
(
sr(X)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h
, then |λ|

(
sr(X)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h
.

4. The sequence space
(
χF

0(∆
m
n+1, τ, η)

)
h

is solid. i.e., if
(
sr(Y)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h

and

sr(X) ≤ sr(Y), for all r ∈ N and X, Y ∈ L(Ω, Λ), then
(
sr(X)

)∞
r=0
∈ s− type

(
χF

0(∆
m
n+1, τ, η)

)
h
.

Theorem 4.14. The space z(χF
0(∆

m+1
n+1 ,τ,η))h

is not mappings’ ideal, if the conditions (a) and (c) of theorem
3.7 are satisfied

Proof. If we choose m = 1, n = 1, wk = 1, vk = wk for k = 3s or vk = 0, otherwise, for all s, k ∈ N .

We have |vk| ≤ |wk|, for all k ∈ N , w ∈
(
χF

0(∆
2
2, τ, η)

)
h

and v <
(
χF

0(∆
2
2, τ, η)

)
h
. Hence, the space(

χF
0(∆

m
n+1, τ, η)

)
h

is not solid. �

5. Conclusion

In this paper, we have explained sufficient settings of the space χF
0(∆

m
n+1, τ, η) equipped with

definite function h to be pre-quasi Banach (cssf). The Fatou property of various pre-quasi norms

h on χF
0(∆

m
n+1, τ, η) has been investigated. The structure of the mappings’ ideal by this space

and extended s−fuzzy functions have been explained. We study enough setups on it such that

the class z(
χF

0(∆
m
n+1,τ,η)

)
h

is simple Banach and the closure of F = zα(
χF

0(∆
m
n+1,τ,η)

)
h

. We explain

enough setups on it such that z(
χF

0(∆
m
n+1,τ,η)

)
h

is strictly contained for different powers, weights

and backward generalized differences and the space of every bounded linear mappings which

sequence of eigenvalues in
(
χF

0(∆
m
n+1, τ, η)

)
h

equals z(
χF

0(∆
m
n+1,τ,η)

)
h

. The existence results may be

established under a wide range of flexible conditions. When it comes to the variable exponent

in the above-mentioned space. Since many fixed point theorems in a particular space work by
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either expanding the self-mapping acting on it or expanding the space itself, as future work we

can enlarge this space by q−analogue or discuss the fixed points of any contraction self-mapping

acting on it and try to find the solutions for a class of non-linear summable and matrix equations

of fuzzy functions in this space.

Acknowledgements: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia,

under grant No. (UJ-23-DR-172). Therefore, the authors thank the University of Jeddah for its

technical and financial support.

Authors’ Contributions: All authors contributed equally to the writing of this paper. All authors

read and approved the final manuscript.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] A. Pietsch, Einigie neu Klassen von Kompakten Linearen Abbildungen, Rev. Roum. Math. Pures Appl. 8 (1963),

427–447.

[2] A. Pietsch, s-Numbers of Operators in Banach Spaces, Studia Math. 51 (1974), 201–223. https://doi.org/10.4064/

sm-51-3-201-223.

[3] A. Pietsch, Operator Ideals, North-Holland Publishing Company, Amsterdam, (1980).

[4] A. Pietsch, Small Ideals of Operators, Studia Math. 51 (1974), 265-267.

[5] G. Constantin, Operators of ces− p Type, Rend. Accad. Naz. Lincei. 52 (1972), 875–878.

[6] B.M. Makarov, N. Faried, Some Properties of Operator Ideals Constructed by s Numbers, in: Theory of Operators

in Functional Spaces, Academy of Science, Siberian Section, Novosibirsk, pp. 206–211, (1977).

[7] N. Tita, On Stolz Mappings, Math. Japon. 26 (1981), 495-496.

[8] N. Tita, Ideale de Operatori Generate de s Numere, Editura University Tranilvania, Brasov, (1998).

[9] A. Maji, P.D. Srivastava, Some Results of Operator Ideals on s-Type |A, p| Operators, Tamkang J. Math. 45 (2014),

119–136. https://doi.org/10.5556/j.tkjm.45.2014.1297.
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