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ABSTRACT. This paper introduces new two robust kernel-based estimators (S Kernel and MM Kernel) for the 

nonparametric regression mode in the presence of outliers. Through comprehensive simulations, we evaluate their 

performance using Mean Squared Error (MSE), Mean Absolute Error (MAE), and Relative Efficiency (RE) under 

varying sample sizes and outlier contamination levels. Results demonstrate that robust estimators consistently 

outperform traditional kernel estimator, delivering the lowest estimation errors and highest efficiency, particularly 

in high-contamination scenarios. In contrast, the traditional kernel estimator proves highly sensitive to outliers. 

Also, our results highlight the superiority of the robust M Kernel estimator. This paper advances the field of robust 

nonparametric regression, offering practical solutions for datasets prone to outliers.   

 

 

1. Introduction 

Nonparametric regression models have garnered significant attention in the theoretical 

and applied statistics literature over the past few decades. The primary reason for their 

growing popularity and importance is that they do not rely on any specific form of the 

regression function characterizing the relationship between the dependent and explanatory 

variables. This makes them robust to model misspecification, as they do not impose any 

restrictive assumptions about the functional form of the regression model. One of the most 

popular methods for nonparametric Kernel regression was proposed by [1] and [2] and is 

known as the “Nadaraya-Watson” estimator (N-W), the Priestly-Chao estimator (PCE) 

suggested by [3] and Reweighted Nadaraya-Watson estimator (RNWE) introduced by [4]. In 
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the nonparametric estimation of the regression function, the local polynomial least squares 

(LS) regression is an effective and popular method, and its asymptotic theory [5]. 

The Speckman estimator is frequently utilized for parameter estimation in the partially 

linear model (PLM). It employs a kernel smoothing technique to estimate the nonparametric 

component of the model [6]. Abonazel et al. [7] modified the Speckman estimator by using the 

spline smoothing approach, and they showed that the partial residuals technique (PRT) based 

on the spline smoothing approach is more efficient than traditional PRT based on the kernel 

smoothing approach. Robust methods are defined by their capability to accurately fit most of 

the data, even in the presence of outliers. When only a small number of outliers exist, these 

methods produce results comparable to those of classical (non-robust) methods [8]. Elgohary 

et al. [9] proposed new modified estimators by combining the least trimmed squares (LTS) and 

ridge estimation methods.  

Outliers can impact the estimation of a nonparametric function both at the edges and 

throughout the data range. The structure and development of robust estimation in those two 

straightforward models—locally weighted LS regression and local most minimal absolute 

deviation (LAD) regression—inspired several first proposed robust nonparametric regression 

estimators. By giving outliers a negative weight, locally weighted LS techniques seek to lessen 

the impact of outliers. They consist of the spline smoother and the Kernel [3] locally weighted 

polynomial LS fitting [10] and [11]. Local LAD regression differs from other methods. Fan and 

Hall [12] offered a framework and provided information on its asymptotic efficiency, while 

Tukey [13] proposed different versions of local median smoothing. 

Ghement et al. [14] developed new estimators in the family to have weak consistency 

and asymptotic normality. They provided a metric known as max bias which allowed them to 

thoroughly and adequately quantify each M-robustness. Mahmoud et al. [15] suggested 

estimating the nonparametric regression function's derivative function when the data are 

noisy and have curves, our strong nonparametric derivative functions were created by 

designing three weights and integrating them into kernel smoothing. Wang et al. [16] 

suggested a reliable technique for doing so. Zhu and Jordan [17] presented a general 

framework for designing generative adversarial networks (GANs) to tackle high-dimensional 

robust statistics problems. This framework focuses on estimating unknown parameters of the 

true distribution from samples that have been adversarially corrupted. Salibian-Barrera [18] 

used many traditional nonparametric regression estimators (and their robust versions) can be 

quite challenging when dealing with a moderate or large number of explanatory variables. 

Therefore, recently proposed robust nonparametric regression methods, which scale 

effectively with an increasing number of covariates, are also examined. 

By considering the estimated function of an explanatory variable, the derivative of a 

nonparametric function is calculated. The nonparametric regression function must be 

constructed correctly, and the data must not be noisy for this technique to be successful. 
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Otherwise, it might lead to inaccurate derivative estimates, which would be troublesome given 

the noise in the data.  

The main objective of this paper is to introduce new robust nonparametric estimators. 

The remainder of the essay is structured as follows. Robust (M) nonparametric kernel 

estimator is presented in Section 2. Section 3 presents our proposed estimators. Section 4 

compares the effectiveness of the estimators through a Monto Carlo simulation study. The 

results of the real-life application are presented in Section 5. Finally, Section 6 concludes this 

study.  

 

2. Robust Nonparametric Kernel Estimator 

Consider the case where(vi, gi), 1 ≤ i ≤ n, are i.i.d. observations of a two-dimensional 

random vector (g,v) with vi= m0(gi) + ᶓi, where vi  refers to dependent variable, gi refers to 

independent variable, m(.) is the unidentified mean function, and ᶓia stochastic error with a 

mean of zero and an unknown one can estimate m(gi) at around  gj as following using Taylor 

series[16].   

m (gi) = m(gj) + α1 (gj − gi ) + α2 (gj − gi )
2 + ⋯ + αp (gj − gi )

p.           (1) 

They expressed the estimated nonparametric function as a linear function of the 

observed responses at the value gi, m̂(gi). In other words, m̂(gi) = ∑ Ϊj(gi)vj
n
j=1 , where Ϊj(gi) s 

are weights that are independent of gj. In local polynomial regression with weights, a unique 

problem of weighted least squares is solved at each target point gi for i=1,...,n. By employing 

weighted least squares and Kernel weights to fit the 𝑝th-degree polynomial model K [h−1 (gj −

gi )], the smoothing is achieved at a point gi. The next weighted least squares regression issue, 

then, locally fits this polynomial. 

 minα ∑ [vj − m(gj
n
j=1 )]2 wk

j(gi) .                        (2) 

The Kernel weights used to estimate the unknown function at value gi are denoted 

by wk
j(gi), where 𝑘ℎ is a Kernel function, h is a bandwidth, and wk

j(gi)  is a Kernel function. 

When using )1(, outliers have a considerable effect on the local polynomial estimator. 

 Our trusted weights are described asRj(gi) = wj
k(gi) × wj

k, j= (1, 2, …, n) where wj
kis an 

appropriately selected smooth convex loss function, such as the kernel (Huber or bisquare) 

functions. The subsequent robust weighted least squares regression problem is locally tackled 

by the robust polynomial. 

minα ∑ [vj − ∑ βk (gj − gi )
c]2

p

c=0

n

j=1
 Rj(gi) 

      = minα ∑ [vj − m(xgj)
n
j=1  ]2Rj(gi)          (3) 

Rj(gI) is expected to reduce the weight impact of outliers on derivative estimation, where 𝑖 

represents all observations and 𝑗 denotes the outliers. 

Can be written (1) in matrix as min (v-gα)tRx(v − gα),  where v= (v1, … , vn)t,  α= (α0, … , αn), 
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 g= [
1 (g − g1) … (g − x1)p

⋮ ⋮ ⋱ ⋮
1 (g − gn) … (g − gn)p

],  and Rg is the n×n diag matrix of weight, Rg  = diag [R1  

(gi),…,  Rn  (gi)]. Assuming the matrix is invertible the (gtRgg) robust weighted least squares 

estimate is generated with no loss of generality 

  α̂R = (gtRgg)−1 gtRgv                      (4) 

Next, the authors discuss how to obtain the weights wj
k. They propose three robust 

weight functions using the "M Estimator," "S Estimator," and "MM Estimator" approaches. 

These three weight functions are derived as functions of the residuals, leverage values, or both, 

with the goal of assigning weights that reduce the effect of unusual observations on the 

analysis. The three robust weight formulations are then explained in detail in the following 

sections. 

The first type of weight is obtained from the derivative of a carefully selected smooth 

convex loss function ∅(.) that is commonly used for M estimation, such as the Huber or Tukey's 

square functions. These loss functions are used to derive weights that reduce the influence of 

unusual observations on the analysis. Therefore, outlying observations have a low weight 

value. This weight was established as a result of the rescaled residuals. It assumes the form of, 

wj
m =

∅′{[vj−m̂(gj)]/�̂�

{[vj−m̂(gj)]/ŝ
 = 

∅′(rj
m)

(rj
m)

 (5), j=1, 2…, n           (5)  

where  vi refers to dependent variable m̂(gi) represents the predicted result derived from local 

polynomial regression with weighting, �̂� is the interquartile range of the residuals and rj
m= 

[vj − m̂(gj)]/ŝ  is the rescaled residual linked to the valuegj.When gj is an atypical value, rj
m is 

anticipated to be substantial, thus the weighting wj
m  will be concentrated. 

Algorithm (1): M Kernel Estimator 

Step 1. Introduced two distinct weight forms to develop a robust derivative estimator: one 

based on residual leverage and the other derived from Kernel smoothing to regulate 

smoothness, or a combination of both. 

Step 2. To safeguard against noisy data influencing our estimate using local polynomial of the 

nonparametric function and its derivative, we employ various weights to manage outliers, 

high leverage and other forms of influential effects. 

Step 3. Use the (Gaussian) kernel to determine the kernel weights for each value of gi, wj
k(t)(gi)  

and estimate the nonparametric function m̂t(gi)  and its derivative m̂t
′(gi) using Rj(g) =

wj
k(t)

(gi) ×  wj
k(t−1)

  where wj
k(t)

(gi) are kernel weights at gi wj
k(t−1)

(gi)  are the M robust 

weight (i , j =1,2,…,n) at iteration t-1. 

Step 4. To achieve convergence, increment t by 1 and repeat steps 2 and 3. One method to 

verify convergence involves calculating the correlation coefficient between estimates at 

iterations 𝑡 and t−1. Stop when this coefficient is less than 0.99 otherwise, continue with steps 

1 and 2 until this condition is met. 
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Disadvantages should mitigate the impact of outliers on estimating the nonparametric 

function and its derivative. Only, M-estimation encounters challenges in effectively estimating 

the derivative function when g values are isolated from the main cluster and the residual is 

minimal. 

 

3. Proposed Estimators  

After presenting the previous method and clarifying the weak points, two estimators 

were proposed to avoid the weak points, namely the S estimator and MM estimator, by relying 

on the first estimator using the rescaled residuals divided by a function of the leverage values 

and the second estimator modification of the classical kernel regression approach. Instead of 

basing the weights given to each observation on their proximity to the target point, the weights 

are determined by the distance of the observation from the regression surface. 

S Kernel Estimator  

The basic M-weight aims to mitigate the impact of outliers on estimating both the 

nonparametric function and its derivative. However, M-estimation struggles to accurately 

estimate the derivative function when residuals are small, and g values are significantly 

distant from the majority cluster. One potential solution involves using the residual standard 

deviation. This weight is defined as a function of the residual standard deviation, assigning a 

smaller weight to outlier observations. It is expressed as follows: 

wj
s =

∅′{[vj−m̂(gj)]/√
1

𝑛𝑘
∑ 𝑤𝑖𝑒𝑖

2}𝑛
𝑖=1

{[vj−m̂(gj)]/√
1

𝑛𝑘
∑ 𝑤𝑖𝑒𝑖

2𝑛
𝑖=1 }

 = 
∅′(rj

s)

(rj
s)

 , i=1, …, n, j=1, …, k   (6)  

where 𝑣j is the dependent variable m̂ˊ(gi) represents the estimated mean value obtained from 

local polynomial regression with weighting in 𝑣i = 𝑚(gj) + ƹ  , 
1

𝑛
∑ 𝑤𝑖𝑒𝑖

𝑛
𝑖=1 is the residual 

standard deviation, ∅′(. )is the function's derivative of ∅(. ) and  (rj
s)= [vj − m̂(gj)]/

√
1

𝑛𝑘
∑ 𝑤𝑖𝑒𝑖

2𝑛
𝑖=1 . When gj  is an unusual value, rj

sis expected to be large so the weight wj
swill be 

compact, two wight weight obtain kernel gaussian regression and obtain weight S- Robust 

estimation we can calculate the nonparametric function by defining  𝑅𝑗(gi) =  wj
k(gi) × wj

k  , 

where wj
k(gi)  are kernel weights at  giwj

k(gi)   are the robust weights,                                                                                         

m̂Rg(gi)= (g𝑡Rg g)-1 g𝑡Rgv                             (7) 

Algorithm (2): S Kernel Estimator  

Step 1. To safeguard our estimation using a local polynomial for the nonparametric function 

and its derivative against noisy data, outlier values, high leverage, strongly impactful effects 

and other forms of disturbance, various weights are employed. 

Step 2. Using  wj
m when iteration =1 and   wj

swhen iteration > 1  

Step 3. Apply using the (Gaussian) kernel for computing the kernel weights for each value of 

 giwj
k(t)(gi), to estimate the nonparametric function m̂t(gi) and its derivative, m̂t

′(gi), using 

Rj(g) = wj
k(t)

(gi) ×  wj
s(t−1)

  where wj
k(t)

(gi)are kernel weights at gi wj
s(t−1)

(gi)  are the robust 
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weights  (i, j =1,2,…,n)at iteration t-1. 

Step 4. Continue incrementing t by 1 and repeating steps 2 and 3 until convergence is achieved. 

One method to confirm convergence is by calculating the correlation coefficient between 

estimates at iterations t and t−1. Stop when this coefficient falls below 0.99 and continue with 

steps 1 and 2 until this condition is met. 

MM Kernel Estimator  

In kernel regression, the regression function is estimated by taking a weighted average 

of the observed data points within a neighborhood of a target point, where the weight given 

to each observation depends on its proximity to the target point. Outliers in the data can have 

a disproportionate influence on the estimated regression function if they are located within 

the neighborhood of a target point, as they will be given a large weight in the computation of 

the weighted average. 

The MM estimator of robustness can be seen as a modification of the classical kernel 

regression method, where the weights given to each observation in the computation of the 

weighted average are based on the distance of the observation from the regression surface, 

rather than its proximity to the target point. This modification helps to enhance the robustness 

of the estimated regression function, as it reduces the impact of outliers on the estimated 

regression function. 

Algorithm (3): MM Kernel Estimator  

Step 1. An initial robust regression estimator is used to estimate the residual scale. This initial 

estimator may be inefficient, but it should have a high breakdown point. 

Step 2. A regression M−estimator is computed using a bounded loss function and 

standardized residuals. The final estimator will retain the high breakdown of the initial one, 

but its efficiency is improved by the use of an appropriate loss function. 

Step 3. Continue incrementing t by 1 and repeating steps 2 and 3 until convergence is achieved. 

One method to confirm convergence is by calculating the correlation coefficient between 

estimates at iterations t and t−1. Stop when this coefficient falls below 0.99 and continue with 

steps 1 and 2 until this condition is met. 

Next, a comparison is made between the three estimators (M kernel estimator, S kernel 

estimator, and MM kernel estimator) mentioned above through simulation and real data, and 

the results obtained are clarified. 

 

4. Monto Carlo Simulation Study 

In this section, the Monte Carlo study has been designed to compare the performances 

of different estimators for robust nonparametric. The comparison between robust estimators 

(M, S, MM) and nonparametric estimator (Kernel) for different sample sizes and percentages 

of outliers. R software is used to perform our Monte Carlo simulation study based on 

"nprobust" package in R [19], [20]. For further information on how to make Monte Carlo 

simulation studies using R, see [21], [22]. 
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The simulated model is carried out based on 𝑣i = 𝑚(gi) + ƹ𝑖  in the simulation study. 

Table 1. Simulation factor 

Factor       Notation                 Values              

Sample size       n 50,70,100,150,200, 300, and 500 

Percentages of outliers outliers% 5,10,20, and 30                                                       

 

According to Table 1, we performed the simulation experiments with varying values of 

n and percentages of outliers as follows:  

- The values of (g) variable were generated from uniform (0, 1), and calculated m(𝑔) =

 𝑔+2𝑒−16𝑔2
, see Figure 1. 

- The error term of the model is generated from normal (0, 0.03)  

- The estimated Mean Squared Error (MSE) and Mean Absolute Error (MAE) for each estimator 

are calculated as follows: 

MSE =  
1

1000
∑ (

1

𝑛
∑ (�̂�(𝑔𝑖) − 𝑚(𝑔𝑖))2𝑛

𝑖=1 )
𝑙

1000
𝑙=1 ,      (8) 

MAE =
1

1000
∑ (

1

𝑛
 ∑ |(�̂�(𝑔𝑖) − 𝑚(𝑔𝑖)|𝑛

𝑖=1 )
𝑙

1000
𝑙=1 .        (9) 

where (m̂(gi) − m(gi)) is the difference between estimated and true values. Also, the Relative 

Efficiency (RE) for each robust estimator is calculated as  

RE=
MSE(m̂(g))𝐾

MSE(m̂(g))𝜋 ; 𝜋 = 1, 2, 3.     (10) 

where 𝜋 stands for the three robust (M, MM, S) estimators, and MSE(m̂(g))𝐾 is the MSE for the 

Kernel estimator. 

 

Figure 1 density function of m(𝑔) =  𝑔+2𝑒−16𝑔2
. 

The results of simulation are recorded in Tables 2 to 4. These tables present the of MSE, 

MAE and RE for each estimator (Kernel, M Kernel, S Kernel, and MM Kernel), respectively, 

under different sample sizes (n = 50 to 500) and outlier percentages (5% to 30%).  

From the simulation results, we can note that: 
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1. Performance Based on MSE (Table 2) 

• The M Kernel consistently outperforms the other estimators across all sample sizes and 

outlier percentages, demonstrating the lowest MSE values. For example, at n = 50 and 

5% outliers, the MSE for M Kernel (0.0131) is significantly lower than that of the 

standard Kernel (0.0267). This trend holds even higher outlier percentages (e.g., 30%), 

demonstrating the robustness of the M Kernel. 

• The S Kernel and MM Kernel show competitive performance, often yielding lower 

MSE values compared to the standard Kernel. However, their performance is slightly 

inferior to the M Kernel in most scenarios. 

• M Kernel exhibits the best performances among the estimators for all sample sizes and 

percentages of outliers, in terms of the smaller MSEs. At n = 50, and for 5% of outliers, 

for instance, MSE when using M Kernel (0.0131) is much smaller than that for the 

normal Kernel (0.0267). This observation applies to even larger outlier percentages 

(e.g., 30%), indicating the stability of the M Kernel. 

• The S Kernel and MM Kernel are competitive with the standard Kernel and typically 

result in smaller MSE values. But in most cases, their performance is worse than the 

M Kernel. 

• As expected, increasing the sample size (n) reduces the MSE for all estimators, 

indicating improved estimation accuracy with larger n. For example, at 5% outliers, the 

MSE for the M Kernel decreases from 0.0131 (n = 50) to 0.001 (n = 500). 

Table 2. Mean Squared Error (MSE) values for different estimators. 

Outlier % n Kernel M Kernel S Kernel MM Kernel 

5 50 0.0267 0.0131 0.0151 0.0145  
75 0.0181 0.0083 0.0094 0.0093  

100 0.0146 0.0067 0.0076 0.0077 
 

150 0.0096 0.0038 0.0041 0.0042  
200 0.0066 0.0031 0.0033 0.0034  
300 0.0046 0.0018 0.002 0.002  
500 0.0024 0.001 0.0012 0.0011 

10 50 0.0487 0.0326 0.0361 0.037  
75 0.03 0.0194 0.0192 0.0233 

 
100 0.0228 0.0143 0.0144 0.0172  
150 0.0162 0.0096 0.0098 0.0118  
200 0.0105 0.0065 0.0065 0.0076  
300 0.0072 0.004 0.0041 0.0047  
500 0.0037 0.0021 0.0021 0.0023 

20 50 0.0916 0.0729 0.0728 0.0761 
 

75 0.0595 0.0475 0.0463 0.0497  
100 0.0412 0.0345 0.0356 0.0388  
150 0.0292 0.0216 0.0216 0.024  
200 0.0207 0.0153 0.0145 0.0168  
300 0.0134 0.0093 0.009 0.0106 
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500 0.0069 0.0049 0.0047 0.0059 

30 50 0.1461 0.1288 0.1293 0.1243 
 

75 0.0936 0.0803 0.078 0.0755  
100 0.0693 0.0641 0.0635 0.0632  
150 0.0455 0.0366 0.0352 0.035  
200 0.0337 0.0267 0.0258 0.0253  
300 0.0219 0.0174 0.0161 0.0157  
500 0.0108 0.0083 0.0082 0.0081 

 

Table 3. Mean Absolute Error (MAE) values for different estimators. 

Outlier % N Kernel M Kernel S Kernel MM Kernel 

5 50 0.1265 0.0862 0.0888 0.0893 
 

75 0.1029 0.0701 0.0706 0.0744  
100 0.0936 0.0619 0.0649 0.0653 

 
150 0.0757 0.0477 0.0484 0.05  
200 0.0634 0.0422 0.0428 0.0441  
300 0.0538 0.0334 0.0347 0.0356  
500 0.039 0.0252 0.0265 0.0265 

10 50 0.1685 0.1325 0.1352 0.1399  
75 0.1331 0.1049 0.1025 0.1146 

 
100 0.117 0.0899 0.0901 0.0987  
150 0.0985 0.0736 0.0734 0.0814  
200 0.078 0.0609 0.0609 0.0656  
300 0.0664 0.0485 0.0477 0.0529  
500 0.0483 0.0359 0.0359 0.0381 

20 50 0.2316 0.2031 0.2009 0.2055  
75 0.1845 0.1636 0.1616 0.1688  

100 0.1575 0.1393 0.1401 0.1461  
150 0.1311 0.1101 0.1091 0.1152  
200 0.1087 0.0939 0.0911 0.0993  
300 0.0904 0.0749 0.0718 0.079  
500 0.0645 0.0541 0.0518 0.0596 

30 50 0.2899 0.2685 0.2672 0.2614 
 

75 0.232 0.2157 0.2087 0.2067  
100 0.2035 0.1888 0.1876 0.1871  
150 0.1628 0.1421 0.1389 0.1388  
200 0.1374 0.1234 0.1194 0.1178  
300 0.1142 0.1 0.095 0.0943  
500 0.08 0.0698 0.0683 0.0682 

 

2. Performance Based on MAE (Table 3) 

• The same as that observed for the MSE, the M kernel obtains the smallest absolute error 

value in almost all test cases, which reinforces the robustness of the method. For 

instance, at n = 100 and 10% outliers, the value of MAE for M Kernel (0.0899) is much 
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lower than that of standard Kernel (0.117). 

• The S Kernel and MM Kernel are also similar, having MAE similar to the M Kernel 

especially at the larger n. This indicates that also minimizing absolute 

• The standard Kernel exhibits the highest MAE values, especially under high outlier 

contamination (e.g., 30%), highlighting its sensitivity to outliers. 

 

Figure 2. MSE for robust and non-robust estimators 

 

 

Figure 3. MAE for robust and non-robust estimators 
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The graphical representations (Figures 2 and 3) visually reinforce the trends observed in 

tables 2 and 3, showing a clear decline in MSE and MAE as sample size increases, with the M 

Kernel consistently positioned as the top performer. 

3. Relative Efficiency (RE) (Table 4) 

• The RE values once again corroborate that M Kernel is better (comment: precedence 

across the scenarios). For example, for n = 50 and 5 % outliers we see that the RE of the 

M Kernel (2:0382) is more than double the efficiency of the raw Kernel. This trend is 

observed also for larger percentages of outliers, but at the cost of a reduced 

improvement in efficiency (e.g., ARE = 1.1343 at n = 50 and 30% outliers). 

• The S Kernel and MM Kernel also show RE values greater than 1 in most cases, 

indicating their efficiency relative to the standard Kernel. However, their RE values are 

generally lower than those of the M Kernel, particularly for smaller sample sizes and 

higher outlier percentages. 

Table 4. Relative Efficiency (RE) values for different estimators. 

Outlier % N M Kernel S Kernel MM Kernel 

5 50 2.0382 1.7682 1.8414  
75 2.1807 1.9255 1.9462 

 
100 2.1791 1.9211 1.8961  
150 2.5263 2.3415 2.2857 

 
200 2.1290 2.0000 1.9412  
300 2.5556 2.3000 2.3000  
500 2.4000 2.0000 2.1818 

10 50 1.4939 1.3490 1.3162 
 

75 1.5464 1.5625 1.2876  
100 1.5944 1.5833 1.3256 

 
150 1.6875 1.6531 1.3729  
200 1.6154 1.6154 1.3816  
300 1.8000 1.7561 1.5319  
500 1.7619 1.7619 1.6087 

20 50 1.2565 1.2582 1.2037  
75 1.2526 1.2851 1.1972  
100 1.1942 1.1573 1.0619  
150 1.3519 1.3519 1.2167  
200 1.3529 1.4276 1.2321  
300 1.4409 1.4889 1.2642  
500 1.4082 1.4681 1.1695 

30 50 1.1343 1.1299 1.1754  
75 1.1656 1.2000 1.2397  
100 1.0811 1.0913 1.0965  
150 1.2432 1.2926 1.3000  
200 1.2622 1.3062 1.3320  
300 1.2586 1.3602 1.3949  
500 1.3012 1.3171 1.3333 
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Figure 4 MSE and RE for different estimators of m(g) categorized by sample size levels. 

 

 

Figure 5 MSE and RE for different estimators of m(g) categorized by the proportion of outliers. 
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Figure 6 MAE and RE for different estimators of m(g) categorized by sample size levels. 

 

Figure 7 MAE and RE for different estimators of m(g) categorized by the proportion of outliers. 

 

The figures (Figures 4–7) provide a visual representation of the simulation results, 

comparing the performance of the Kernel, M Kernel, S Kernel, and MM Kernel estimators 

under varying sample sizes and outlier proportions. Below is a discussion of the key insights 

derived from these figures: 

1. Performance by Sample Size (Figures 4 and 6) 
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• For all estimators the MSE (Figure 4) and MAE (Figure 6) decrease as the sample size 

(n) grows. This is consistent with statistical theory that one expects estimation 

accuracy to improve with larger sample sizes. 

• The M Kernel is the winner across most sample sizes, and reaches the smallest values 

of MSE and MAE, so we confirm that it is the most robust and the most efficient. 

However, in the case of large samples, the S Kernel is the best.   

• The standard Kernel estimator performs the worst, particularly for smaller sample 

sizes (e.g., n = 50), where its MSE and MAE are significantly higher than those of the 

robust estimators. 

2. Performance by Outlier Proportion (Figures 5 and 7) 

• The standard Kernel estimator performs poorly in the presence of attitude anomaly, as 

it can be seen from significant MSE (Figure 5) and MAE (Figure 7) increase with an 

outlier ratio increases from 5% to 30%. This supports its sensitivity toward the 

contaminated in data. 

• The M Kernel is highly robust with very little degradation of error metrics even in the 

presence of 30% outliers. This reflects its resilience to outlying data points. 

• The S Kernel and MM Kernel also show insensitivity to outliers but are more sensitive 

than the M Kernel, especially when the contamination level is high. 

• The RE is high for even the M Kernel for all outlier proportions, however the efficiency 

advantage reduces as we go towards extreme contamination (30%). This implies that 

even the M Kernel is weak to very high levels of outliers. 

• The S Kernel and MM Kernel exhibit some efficiency gains over the standard Kernel 

but are not competitive with the M Kernel. 

The visualizations reinforce the simulation findings from Tables 2–4, providing an 

intuitive understanding of how sample size and outlier proportions influence estimator 

performance. 

 

5. Real-Life Application 

To confirm the results obtained through comparison between the proposed estimators 

using simulation, it was applied to the data wine industry. Wine certification and quality 

assessment are key elements within this context. Certification prevents the illegal adulteration 

of wines (to safeguard human health) and assures quality for the wine market. Quality 

evaluation is often part of the certification process and can be used to improve winemaking 

(by identifying the most influential factors) and to stratify wines such as premium brands 

(useful for setting prices) see [23]. The data set available in 

https://archive.ics.uci.edu/ml/datasets/wine+quality. 

 

https://archive.ics.uci.edu/ml/datasets/wine+quality
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Table 5. descriptive data of Quality and Alcohol variables 

Variable Min Q1 Median  Mean  Q3  Max     

Quality 1.00 5.00 6.00 5.63 6.00 8.00       

Alcohol 8.40 9.30 10.20 10.44 11.10 14.19      

 

Analyzing 1143 observations and examining the data revealed a noticeable disparity 

between the highest and lowest values, indicating the presence of outliers. To validate the 

results derived from the data description, a boxplot was formed as shown in Figure 8. 

 

 

Figure 8 Boxplot for quality (independent variable) 

Additionally, the low coefficient of determination prompted us to utilize nonparametric 

as shown in Table 6 following the residual summary and Figure 9. 

 

Table 6. descriptive statistics of the residuals 

Statistic Min. Q1 Median  Q3 Max. 

Value  -6.09 -0.38 0.13 0.53 2.61 

 

Outliers, high-leverage points, and highly influential points are frequently present in 

Wine data, whether within the data range or at the boundaries. These points can significantly 

impact derivative estimation and obscure the true underlying pattern, highlighting the need 

for a robust estimator. Current methods used to analyze Wine data often lack robustness in 

addressing these challenges. 
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Figure 9 scatter plot for residual 

We are focused on employing a robust estimator for the derivative and utilizing it to 

identify potential change points by estimating the derivative function, using performance 

measures to compare the different proposed capabilities, we obtained the following results 

MSE and MAE for (Kernel, M Kernel, S Kernel and MM Kernel) as shown in Table7. 

Table 7. MSE and MAE for different estimators of the dataset 

Measure   Kernel M Kernel S Kernel MM Kernel 

MSE 0.0090 0.0083 0.0082 0.0080 

MAE 0.1000 0.099 0.089 0.087 

 

In Table 7, goodness of fit measures of the Kernel, M Kernel, S Kernel, and MM Kernel 

estimators are presented. The best estimator for this data is MM Kernel because it has the 

minimum MSE and MAE values.  

6. Conclusion 

We find that the S Kernel and MM Kernel estimators proposed in this paper are better 

than the standard Kernel estimator in nonparametric regression with outlier-contaminated 

data and have the smallest MSE and MAE as well as the highest relative efficiency for all 

different sample sizes and the different proportion of outliers. The findings, which are backed 

up by a simulation study and a real data application, demonstrate their robustness and 

stability, even in highly contaminated situations. In contrast, the standard Kernel estimator 

is highly sensitive to outliers.  These findings advocate for the adoption of robust estimators in 

practical applications where data integrity is uncertain, offering a reliable solution for accurate 

and efficient regression estimation.  In future work, we can develop our robust estimators on 

nonparametric count panel data models as an extension of [24] or develop our robust 

estimators on semiparametric generalized linear models as an extension of [25]. 
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