International Journal of Analysis and Applications

Difference Cesáro Function Space on Rooted Tree Defined by Musielak-Orlicz Function

Anas Faiz Alsaedy¹, Salah H. Alshabhi², Vivek Kumar³, Mohammed N. Alshehri⁴, Sunil K. Sharma³, Mustafa M. Mohammed², Runda A. A. Bashir², Nidal E. Taha⁵, Awad A. Bakery^{2,6,*}

¹Institute of Public Administration, Macca, P.O. Box 5014, Jeddah 21141, Saudi Arabia
 ²University of Jeddah, Applied college at Khulis, Department of Mathematics, Jeddah, Saudi Arabia
 ³School of Mathematics, Shri Mata Vaishno Devi University Katra-182320, J&K, India
 ⁴Department of Mathematics, College of Arts and Sciences, Najran University, Najran, Saudi Arabia
 ⁵Department of Mathematics, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
 ⁶Department of Mathematics, Faculty of Science, Ain Shams University, P.O. Box 1156, Abbassia, Cairo 11566, Egypt

*Corresponding author: awad_bakery@yahoo.com, aabhassan@uj.edu.sa

Abstract. This paper aims to investigate the algebraic and topological properties of a newly constructed difference function space on a rooted tree defined by Musielak-Orlicz function.

1. Introduction

A function \mathcal{M} from $[0, \infty)$ to itself which is continuous, non-decreasing and convex such that $\mathcal{M}(0) = 0$, $\mathcal{M}(\zeta) > 0$ for $\zeta > 0$ and $\mathcal{M}(\zeta) \to \infty$ as $\zeta \to \infty$ is known as Orlicz function.

In [11] Lindenstrauss and Tzafriri, defined the sequence space, denoted by $l_{\mathcal{M}}$, such that $\sum_{i=1}^{\infty} \mathcal{M}(\frac{\zeta_i}{\lambda}) < \infty$.

This space is called Orlicz sequence space and is Banach space equipped with the norm

$$\|\zeta_j\| = \inf\{\lambda > 0 : \sum_{j=1}^{\infty} \mathcal{M}(\frac{\zeta_j}{\lambda}) \le 1\}$$

A sequence of Orlicz function is referred to as Musielak-Orlicz function (see [14, 15]).For further information on Cesàro sequence spaces and sequence spaces defined by Musielak-Orlicz functions, refer to ([10, 16–18, 26]) and references therein.

Received: Oct. 5, 2024.

²⁰²⁰ Mathematics Subject Classification. 46A45, 40A05, 40C05.

Key words and phrases. Cesàro function space; difference operator; Musielak-Orlicz function.

For $1 < t < \infty$, the Cesáro sequence space *Ces_t* of real sequences (χ_i) is defined by,

$$Ces_t = \{\chi = (\chi_j) : \sum_{i=1}^{\infty} (\frac{1}{i} \sum_{j=1}^{i} |\chi_j|)^t < \infty\}$$

is a Banach space under the norm

$$\|\chi_{j}\| = \left(\sum_{i=1}^{\infty} \left(\frac{1}{i} \sum_{j=1}^{i} |\chi_{j}|\right)^{t}\right)^{\frac{1}{t}}$$

This space is significant in the theory of matrix operators and was initially presented by Shiue [23]. Various authors have explored some geometric characteristics of this space. Kızmaz [8] introduced the concept of difference space, which was later generalized by Et. and Çolak [5] into the difference sequence space as follows:

$$Z(\Delta) = \{ \chi = (\chi_i) \in \omega : (\Delta^{\nu} \chi_i) \in F \}$$

for $F = l_{\infty}$, *c* and *c*₀, where *v* is non-negative integer and

$$\Delta^{\nu}\chi_{j}\Delta^{\nu-1}\chi_{j} - \Delta^{\nu-1}\chi_{j-1}, \Delta^{0}\chi_{j} = \chi_{j} \text{ for all } j \in \mathbb{N},$$

or equivalently,

$$\Delta^{\nu}\chi_{j} = \sum_{w=0}^{j} (-1)^{w} \binom{u}{w} \chi_{j+u}$$

Et. and Başasir [5] extended these spaces by considering $F = l_{\infty}(p)$, c(p) and $c_0(p)$. Dutta [4] introduced the following difference sequence spaces using a new difference operator.

$$Z(\Delta_{\eta}) = \{ \chi = (\chi_j) \in \omega : \Delta_n(\chi) \in F \}$$

for $F = l_{\infty}$, *c* and c_0 , where $\Delta_{\eta}\chi = (\Delta_{\eta}\chi_j) = \{\chi_j - \chi_{j-n}\}$ for all $k, n \in \mathbb{N}$. Başar and Atlay [1] introduced the generalized difference matrix $B = (b_{\eta j})$ for all $j, \eta \in \mathbb{N}$, which generalizes the $\Delta_{(1)}$ -difference operator, by

$$b_{\eta j} = \begin{cases} \alpha & \text{when } j = \eta \\ \beta & \text{when } j = \eta - 1 \\ 0 & \text{when } j > \eta \text{ or } (0 \le j < \eta - 1) \end{cases}$$

Başarir and Kayikçi [2] defined the matrix $B^{\nu} = (b^{\nu}_{\eta k})$ which simplifies the difference matrix Δ^{ν}_{1} for the case $\alpha = 1$, $\beta = 1$. The generalized B^{μ} -difference operator is equivalent to the following binomial representation:

$$B^{\nu}\chi = B^{\nu}(\chi_j) = \sum_{w}^{\nu} {\binom{\nu}{0}} r^{\nu-w} s^{w}\chi_{j-w}.$$

Recall that if any two vertex of graph is joined by a unique path then it is called tree, denoted

by *T*. A tree with root *o* is called *rooted* tree and number of edges between root *o* and vertex χ is called order of χ which is denoted by $|\chi|$. Let c_i denotes the number of vertices whose order is *i*, for $i \in \mathbb{N}_0$. For more details, we refer to ([19,20,23]) and references therein.

Let $\mathcal{M} = (\mathfrak{I}_i)$ be Musielak-Orlicz function. For bounded sequence $t = (t_i)$ consisting of positive real numbers, we estalish the difference Cesáro function space on rooted tree *T* defined by Musielak-Orlicz function as follows:

$$Ces^{c}(\mathcal{M}, B^{\nu}_{\Lambda}, T, t) = \{\mathfrak{f}: T \to \mathbb{C}: \sum_{i=0}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{t_{i}} < \infty \text{ for some } \phi > 0\}$$

We generalised this space as:

$$Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t) = \{\mathfrak{f}: T \to \mathbb{C}: \sum_{i=0}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{i+1}\sum_{j=1}^{i}\frac{1}{c_{j}}\sum_{|\xi|=i}\frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{t_{i}} < \infty \text{ for some } \phi > 0\}.$$

For any set *S* of function the space of multipliers of *S*, denoted by M(S), is given by

 $M(S) = \{ \mathfrak{f} : T \to \mathbb{C} : fg \in S \text{ for all } g \in S \}.$

The following inequalities are used throughout the paper. Let $t = (t_i)$ be bounded sequence of strictly positive real numbers. If $H = \sup_i(t_i) C = \max(1, 2^{H-1})$, then for any complex numbers a_i , b_i ,

$$|a_i + b_i|^{t_i} \le C(|a_i|^{t_i} + |b_i|^{t_i})$$
(1.1)

Also for any complex number *a*,

$$|a|^{t_i} \le \max(1, |a|^H) \tag{1.2}$$

2. MAIN RESULTS

Theorem 1. Let $t = (t_i)$ be bounded sequence of positive real numbers and T be a rooted tree then for any *Musielak-Orlicz* $\mathcal{M} = (\mathfrak{I}_i)$, the spaces $\operatorname{Ces}^c(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ and $\operatorname{Ces}(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ are linear over \mathbb{C} .

Proof. Let \mathfrak{f} , $\mathfrak{g} \in Ces^{c}(\mathcal{M}, B^{v}_{\Lambda}, T, t)$ then $\exists \phi_{1} > 0$ and $\phi_{2} > 0$ such that

$$\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i} \left(\frac{1}{c_{i}} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi_{1}} \right) \right]^{t_{i}} < \infty$$

and

$$\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i} \left(\frac{1}{c_{i}} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{g}(\xi)]|}{\phi_{2}} \right) \right]^{t_{i}} < \infty$$

Let α , $\beta \in \mathbb{C}$ and define $\phi_3 = \max(2|\alpha|\phi_1, 2|\beta|\phi_2)$. Since \mathfrak{I}_i is non-decreasing and convex, $\sum_{i=0}^{\infty} \left[\mathfrak{I}_i \left(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|\alpha B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)] + \beta B_{\Lambda}^{\nu}[\mathfrak{g}(\xi)]|}{\phi_3} \right) \right]^{t_i}$

$$\leq \sum_{i=0}^{\infty} \frac{1}{2^{t_i}} \Big[\mathfrak{I}_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi_1} \Big) + \mathfrak{I}_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B^{\nu}_{\Lambda}[\mathfrak{g}(\xi)]|}{\phi_2} \Big) \Big]^{t_i}$$

$$\leq \max(1, 2^{C-1}) \Big(\sum_{i=0}^{\infty} \Big[\mathfrak{I}_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi_1} \Big) \Big]^{t_1} + \sum_{i=0}^{\infty} \Big[\mathfrak{I}_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B^{\nu}_{\Lambda}[\mathfrak{g}(\xi)]|}{\phi_2} \Big) \Big]^{t_i} \Big)$$

$$< \infty.$$

Hence, the required result. Likewise, we show that $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is linear space over \mathbb{C} .

Theorem 2. Let *T* be a rooted tree and $t = (t_i)$ be bounded sequence of positive real numbers, then for any *Musielak-Orlicz function* $\mathcal{M} = (\mathfrak{I}_i)$,

(1) $Ces^{c}(\mathcal{M}, B^{v}_{\Lambda}, T, t)$ is paranormed space over \mathbb{C} , paranormed by

$$\delta(f(\xi)) = \left(\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi_{1}}\right)\right]^{t_{i}}\right)^{\frac{1}{H}},\tag{2.1}$$

where $H = \sup_i (t_i)$.

(2) $Ces_p(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is paranormed linear space over \mathbb{C} , paranormed by

$$\gamma(f(\xi)) = \left(\sum_{i=0}^{\infty} \left[\mathfrak{I}_i\left(\frac{1}{i+1}\sum_{j=1}^i \frac{1}{c_j}\sum_{|\xi|=i}\frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{t_i}\right)^{\frac{1}{H}},\tag{2.2}$$

where $H = \sup_i(t_i)$.

Proof. To finalize the result, we just need to show that δ is sub-additive and multiplication is continuous. For this, let $\mathfrak{f}, \mathfrak{g} \in Ces^{c}(\mathfrak{I}, B^{\nu}_{\Lambda}, T, t)$ and by using the Minkowski's inequality, we have $\left(\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B^{\nu}_{\Lambda}[(\mathfrak{f}+\mathfrak{g})(\xi)]|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{H}}$ $= \left(\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B^{\nu}_{\Lambda}[(\mathfrak{f},\xi)]|}{\phi}\right)\right]^{t_{i}} \left[\mathfrak{I}_{\Lambda}\left[\mathfrak{I}_{\Lambda}(\xi)\right]\right] + \left|B^{\nu}_{\Lambda}[\mathfrak{g}(\xi)]|_{\mathcal{H}}\right]^{t_{i}}$

$$\leq \left(\sum_{i=0}^{\infty} \left[\Im_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}^{|\xi|=i}\left(\frac{M^{\nu}(1+1)}{\phi}+\frac{M^{\nu}(1+1)}{\phi}\right)\right)\right]\right)$$

$$\leq \left(\sum_{i=0}^{\infty} \left[\Im_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{H}} + \left(\sum_{i=0}^{\infty} \left[\Im_{i}\left(\frac{1}{c_{i}}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[\mathfrak{g}(\xi)]|}{\phi}\right)\right]^{t_{i}}\right)^{\frac{1}{H}}$$

This shows that δ is sub-additive. Next, let $\lambda \in \mathbb{C}$. By definition, we have

$$\delta(f(\xi)) = \Big(\sum_{i=0}^{\infty} \Big[\mathfrak{I}_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\lambda \mathfrak{f}(\xi)]|}{\phi} \Big) \Big]^{t_i} \Big)^{\frac{1}{H}} \leq L_{\lambda}^{\frac{C}{H}} \delta(\mathfrak{f}(\xi))$$

where $L_{\lambda} \in \mathbb{N}_0$ such that $|\lambda| \le L_{\lambda}$. Let $\lambda \to 0$ and for fixed ξ , $\delta(\mathfrak{f}(\xi)) = 0$. By definition for $|\lambda| < 1$, we have

$$\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i} \left(\frac{1}{c_{i}} \sum_{|\xi|=i} \frac{|\lambda B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi} \right) \right]^{t_{i}} < \epsilon, \ i > i_{0}(\epsilon)$$

$$(2.3)$$

Also, for $1 \le i \le i_0$, for sufficiently small λ . Since $\mathcal{M} = (\mathfrak{I}_i)$ is continous, we have

$$\sum_{i=0}^{\infty} \left[\Im_i \left(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|\lambda B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi} \right) \right]^{t_i} < \epsilon.$$
(2.4)

By above equations, it imply that $\delta(\mathfrak{f}(\xi)) \to 0$ as $\lambda \to 0$ and hence, the result. Similarly, $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is paranormed space paranormed by (2.2).

Theorem 3. Let $t = (t_i)$ be a bounded sequence of positive real numbers and T be a rooted tree. Then for any Musielak-Orlicz function $\mathcal{M} = (\mathfrak{I}_i)$,

- (1) $\operatorname{Ces}^{c}(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is a complete paranormed space paranormed defined by (2.1).
- (2) $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is a complete paranormed space paranormed defined by (2.2).

Proof. To establish this, it is sufficient to prove the completeness property $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$. Let $(\mathfrak{f}^{(m)})$ be a Cauchy sequence in $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$. Let $r\xi_0$ be fixed. Then for each $\frac{\epsilon}{r\xi_0} > 0$, $\exists N \in \mathbb{N}_0$ such that

$$\delta(B^{\mu}_{\Lambda}\mathfrak{f}^{(m)}-B^{\nu}_{\Lambda}\mathfrak{f}^{(n)})<\frac{\epsilon}{r\xi_{0}},$$

for all $m, n \ge N$,

Therefore,

$$\left(\sum_{i=1}^{\infty} \left[\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\frac{\sum_{j=1}^{i}|B_{\Lambda}^{\nu}[\mathfrak{f}^{(m)}(\xi_{j})] - B_{\Lambda}^{\nu}[\mathfrak{f}(\xi_{j})^{(n)}]|}{\delta(B_{\Lambda}^{\nu}[\mathfrak{f}^{(m)}(\xi)] - B_{\Lambda}^{\nu}[\mathfrak{f}^{(n)}(\xi)])}\right)\right]^{t_{i}}\right)^{\frac{1}{K}} \leq 1.$$

implies

$$\sum_{i=1}^{\infty} \left[\mathfrak{I}_{i} \left(\frac{1}{c_{i}} \frac{\sum_{j=1}^{i} |B_{\Lambda}^{\nu}[\mathfrak{f}^{(m)}(\xi_{j})] - B_{\Lambda}^{\nu}[\mathfrak{f}^{(n)}(\xi_{j})]|}{\delta(B_{\Lambda}^{\nu}[\mathfrak{f}^{(m)}(\xi)] - B_{\Lambda}^{\nu}[\mathfrak{f}^{(n)}(\xi)])} \right) \right]^{t_{i}} \leq 1.$$

Since $1 \le t_i < \infty$, it follows that $\mathfrak{I}_i\left(\frac{1}{c_i} \frac{\sum_{j=1}^i |B_{\Lambda}^{\vee}[\mathfrak{f}^{(m)}(\xi_j)] - B_{\Lambda}^{\vee}[\mathfrak{f}^{(n)}(\xi_j)]|}{\delta(B_{\Lambda}^{\vee}[\mathfrak{f}^{(m)}(\xi)] - B_{\Lambda}^{\vee}[\mathfrak{f}^{(m)}](\xi)}\right) \le 1$, for each $i \ge 1$. We choose r > 0 such that $\left(\frac{\xi_0}{2}\right) rt\left(\frac{\xi_0}{2}\right) \ge 1$, where t is the kernel associated with \mathfrak{I}_i . Hence,

$$\mathfrak{I}_{i}\left(\frac{1}{c_{i}}\frac{\sum_{j=1}^{i}|B_{\Lambda}^{\nu}\mathfrak{f}^{(m)}(\xi_{j})-B_{\Lambda}^{\nu}\mathfrak{f}^{(n)}(\xi_{j})|}{\gamma(B_{\Lambda}^{\nu}\mathfrak{f}^{(m)}(\xi)-B_{\Lambda}^{\nu}\mathfrak{f}^{(n)}(\xi))}\right) \leq \left(\frac{\xi_{0}}{2}\right)rt\left(\frac{\xi_{0}}{2}\right)$$

for each $i \in \mathbb{N}$. Using the integral representation of Orlicz function, we get $\frac{1}{c_i} \sum_{j=1}^{i} |B_{\Lambda}^{\nu} \mathfrak{f}^{(m)}(\xi_j) - B_{\Lambda}^{\nu} \mathfrak{f}^{(n)}(\xi_j)| \leq \frac{r\xi_0}{2} \delta(B_{\Lambda}^{\nu} \mathfrak{f}^{(m)}(\xi) - B_{\Lambda}^{\nu} \mathfrak{f}^{(n)}(\xi)) < \frac{\epsilon}{2}$, for all $m, n \geq N$. Hence for each fixed $j, (B_{\Lambda}^{\nu} f^{(m)}(\xi_j))$ is Cauchy sequence in \mathbb{C} . Since \mathbb{C} is complete, $(B_{\Lambda}^{\nu} \mathfrak{f}^{(m)}(\xi_j)) \rightarrow (B_{\Lambda}^{\nu} \mathfrak{f}(\xi_j))$ as $m \to \infty$. For given $\epsilon > 0$, choose an integer $i_0 > 1$ such that $\delta(B_{\Lambda}^{\nu} \mathfrak{f}^{(m)}(\xi) - B_{\Lambda}^{\nu} \mathfrak{f}^{(n)}(\xi)) < \epsilon$ for all $m, n \geq i_0$, such that $\delta(B_{\Lambda}^{\nu} \mathfrak{f}^{(m)}(\xi) - B_{\Lambda}^{\nu} \mathfrak{f}^{(n)}(\xi)) < \rho < \epsilon$. Since

$$\Big(\sum_{i=1}^{\infty} \Big[\mathfrak{I}_{i}\Big(\frac{1}{c_{i}}\frac{\sum_{j=1}^{i}|B_{\Lambda}^{\nu}\mathfrak{f}^{(m)}(\xi_{j})-B_{\Lambda}^{\nu}\mathfrak{f}^{(n)}(\xi_{j})|}{\phi}\Big)\Big]^{t_{i}}\Big)^{\frac{1}{K}} \leq 1$$

for all $m, n \ge i_0$.

Now, by continuity of \mathfrak{I}_i and taking $n \to \infty$ in above equality, we have

$$\Big(\sum_{i=1}^{\infty} \Big[\mathfrak{I}_i\Big(\frac{1}{c_i} \frac{\sum_{j=1}^i |B_{\Lambda}^{\vee}\mathfrak{f}^{(m)}(\xi_j) - B_{\Lambda}^{\vee}\mathfrak{f}(\xi_j)|}{\phi}\Big)\Big]^{t_i}\Big)^{\frac{1}{K}} \le 1$$

for all $m \ge i_0$.

Letting $m \to \infty$, we get $\delta(B^{\nu}_{\Lambda}\mathfrak{f}^{(m)}(\xi) - B^{\nu}_{\Lambda}\mathfrak{f}(\xi)) < \epsilon$ for all $m, n \ge i_0$, such that $\delta(B^{\nu}_{\Lambda}\mathfrak{f}^{(m)}(\xi) - B^{\nu}_{\Lambda}\mathfrak{f}^{(n)}(\xi)) < \rho < \epsilon$ for all $m \ge i_0$. Thus $(B^{\nu}_{\Lambda}\mathfrak{f}^{(m)}(\xi))$ converges to $(B^{\nu}_{\Lambda}\mathfrak{f}(\xi))$ in paranorm of

 $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, t)$. Since $(B^{\nu}_{\Lambda}\mathfrak{f}^{(m)}(\xi)) \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ and \mathfrak{I}_i is continuous, it follows that $(B^{\nu}_{\Lambda}\mathfrak{f}(\xi)) \in Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ and hence, the result. Likewise, $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ is complete paranormed space paranormed defined by (2.2).

Theorem 4. If $s = (s_i)$ and $t = (t_i)$ are bounded sequence of positive real numbers such that $0 < s_i \le t_i < \infty$ for each *i* and $\mathcal{M} = (\mathfrak{I}_i)$ be Musielak-Orlicz function, then $\operatorname{Ces}^c(\mathcal{M}, \mathcal{B}^v_\Lambda, T, s) \subset \operatorname{Ces}^c(\mathcal{M}, \mathcal{B}^v_\Lambda, T, t)$ and $\operatorname{Ces}(\mathcal{M}, \mathcal{B}^v_\Lambda, T, s) \subset \operatorname{Ces}(\mathcal{M}, \mathcal{B}^v_\Lambda, T, t)$.

Proof. Let $\mathfrak{f} \in Ces^{c}(\mathcal{M}, B^{v}_{\Lambda}, T, s)$. Then $\exists \phi > 0$ such that

$$\sum_{i=0}^{\infty} \left[\mathfrak{I}_{i} \left(\frac{1}{c_{i}} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi} \right) \right]^{s_{i}} < \infty$$

This implies that $\mathfrak{I}_i\left(\frac{1}{c_i}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[f(\xi)]|}{\phi}\right) \leq 1$ for sufficiently large value of i, say $i \geq i_0$ for fixed $i_0 \in \mathbb{N}_0$. Since \mathfrak{I}_i is increasing and $s_i \leq t_i$,

$$\sum_{i\geq i_0}^{\infty} \left[\mathfrak{I}_i\left(\frac{1}{c_i}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{s_i} \leq \sum_{i\geq i_0}^{\infty} \left[\mathfrak{I}_i\left(\frac{1}{c_i}\sum_{|\xi|=i}\frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi}\right)\right]^{t_i} < \infty.$$

Therefore, $f \in Ces^{c}(\mathcal{M}, B^{v}_{\Lambda}, T, t)$.

Likewise, we show that $Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, s) \subset Ces(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$ and hence, the result.

Theorem 5. Let $t = (t_i)$ be bounded sequence of positive real numbers and $\mathcal{M} = (\mathfrak{I}_i)$ be Musielak-Orlicz function, then $L_{\infty}(T) \subset S(\operatorname{Ces}^c(\mathcal{M}, B^{\nu}_{\Lambda}, T, t))$ and $L_{\infty}(T) \subset S(\operatorname{Ces}(\mathcal{M}, B^{\nu}_{\Lambda}, T, t))$.

Proof. Let $\mathfrak{g} \in L_{\infty}(T)$, $K = \sup_{|\xi|} |\mathfrak{g}(\xi)|$ and $\mathfrak{f} \in Ces^{c}(\mathcal{M}, B^{v}_{\Lambda}, T, t)$. Then

$$\sum_{i=0}^{\infty} \left[\mathfrak{I}_i \left(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B^{\nu}_{\Lambda}[\mathfrak{f}(\xi)]|}{\phi} \right) \right]^{t_i} < \infty, \text{ for some } \phi > 0.$$

Since \mathfrak{I}_i satisfies Δ_2 -condition, there exists a constant N such that

$$\begin{split} \sum_{i=0}^{\infty} \left[\Im_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{gf}(\xi)]|}{\phi} \Big) \Big]^{t_i} &\leq \sum_{i=0}^{\infty} \left[\Im_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|\mathfrak{g}(\xi)||B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi} \Big) \Big]^{t_i} \\ &\leq \sum_{i=0}^{\infty} \left[\Im_i \Big(1 + [M] \frac{1}{c_i} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi} \Big) \Big]^{t_i} \\ &\leq (N(1 + [K]))^H \sum_{i=0}^{\infty} \left[\Im_i \Big(\frac{1}{c_i} \sum_{|\xi|=i} \frac{|B_{\Lambda}^{\nu}[\mathfrak{f}(\xi)]|}{\phi} \Big) \Big]^{t_i} \\ &\leq \infty. \end{split}$$

where [*K*] denotes the integral part of *K* and hence $g \in Ces^{c}(\mathcal{M}, B^{\nu}_{\Lambda}, T, t)$. Similarly, we show the other inequality.

Acknowledgements: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-DR-127). The authors, therefore, acknowledge with thanks the University of Jeddah for its technical and financial support.

Authors' Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- F. Başar, B. Altay, On the Space of Sequences of *p*-Bounded Variation and Related Matrix Mappings, Ukr. Math. J. 55 (2003), 136–147. https://doi.org/10.1023/A:1025080820961.
- M. Başarir, M. Kayikçi, On the Generalized B^m-Riesz Difference Sequence Space and β-Property, J. Inequal. Appl. 2009 (2009), 385029. https://doi.org/10.1155/2009/385029.
- [3] H. Dutta, M. Phil, On Some Difference Sequence Spaces, Pac. J. Sci. Technol. 10 (2009), 243-247.
- [4] H. Dutta, Some Statistically Convergent Difference Sequence Spaces Defined Over Real 2-Normed Linear Space, Appl. Sci. 12 (2010), 37-47. https://eudml.org/doc/225854.
- [5] M. Et, R. Çolak, On Some Genelalized Difference Sequence Spaces, Soochow J. Math. 21 (1995), 377-356.
- [6] M. Et, M. Başarir, On Some New Genelalized Difference Sequence Spaces, Period. Math. Hung. 35 (1997), 169–175. https://doi.org/10.1023/A:1004597132128.
- [7] B.D. Hassard, D.H. Hussein, On Cesaro Function Spaces, Tamgang. J. Math. 4 (1973), 19–25.
- [8] H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull. 24 (1981), 169–176. https://doi.org/10.4153/ CMB-1981-027-5.
- [9] D. Kubiak, A Note on Cesàro–Orlicz Sequence Spaces, J. Math. Anal. Appl. 349 (2009), 291–296. https://doi.org/10. 1016/j.jmaa.2008.08.022.
- [10] P.Y. Lee, Cesàro Sequence Spaces, Math. Chron. 13 (1984), 29-45.
- [11] J. Lindenstrauss, L. Tzafriri, On Orlicz Sequence Spaces, Israel J. Math. 10 (1971), 379–390. https://doi.org/10.1007/ BF02771656.
- [12] S.K. Lim, P.Y. Lee, An Orlicz Extension of Cesaro Sequence Spaces, Comment. Math. 28 (1928), 117-128. https://eudml.org/doc/291736.
- [13] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics, Polish Academy of Science, 1989.
- [14] L. Maligranda, N. Petrot, S. Suantai, On the James Constant and B-Convexity of Cesàro and Cesàro–Orlicz Sequence Spaces, J. Math. Anal. Appl. 326 (2007), 312–331. https://doi.org/10.1016/j.jmaa.2006.02.085.
- [15] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, Heidelberg, 1983. https://doi.org/10.1007/ BFb0072210.
- [16] M. Mursaleen, S.K. Sharma, S.A. Mohiuddine, A. Kılıçman, New Difference Sequence Spaces Defined by Musielak-Orlicz Function, Abstr. Appl. Anal. 2014 (2014), 691632. https://doi.org/10.1155/2014/691632.
- [17] M. Mursaleen, A. Alotaibi, S.K. Sharma, Some New Lacunary Strong Convergent Vector-Valued Sequence Spaces, Abstr. Appl. Anal. 2014 (2014), 858504. https://doi.org/10.1155/2014/858504.
- [18] M. Mursaleen, S.K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iran. J. Sci. Technol. 38 (2014), 105–109.
- [19] P. Muthukumar, S. Ponnusamy, Discrete Analogue of Generalized Hardy Spaces and Multiplication Operators on Homogenous Trees, Anal. Math. Phys. 7 (2017), 267–283. https://doi.org/10.1007/s13324-016-0141-9.
- [20] P. Muthukumar, S. Ponnusamy, Composition Operators on the Discrete Analogue of Generalized Hardy Space on Homogenous Trees, Bull. Malays. Math. Sci. Soc. 40 (2017), 1801–1815. https://doi.org/10.1007/s40840-016-0419-y.
- [21] N. Petrot, S. Suantai, Some Geometric Properties in Cesáro-Orlicz Sequence Spaces, ScienceAsia 31 (2005), 173-177.
- [22] K. Raj, C. Sharma, S. Pandoh, Multiplication Operators on Cesàro-Orlicz Sequence Spaces, Fasc. Math. 57 (2016), 137–145. https://doi.org/10.1515/fascmath-2016-0021.

- [23] A.K. Sharma, V. Kumar, Discrete Cesaro Operator between Weighted Banach Spaces on Homogenous Trees, Adv. Oper. Theory 5 (2020), 1667–1683. https://doi.org/10.1007/s43036-020-00078-2.
- [24] J.S. Shiue, On the Cesàro Sequence Spaces, Tamkang J. Math. 1 (1970), 19-25.
- [25] J.S. Shiue, A Note on Cesaro Function Space, Tamkang J. Math. 1 (1970), 91-95.
- [26] W. Sanhan, S. Suantai, On k-Nearly Uniform Convex Property in Generalized Cesàro Sequence Spaces, Int. J. Math. Math. Sci. 2003 (2003), 3599–3607. https://doi.org/10.1155/S0161171203301267.