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Abstract. This paper contains some new theorems related to hyper BCK-ideals positive implicative hyper BCK-ideals of

types-1, 2, 3, 4 of hyper BCK-algebras (HBCKA) under an interval-valued intuitionistic fuzzy environment. Henceforth,

the connection between these ideas and their relevant characteristics is discussed.

1. Introduction

In 1966, Imai and Iséki [11] coined the notion of BCK-algebras (BCKAs) by extending the

concepts of set-theoretic difference and propositional calculus. Research works on BCKAs have

been progressing rapidly since their inception. Marty [13] invented hyperstructures theory, also

re-knocked as multi-algebras. Jun et al. [12] introduced the notion of hyper BCKAs (HBCKAs)

as an extension of BCKAs and discussed their characteristics. The notions of fuzzy positive

implicative hyper BCK-ideals (FPIHBCKIs) of types-1, 2, 3, 4 were proposed by Bakhshi et al. [5].

Meanwhile, the fuzzy set [20] was extended to the intuitionistic fuzzy set (IFS) by Atanassov [1,2]
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by employing both membership and non-membership degrees for each object. Atanassov [3]

defined new operations over IFSs. Later on, Atanassov and Gargov [4] presented the notion of

interval-valued IFSs (IVIFSs) using interval-valued membership and non-membership degrees.

Satyanarayana et al. [18] introduced the notions of IVIFS-hyper (weak, s-weak, strong) BCKIs of

BCKAs, and investigated the connections between those concepts. Borzooei has studied hyper

BCK-algebras extensively, which can be seen in [6–10]. After that, Ramesh et al. [14–17] applied

different algebras and IVIFS concepts. In [19], Satyanarayana et al. introduced the notions of

IVIFPIHCKIs of types-1, 2, . . . , 8 of HBCKAs. Additionally, we discover the connections between

IVIFS-hyper (weak, s-weak, strong) BCKIs of BCKAs, IVIF-(weak, strong, reflexive) HBCKIs and

IVIFPIHBCKIs of types-1, 2, . . . , 8 of HBCKAs and the associated properties are explored.

This paper establishes characterizations of IVIFHBCKIs and IVIFPIHBCKIs of types-1, 2, 3, 4,

and a few of its related characteristics are demonstrated.

Let H be a set with a hyper operation that is non-empty and, ◦ is a mapping from H ×H into

P∗(H) = P(H) \ {∅}. Using any two subsets T and R of H, denoted by T ◦ R the set,
⋃

a∈T,b∈R a ◦ b.

We shall use j1 ◦ j2 instead of j1 ◦ { j2}, { j1} ◦ j2, or { j1} ◦ { j2}.

2. Preliminaries

Definition 2.1. [12] In an HBCKA, a non-null set H is considered along with a hyper operation ◦ and a
constant 0 obeying the axioms mentioned below:
(HK-1) ( j1 ◦ j3) ◦ ( j2 ◦ j3)� j1 ◦ j2,
(HK-2) ( j1 ◦ j2) ◦ j3 = ( j1 ◦ j3) ◦ j2,
(HK-3) j1 ◦H � { j1},
(HK-4) j1 � j2 and j2 � j1 ⇒ j1 = j2, for all j1, j2, j3 ∈ H.
We can define a relation “� ” on H by letting j1 � j2 if and only if 0 ∈ j1 ◦ j2 and for every T, R ⊆ H, T � R
is defined by ∀a ∈ T,∃b ∈ R such that a� b. In such case, we call “� ” the hyper order in H.

Note that the condition (HK-3) is equivalent to the condition:

(P1) j1 ◦ j2 � { j1}, for all j1, j2 ∈ H.

In any HBCKA, the following hold:

(P2) j1 ◦ 0� { j1}, 0 ◦ j1 � { j1} and 0 ◦ 0� {0},

(P3) (T ◦R) ◦Q = (T ◦Q) ◦R, T ◦R� T and 0 ◦ T � {0},
(P4) 0 ◦ 0 = {0},

(P5) 0� j1,

(P6) j1 � j1,

(P7) T � T,

(P8) T ⊆ R⇒ T � R,

(P9) 0 ◦ j1 = {0} ,

(P10) j1 ◦ 0 = { j1},
(P11) 0 ◦ T = {0},
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(P12) T � {0} ⇒ T = {0},

(P13) T ◦R� T,

(P14) j1 ∈ j1 ◦ 0,

(P15) j1 ◦ 0� { j2} ⇒ j1 � j2,

(P16) j2 � j3 ⇒ j1 ◦ j3 � j1 ◦ j2,

(P17) j1 ◦ j2 = {0} ⇒ ( j1 ◦ j3) ◦ ( j2 ◦ j3) = {0} and j1 ◦ j3 � j2 ◦ j3,

(P18) T ◦ {0} = {0} ⇒ T = 0, for all j1, j2, j3 ∈ H and for all non-empty subsets T, R and Q of H.

Let M be a non-empty subset of an HBCKA H and 0 ∈M. Then M is called an HBCK-subalgebra

of H if j1 ◦ j2 ⊆M, for all j1, j2 ∈M, weak HBCKI of H if j1 ◦ j2 ⊆M and j2 ∈M imply j1 ∈M, for all

j1, j2 ∈ H, an HBCKI of H if j1 ◦ j2 � M and j2 ∈ M imply j1 ∈ M, for all j1, j2 ∈ H, a SHBCKI of H
if ( j1 ◦ j2)∩M , ∅ and j2 ∈M imply j1 ∈M, for all j1, j2 ∈ H, M is said to be reflexive if j1 ◦ j1 ⊆M,

for all j1 ∈ H, S-reflexive if it satisfies ( j1 ◦ j2) ∩M , ∅ implies j1 ◦ j2 �M, for all j1, j2 ∈ H, closed

if j1 � j2 and j2 ∈M imply j1 ∈M, for all j1 ∈ H. It is easy to see that every S-reflexive subset of H
is reflexive.

Let M be a non-empty subset of H and 0 ∈M. Then M is said to be a positive implicative hyper

BCK-ideal (PIHBCKI) of

(i) type-1 if ( j1 ◦ j2) ◦ j3 ⊆M and j2 ◦ j3 ⊆M⇒ j1 ◦ j3 ⊆M,

(ii) type-2 if ( j1 ◦ j2) ◦ j3 � I and j2 ◦ j3 ⊆M⇒ j1 ◦ j3 ⊆M,

(iii) type-3 if ( j1 ◦ j2) ◦ j3 �M and j2 ◦ j3 �M⇒ j1 ◦ j3 ⊆M,

(iv) type-4 if ( j1 ◦ j2) ◦ j3 ⊆M and j2 ◦ j3 � I⇒ j1 ◦ j3 ⊆M,

(v) type-5 if ( j1 ◦ j2) ◦ j3 ⊆M and j2 ◦ j3 ⊆M⇒ j1 ◦ j3 �M,

(vi) type-6 if ( j1 ◦ j3) ◦ j3 �M and j2 ◦ j3 �M⇒ j1 ◦ j3 �M,

(vii) type-7 if ( j1 ◦ j2) ◦ j3 ⊆M and j2 ◦ j3 � I⇒ j1 ◦ j3 �M,

(viii) type-8 if ( j1 ◦ j2) ◦ j3 �M and j2 ◦ j3 ⊆M⇒ j1 ◦ j3 �M, for all j1, j2, j3 ∈ H.

A mapping T̃ = (φ̃T, ψ̃T) : L→ D[0, 1]×D[0, 1] is called an IVIFS in L if 0 ≤ φ+
T ( j1) +ψ+

T ( j1) ≤ 1

and 0 ≤ φ−T( j1) + ψ−T( j1) ≤ 1, for all j1 ∈ L (that is, T+ = (φ+
T ,ψ+

T ) and T− = (φ−T ,ψ−T) are IFSs),

where the mappings φ̃T( j1) = [φ−T( j1),φ+
T ( j1)] : L → D[0, 1] and ψ̃T( j1) = [ψ−T( j1),ψ+

T ( j1)] :

L → D[0, 1] represent the degree of membership (namely ψ̃T( j1)) each component j1 ∈ L to T
respectively, where D[0, 1] is the set of all closed sub-intervals of [0, 1].

3. Interval-valued intuitionistic fuzzy hyper BCK-ideals of hyper BCK-algebras

Definition 3.1. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is called an interval-valued intuitionistic fuzzy hyper
BCK-ideal (IVIFHBCKI) of H if it fulfils:

(k1) j1 � j2 ⇒ φ̃T( j1) ≥ φ̃T( j2) and ψ̃T( j1) ≤ ψ̃T( j2),
(k2) φ̃T( j1) ≥ min{infr∈ j1◦ j2{φ̃T(r)}, φ̃T( j2)},
(k3) ψ̃T( j1) ≤ max{supt∈ j1◦ j2{ψ̃T(t)}, ψ̃T( j2)}, for all j1, j2 ∈ H.

Definition 3.2. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is called an IVIF-strong HBCKI (IVIFSHBCKI) of H
if it satisfies:



4 Int. J. Anal. Appl. (2025), 23:11

(i) infr∈ j1◦ j2{φ̃T(r)} ≥ φ̃T( j1) ≥ min{supt∈ j1◦ j2{φ̃T(t)}, φ̃T( j2)},
(ii) supv∈ j1◦ j2{ψ̃T(v)} ≤ ψ̃T( j1) ≤ max{infs∈ j1◦ j2{ψ̃T(s)}, ψ̃T( j2)}, for all j1, j2 ∈ H.

Definition 3.3. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is known as an IVIF s-weak HBCKI (IVIFSWHBCKI)
of H if it satisfies:

(s1) φ̃T(0) ≥ φ̃T( j1) and ψ̃T(0) ≤ ψ̃T( j1), for all j1 ∈ H,
(s2) for every j1, j2 ∈ H, there exist a, b ∈ j1 ◦ j2 such that

φ̃T( j1) ≥ min{φ̃T(r), φ̃T( j2)} and ψ̃T( j1) ≤ max{ψ̃T(t), ψ̃T( j2)}.

Definition 3.4. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is called an IVIF-weak HBCKI (IVIFWHBCKI) of H
if it satisfies:

(i) φ̃T(0) ≥ φ̃T( j1) ≥ min{infr∈ j1◦ j2{φ̃T(r)}, φ̃T( j2)},
(ii) ψ̃T(0) ≤ ψ̃T( j1) ≤ max{supt∈ j1◦ j2{ψ̃T(t)}, ψ̃T( j2)}, for all j1, j2 ∈ H.

Definition 3.5. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is called an IVIF-HBCK-subalgebra (IVIFHBCKSA)
of H if it satisfies:

(i) infr∈ j1◦ j2{φ̃T(r)} ≥ min{φ̃T( j1), φ̃T( j2)},
(ii) supt∈ j1◦ j2{ψ̃T(t)} ≤ max{ψ̃T( j1), ψ̃T( j2)}, for all j1, j2 ∈ H.

Definition 3.6. [18] An IVIFS T̃ = (φ̃T, ψ̃T) in H is said to satisfy “sup-inf" a property if any subset D
of H, there exist t0, s0 ∈ D such that

φ̃T(t0) = sup j∈D{φ̃T( j)} and ψ̃T(s0) = inf j∈D{ψ̃T( j)}.

Theorem 3.1. Let T̃ = (φ̃T, ψ̃T) be an IVIFS in H, then the following statements hold:

(i) T̃ is an IVIFHBCKI of H if and only if for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are HBCKIs
of H,

(ii) if T̃ is an IVIFSHBCKI of H, then for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are SHBCKIs
of H,

(iii) if T̃ is an IVIFS of H which satisfies the sup-inf property and for every s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) ,

∅ , L(ψ̃T, t̃1) are SHBCKIs of H, then T̃ is an IVIFSHBCKI of H.

Proof. The proof is straightforward. �

4. Interval-valued intuitionistic fuzzy positive implicative hyper BCK-ideals of hyper

BCK-algebras

Definition 4.1. [14] Let T̃ = (φ̃T, ψ̃T) be an IVIFS of H, and φ̃T(0) ≥ φ̃T( j) and ψ̃T(0) ≤ ψ̃T( j), for all
j ∈ H. Then T̃ = (φ̃T, ψ̃T) is said to be an interval-valued intuitionistic fuzzy positive implicative hyper
BCK-ideal (IVIFPIHBCKI) of

(i) type-1 if for all q ∈ j1 ◦ j3, φ̃T(q) ≥ min{infa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, infa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{supa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, supa4∈ j2◦ j3{ψ̃T(a4)}},
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(ii) type-2 if for all q ∈ j1 ◦ j3, φ̃T(q) ≥ min{supa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, infa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{infa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, supa4∈ j2◦ j3{ψ̃T(a4)}},

(iii) type-3 if for all q ∈ j1 ◦ j3, φ̃T(q) ≥ min{supa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, supa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{infa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, infa4∈ j2◦ j3{ψ̃T(a4)}},

(iv) type-4 if for all q ∈ j1 ◦ j3, φ̃T(q) ≥ min{infa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, supa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{supa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, infa4∈ j2◦ j3{ψ̃T(a4)}}, for all j1, j2, j3 ∈ H.

Definition 4.2. [14] Suppose T̃ = (φ̃T, ψ̃T) denotes an IVIFS of H. Then T̃ = (φ̃T, ψ̃T) is said to be an
IVIFPIHBCKI of

(i) type-5 if ∃q ∈ j1 ◦ j3 such that φ̃T(q) ≥ min{infa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, infa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{supa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, supa4∈ j2◦ j3{ψ̃T(a4)}},

(ii) type-6 if ∃q ∈ j1 ◦ j3 such that φ̃T(q) ≥ min{supa2∈( j1◦ j2)◦ j3{φ̃T(a2)}, supa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{infa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, infa4∈ j2◦ j3{ψ̃T(a4)}},

(iii) type-7 if ∃q ∈ j1 ◦ j3 such that φ̃T(q) ≥ min{infa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, supa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{supa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, infa4∈ j2◦ j3{ψ̃T(a4)}},

(iv) type-8 if ∃q ∈ j1 ◦ j3 such that φ̃T(q) ≥ min{supa1∈( j1◦ j2)◦ j3{φ̃T(a1)}, infa2∈ j2◦ j3{φ̃T(a2)}} and
ψ̃T(q) ≤ max{infa3∈( j1◦ j2)◦ j3{ψ̃T(a3)}, supa4∈ j2◦ j3{ψ̃T(a4)}}, for all j1, j2, j3 ∈ H.

Theorem 4.1. Suppose T̃ = (φ̃T, ψ̃T) denotes an IVIFS in H, then

(i) T̃ is an IVIFPIHBCKI of type-1 if and only if for all s̃1, t̃1 ∈ D[0, 1], L(ψ̃T, t̃1) , ∅ , U(φ̃T, s̃1) are
PIHBCKIs of type-1,

(ii) T̃ is an IVIFPIHBCKI of type-2 (type-3) if and only if for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ ,

L(ψ̃T, t̃1) are PIHBCKIs of type-2 (type-3),
(iii) if for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are PIHBCKIs of type-2 (type-3) and T̃ fulfils

the sup-inf property, then T̃ is an IVIFPIBCKI of type-2 (type-3),
(iv) if T̃ is an IVIF-closed and IVIFPIHBCKI of type-4, then for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ ,

L(ψ̃T, t̃1) are PIHBCKIs of type-4,
(v) if T̃ is an IIVIF-closed, fulfils the sup-inf property and for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ ,

L(ψ̃T, t̃1) are reflexive PIHBCKIs of type-4, then T̃ is an IVIFPIHBCKI of type-4.

Proof. (i) Assume T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-1. Let j1, j2, j3 ∈ H and s̃1 ∈ D[0, 1] be

such that ( j1 ◦ j2) ◦ j3 ⊆ U(φ̃T, s̃1) and j2 ◦ j3 ⊆ U(φ̃T, s̃1). Then r, t ∈ U(φ̃T, s̃1), for all r ∈ ( j1 ◦ j2) ◦ j3
and t ∈ j2 ◦ j3. Thus φ̃T(r) ≥ s̃1 and φ̃T(t) ≥ s̃1, for all r ∈ ( j1 ◦ j2) ◦ j3 and t ∈ j2 ◦ j3 imply

that infr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥ s̃1 and inft∈ j2◦ j3{φ̃T(t)} ≥ s̃1. Thus by hypothesis, for all u ∈ j1 ◦ j3,

φ̃T(u) ≥ min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, inft∈ j2◦ j3{φ̃T(t)}} ≥ min{s̃1, s̃1} = s̃1 imply j1 ◦ j3 ⊆ U(φ̃T, s̃1). Let

j1, j2, j3 ∈ H be such that ( j1 ◦ j2) ◦ j3 ⊆ L(ψ̃T, t̃1) and j2 ◦ j3 ⊆ L(ψ̃T, t̃1). Then l, m ∈ L(ψ̃T, t̃1), for

all l ∈ ( j1 ◦ j2) ◦ j3 and l ∈ j2 ◦ j3 imply ψ̃T(l) ≤ t̃1 and ψ̃T(m) ≤ t̃1, for all l ∈ ( j1 ◦ j2) ◦ j3 and

m ∈ j2 ◦ j3, imply that supl∈( j1◦ j2)◦ j3{ψ̃T(l)} ≤ t̃1 and supd∈ j2◦ j3{ψ̃T(d)} ≤ t̃1. Thus by hypothesis,

for all v ∈ j1 ◦ j3, ψ̃T(v) ≤ max{supl∈( j1◦ j2)◦ j3{ψ̃T(l)}, supd∈ j2◦ j3{ψ̃T(d)}} ≤ max{t̃1, t̃1} = t̃1 implies

j1 ◦ j3 ⊆ L(ψ̃T, t̃1). Thus U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are PIHBCKIs of type-1, for all s̃1, t̃1 ∈ D[0, 1].
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Conversely, let for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are PIHBCKIs of type-1 and put

s̃1 = min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, inft∈ j2◦ j3{φ̃T(t)}}. Then infr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥ s̃1 and inft∈ j2◦ j3{φ̃T(t)} ≥
s̃1. So, φ̃T(r) ≥ s̃1 and φ̃T(t) ≥ s̃1, for all r ∈ ( j1 ◦ j2) ◦ j3 and t ∈ j2 ◦ j3. Hence, r ∈ U(φ̃T, s̃1)

and t ∈ U(φ̃T, s̃1), for all r ∈ ( j1 ◦ j2) ◦ j3 and t ∈ j2 ◦ j3. That is ( j1 ◦ j2) ◦ j3 ⊆ U(φ̃T, s̃1) and

j2 ◦ j3 ⊆ U(φ̃T, s̃1) and so by hypothesis, j1 ◦ j3 ⊆ U(φ̃T, s̃1). Thus for all u ∈ j1 ◦ j3, φ̃T(u) ≥ s̃1 =

min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, inft∈ j2◦ j3{φ̃T(t)}}. Put, t̃1 = max{supl∈( j1◦ j2)◦ j3{ψ̃T(l)}, supm∈ j2◦ j3{ψ̃T(m)}}

implies t̃1 ≥ supl∈( j1◦ j2)◦ j3{ψ̃T(l)} and t̃1 ≥ supm∈ j2◦ j3{ψ̃T(m)}. So, ψ̃(m) ≤ t̃1, for all l ∈ ( j1 ◦ j2) ◦ j3
and m ∈ ( j2 ◦ j3) imply l ∈ L(ψ̃T, t̃1) and m ∈ L(ψ̃T, t̃1). Hence, ( j1 ◦ j2) ◦ j3 ⊆ L(ψ̃T, t̃1) and

j2 ◦ j3 ⊆ L(ψ̃T, t̃1). By hypothesis, j1 ◦ j3 ⊆ L(ψ̃T, t̃1). Thus for all v ∈ j1 ◦ j3, ψ̃T(v) ≤ t̃1 =

max{supl∈( j1◦ j2)◦ j3{ψ̃T(l)}, supm∈ j2◦ j3{ψ̃T(m)}}. Thus T̃ is an IVIFPIHBCKI of type-1.

(ii) Suppose T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-2. Let j1, j2, j3 ∈ H and s̃1 ∈ D[0, 1] be

such that ( j1 ◦ j2) ◦ j3 � U(φ̃T, s̃1) and j2 ◦ j3 ⊆ U(φ̃T, s̃1). Then for all r ∈ ( j1 ◦ j2) ◦ j3, there

exists p ∈ U(φ̃T, s̃1) such that r � p. By Corollary 3.10 [14], we have φ̃T(r) ≥ φ̃T(p) ≥ s̃1.

Thus φ̃T(r) ≥ s̃1, for all r ∈ ( j1 ◦ j2) ◦ j3, so supr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥ s̃1. Moreover, since j2 ◦ j3 ⊆
U(φ̃T, s̃1) implies φ̃T(t) ≥ s̃1, for all t ∈ j2 ◦ j3. Thus inft∈ j2◦ j3{φ̃T(t)} ≥ s̃1 and for all u ∈ j1 ◦
j3, φ̃T(u) ≥ min{supr∈( j1◦ j2)◦ j3{φ̃T(r)}, inft∈ j2◦ j3{φ̃T(t)}} ≥ min{s̃1, s̃1} = s̃1. Therefore, φ̃T(u) ≥ s̃1, so

u ∈ U(φ̃T, s̃1), for all u ∈ j1 ◦ j3. Thus j1 ◦ j3 ⊆ U(φ̃T, s̃1). Suppose ( j1 ◦ j2) ◦ j3 � L(ψ̃T, t̃1) and

j2 ◦ j3 ⊆ L(ψ̃T, t̃1). Then for all l ∈ ( j1 ◦ j2) ◦ j3, there exists q ∈ L(ψ̃T, t̃1) such that l � q. By

Corollary 3.10 [14], we have ψ̃T(l) ≤ ψ̃T(q) ≤ t̃1 implies ψ̃T(l) ≤ t̃1, for all l ∈ ( j1 ◦ j2) ◦ j3. Thus

infl∈( j1◦ j2)◦ j3 ψ̃T(l) ≤ t̃1. Since j2 ◦ j3 ⊆ L(ψ̃T, t̃1), we have m ∈ L(ψ̃T, t̃1), for all m ∈ j2 ◦ j3. So,

ψ̃T(m) ≤ t̃1, for all m ∈ j2 ◦ j3. This implies that supm∈ j2◦ j3{ψ̃T(m)} ≤ t̃1. Thus for all v ∈ j1 ◦ j3,

ψ̃T(v) ≤ max{infl∈( j1◦ j2)◦ j3 ψ̃T(l), supm∈ j2◦ j3{ψ̃T(m)}} ≤ t̃1. Therefore, j1 ◦ j2 ⊆ L(ψ̃T, t̃1). Thus

U(φ̃T, s̃1) and L(ψ̃T, t̃1) are PIHBCKIs of type-2, for all s̃1, t̃1 ∈ D[0, 1]. Similarly, we can prove for

type-3.

(iii) Let j1, j2, j3 ∈ H. Put s̃1 = min{supr∈( j1◦ j2)◦ j3{φ̃T(r)}, inft∈ j2◦ j3 φ̃T(t)}. Since φ̃T satisfies

the sup property, then there exists a0 ∈ ( j1 ◦ j2) ◦ j3 such that φ̃T(a0) = supr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥
s̃1 and so a0 ∈ U(φ̃T, s̃1). Hence, (( j1 ◦ j2) ◦ j3) ∩ U(φ̃T, s̃1) , ∅, since by Theorem 2.8 (ii) [5],

U(φ̃T, s̃1) is an HBCKI of H. By hypothesis and Theorem 3.5 (ii) [5], we have ( j1 ◦ j2) ◦ j3 �
U(φ̃T, s̃1). Moreover, for all u ∈ j2 ◦ j3, φ̃T(u) ≥ inft∈ j2◦ j3 φ̃T(t) ≥ s̃1. Then j2 ◦ j3 ⊆ U(φ̃T, s̃1).

Since U(φ̃T, s̃1) is a PIHBCKI of type-2, we have j1 ◦ j3 ⊆ U(φ̃T, s̃1). This implies that for all

v ∈ j1 ◦ j3, φ̃T(v) ≥ s̃1 = min{supa∈( j1◦ j2)◦z{φ̃T(a)}, infb∈ j2◦ j3{φ̃T(b)}}. Since L(ψ̃T, t̃1) is a PIHBCKI

of type-2 and for j1, j2, j3 ∈ H, put t̃1 = max{infc∈( j1◦ j2)◦ j3{ψ̃T(c)}, supd∈ j2◦ j3{ψ̃T(d)}}. Since ψ̃T

satisfies the inf property, there exists c0 ∈ ( j1 ◦ j2) ◦ j3 such that ψ̃T(c0) = infa∈( j1◦ j2)◦ j3{ψ̃T(a)} ≤ t̃1

and so c0 ∈ L(ψ̃T, t̃1). Hence, (( j1 ◦ j2) ◦ j3 ∩ L(ψ̃T, s̃1) , ∅. By Theorem 2.8 (ii) [5], L(ψ̃T, t̃1)

is an HBCKI of H. By hypothesis and Theorem 3.5 (ii) [5], we have ( j1 ◦ j2) ◦ j3 � L(ψ̃T, t̃1).

Moreover, for all u
′

∈ j2 ◦ j3, ψ̃T(u
′

) ≤ supd∈ j2◦ j3{ψ̃T(d)} ≤ t̃1 implies j2 ◦ j3 ⊆ L(ψ̃T, t̃1). Since

L(ψ̃T, t̃1) is a PIBCKI of type-2, we have j1 ◦ j3 ⊆ L(ψ̃T, t̃1). This implies for all v
′

∈ j1 ◦ j3,
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ψ̃T(v
′

) ≤ t̃1 = max{infc∈( j1◦ j2)◦ j3{ψ̃T(c)}, supd∈ j2◦ j3{ψ̃T(d)}}. Thus T̃ is an IVIFPIHBCKI of type-2.

Similarly, we can prove for type-3.

(iv) Suppose T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-4 and IVIF-closed. Let s̃1, t̃1 ∈ D[0, 1]. Let

j1, j2, j3 ∈ H be such that ( j1 ◦ j2) ◦ j3 ⊆ U(φ̃T, s̃1) and j2 ◦ j3 � U(φ̃T, s̃1). Then r ∈ U(φ̃T, s̃1), for

all r ∈ ( j1 ◦ j2) ◦ j3 and for all t ∈ j2 ◦ j3, there exists p ∈ U(φ̃T, s̃1) such that t� p. Since φ̃T is fuzzy

closed, we have φ̃T(t) ≥ φ̃T(p) ≥ s̃1, for all t ∈ j2 ◦ j3, so supt∈ j2◦ j3{φ̃T(t)} ≥ s̃1. Since a ∈ U(φ̃T, s̃1),

for all r ∈ ( j1 ◦ j2) ◦ j3, we have φ̃T(r) ≥ s̃1, for all r ∈ ( j1 ◦ j2) ◦ j3. Therefore, infr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥
s̃1. Thus for all u ∈ j1 ◦ j3, φ̃T(u) ≥ min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, supt∈ j2◦ j3{φ̃T(t)}} ≥ s̃1. Therefore,

j1 ◦ j3 ⊆ U(φ̃T, s̃1). Let j1, j2, j3 ∈ H be such that ( j1 ◦ j2) ◦ j3 ⊆ L(ψ̃T, t̃1) and j2 ◦ j3 � L(ψ̃T, t̃1).

Then l ∈ L(ψ̃T, t̃1), for all l ∈ ( j1 ◦ j2) ◦ j3 and for all m ∈ j2 ◦ j3, there exists q ∈ L(ψ̃T, t̃1) such

that m � q. Since ψ̃T is anti-fuzzy closed, we have ψ̃T(m) ≤ φ̃T(q) ≤ t̃1, for all m ∈ j2 ◦ j3,

so infm∈ j2◦ j3{ψ̃T(m)} ≤ t̃1. Since l ∈ L(ψ̃T, t̃1), for all l ∈ ( j1 ◦ j2) ◦ j3, we have φ̃T(l) ≤ t̃1,

for all l ∈ ( j1 ◦ j2) ◦ j3. Therefore, supl∈( j1◦ j2)◦ j3{ψ̃T(l)} ≤ t̃1. Thus for all v ∈ j1 ◦ j3, ψ̃T(v) ≤
max{supl∈( j1◦ j2)◦ j3{ψ̃T(l)}, infm∈ j2◦ j3{ψ̃T(m)}} ≤ t̃1. Therefore, j1 ◦ j3 ⊆ L(ψ̃T, s̃1). Thus U(φ̃T, s̃1) and

L(ψ̃T, s̃1) are PIHBCKIs of type-4, for all s̃1 ∈ D[0, 1].

(v) Let for all s̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, s̃1) are reflexive PIHBCKIs of type-4. Let

j1, j2, j3 ∈ H and put s̃ = min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, supt∈ j2◦ j3{φ̃T(t)}}. Then infr∈( j1◦ j2)◦ j3{φ̃T(r)} ≥ s̃1

and

supt∈ j2◦ j3{φ̃T(t)} ≥ s̃1. Hence, φ̃T(r) ≥ s̃1, for all r ∈ ( j1 ◦ j2) ◦ j3 and so ( j1 ◦ j2) ◦ j3 ⊆ U(φ̃T, s̃1).

Moreover, since φ̃T satisfies the sup property, there exists b0 ∈ U(φ̃T, s̃1) such that φ̃T(b0) =

supt∈ j2◦ j3{φ̃T(t)} ≥ s̃1 and so φ̃T(b0) ≥ s̃1. This is, b0 ∈ U(φ̃T, s̃1). Hence, ( j2 ◦ j3) ∩U(φ̃T, s̃1) , ∅.

Since U(φ̃T, s̃1) is a PIBCKI of type-4 and hence type-1 by Theorem 2.7 [5], then by Theorem 2.8

(ii) [5], we have U(φ̃T, s̃1) is a weak HBCKI of H. Also, since φ̃T is fuzzy closed, we have U(φ̃T, s̃1)

is closed and so by Lemma 2.3 (iv) [5], U(φ̃T, s̃1) is an HBCKI of H. Now, U(φ̃T, s̃1) is a reflexive

HBCKI of H and ( j2 ◦ j3) ∩U(φ̃T, s̃1) , ∅, so j2 ◦ j3 � U(φ̃T, s̃1) by Theorem 3.5 (ii) [5]. Since

U(φ̃T, s̃1) is a PIHBCKI of type-4, we have j1 ◦ j3 ⊆ U(φ̃T, s̃1). Hence, for all u ∈ j1 ◦ j3, φ̃T(u) ≥ s̃ =
min{infr∈( j1◦ j2)◦ j3{φ̃T(r)}, supt∈ j2◦ j3{φ̃T(t)}}. Put t̃1 = max{supl∈( j1◦ j2)◦ j3{ψ̃T(l)}, infm∈ j2◦ j3{ψ̃T(m)}}.

Then supl∈( j1◦ j2)◦ j3{ψ̃T(l)} ≤ t̃1 and infm∈ j2◦ j3{ψ̃T(m)} ≤ t̃1. Hence, ψ̃T(l) ≤ t̃1, for all l ∈ ( j1 ◦ j2) ◦ j3
and so (( j1 ◦ j2) ◦ j3) ⊆ L(ψ̃T, t̃1). Moreover, since ψ̃T satisfies inf property, there exists d0 ∈ L(ψ̃T, t̃1)

such that ψ̃T(d0) = infd∈ j2◦ j3{ψ̃T(d)} ≤ t̃1 and so ψ̃T(d0) ≤ t̃1. That is, d0 ∈ L(ψ̃T, t̃1). Hence,

( j2 ◦ j3) ∩ L(ψ̃T, t̃1) , ∅. Since L(ψ̃T, t̃1) is a PIHBCKI of type-4 and hence of type-1 by Theorem

2.7 [5], then by Theorem 2.8 [5], we have L(ψ̃T, t̃1) is a WHBCKI of H. Also, since ψ̃T is anti-fuzzy

closed, we have L(ψ̃T, t̃1) is closed and so by Lemma 2.3 (iv) [5], L(ψ̃T, t̃1) is an HBCKI of H. Now,

L(ψ̃T, t̃1) is a reflexive HBCKI of H and ( j2 ◦ j3) ∩ L(ψ̃T, t̃1) , ∅ imply that j2 ◦ j3 � L(ψ̃T, t̃1), so

j1 ◦ j3 ⊆ L(ψ̃T, t̃1). Hence, for all t ∈ j1 ◦ j3, ψ̃T(t) ≤ t̃1 = max{supc∈( j1◦ j2)◦ j3{ψ̃T(c)}, infd∈ j2◦ j3{ψ̃T(d)}}.
Thus T̃ is an IVIFPIHBCKI of type-4. �



8 Int. J. Anal. Appl. (2025), 23:11

Corollary 4.1. Let T̃ = (φ̃T, ψ̃T) be an IVIFS of H which satisfies the sup-inf property and for all
s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are reflexive. Then T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-2
if and only if it is an IVIFPIHBCKI of type-3.

Proof. Assume that T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-2. Then by Theorem 4.1 (ii), U(φ̃T, s̃1)

and L(ψ̃T, t̃1) are PIHBCKIs of type-2 and hence type-3. Hence, by Theorem 4.1 (iii), T̃ = (φ̃T, ψ̃T)

is an IVIFPIBCKI of type-3.

The converse follows from Theorem 3.3 (i) [14]. �

Theorem 4.2. Let H be a PIHBCKA. Then the following statements are equivalent:

(i) T̃ = (φ̃T, ψ̃T) is an IVIFWHBCKI of H,
(ii) T̃ = (φ̃T, ψ̃T) is an IVIFPIHBCKI of type-1.

Proof. (i) ⇒ (ii) Assume T̃ = (φ̃T, ψ̃T) is an IVIFWHBCKI of H. For all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) ,

∅ , L(ψ̃T, t̃1). Let j1, j2, j3 ∈ H be such that j1 ◦ j2 ⊆ U(φ̃T, s̃1) and j2 ∈ U(φ̃T, s̃1). Then r ∈ U(φ̃T, s̃1),

for all r ∈ j1 ◦ j2 and j2 ∈ U(φ̃T, s̃1), so φ̃T(r) ≥ s̃1, for all r ∈ j1 ◦ j2 and φ̃T( j2) ≥ s̃1 imply that

infr∈ j1◦ j2{φ̃T(r)} ≥ s̃1 and φ̃T( j2) ≥ s̃1. Thus φ̃T( j1) ≥ min{infr∈ j1◦ j2{φ̃T(r)}, φ̃T( j2)} ≥ s̃1, imply

j1 ∈ U(φ̃T, s̃1). Let j1, j2, j3 ∈ H be such that j1 ◦ j2 ⊆ L(ψ̃T, t̃1) and j2 ∈ L(ψ̃T, t̃1). Then t ∈ L(ψ̃T, t̃1),

for all t ∈ j1 ◦ j2 and j2 ∈ L(ψ̃T, t̃1), so ψ̃T(t) ≤ t̃1, for all t ∈ j1 ◦ j2 and ψ̃T( j2) ≤ t̃1. Thus

supt∈ j1◦ j2{ψ̃T(t)} ≤ t̃1 and ψ̃T( j2) ≤ t̃1. Thus ψ̃T(t) ≤ max{supt∈ j1◦ j2{ψ̃T(t)}, ψ̃T( j2)} ≤ t̃1, imply

j1 ∈ L(ψ̃T, t̃1). Thus L(ψ̃T, t̃1) and U(φ̃T, s̃1) are WHBCKIs of H, for all s̃1, t̃1 ∈ D[0, 1]. By hypothesis

and Theorem 2.8 (iii) [5], U(φ̃T, s̃1) and L(ψ̃T, t̃1) are PIHBCKIs of type-1, for all s̃1, t̃1 ∈ D[0, 1]. By

Theorem 4.1 (i), we have T̃ is an IVIFPIHBCKI of type-1.

(ii)⇒ (i) The proof follows from Theorem 3.6 (i) [14]. �

Theorem 4.3. Let H be a PIHBCKA and T̃ = (φ̃T, ψ̃T) be an IVIFS of H which satisfies the sup-inf
property and for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are reflexive. If T̃ is an IVIFHBCKI of H,
then T̃ an IVIFPIHBCKI of type-2 (type-3).

Proof. Assume T̃ = (φ̃T, ψ̃T) is an IVIFHBCKI of H. By Theorem 3.1 (i), for all s̃1, t̃1 ∈ D[0, 1],

U(φ̃T, s̃1) , ∅ , L(ψ̃T, t̃1) are HBCKIs of H. By Theorem 2.8 (iii) [5], for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) ,

∅ , L(ψ̃T, t̃1) are PIHBCKIs of type-2. By Theorem 2.7 [5], for all s̃1, t̃1 ∈ D[0, 1], U(φ̃T, s̃1) , ∅ ,

L(ψ̃T, t̃1) are PIHBCKIs of type-3. By Theorem 4.1 (iii), we have T̃ is an IIVIFPIHBCKI of type-2

(type-3). �

Theorem 4.4. Every IVIFPIHBCKI of type-2 is an IVIFHBCKI of H.

Proof. The proof is straightforward. �

5. Conclusion

In this paper, we presented hyper BCK-ideals positive implicative hyper BCK-ideals of types-

1, 2, 3, 4 of hyper BCK-algebras under an interval-valued intuitionistic fuzzy environment. The

connection between these ideas and their relevant characteristics is discussed.
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