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Abstract. The goal of this paper is to consider a class of Hadamard fractional differential inclusions with three point
integral boundary conditions. The proof is based on the set-valued analog of Ménch fixed point theorem combined
with the technique of measures of noncompactness in order to establish the existence of at least one solution and an
illustrative example is given to show the applicability of this obtained result. We also investigate some Filippov’s type

results for this problem.

1. INTRODUCTION

Fractional differential equations have received considerable attention due to their description of
many physical phenomena in various fields of science and engineering, including viscoelasticity,
physics, mechanics, aerodynamics, control theory, signal and image processing, biology, environ-
mental science, materials, economics, and fluid dynamics (see [1,14,18] and their references).

Boundary value problems of fractional differential equations implicit variuos types of fractional
derivatives as Riemann-Liouville-type, Caputo-type, Hadamard-type, Caputo-Hadamard-type
and Hilfer-Hadamard-type fractional derivative with different kinds of boundary conditions have
studied by many researchers ( see [2,6,20,22,24]).

Integro-differential inclusions arise in the mathematical modeling of various problems in eco-

nomics, optimal control, and stochastic analysis, see for instance ( [15,19,25]). Some interesting
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results about initial and boundary value problems of fractional differential inclusions can be found
in [3,10,21].

In the works mentioned above, compactness and Lipschitz condition are satisfied, if not these
techniques cannot be used. Hence, there have been many published papers, which are devoted
to the existence of solutions of nonlinear integro-differential equations by using the technique of
a suitable measure of noncompactness in Banach algebras. We refer the readers to [9,17] and
references therein.

Filippov’s solutions for various classes of integer or fractional order differential inclusions have
been considered in the literature; see for instance [8,13,16].

The main goal of this work is to study the following problem of fractional differential inclusion

with nonlocal fractional integro-differential boundary conditions of the form

DIY(E)ell(&,9(8), Ee]=[1T],2<p<3 (1.1)
9(1)=0,D¢19(1) =0, 9(I) =« (I*9) (¢) '
where D¢ denotes the Hadamard fractional derivative of order 2 < ¢ < 3. I* is the Hadamard
fractional integral of order z > 0, IT : [1,¢] x R — P (R) is a multivalued map, P (R) is the

family of all nonempty subsets of R, «, ¢ are two real parameters with x > 0,1 < £ < I' and

xT(0-1) +z-2
Tot) (log €)™~ # 1.

The rest of this paper is divided into two sections. In Section 2, some required concepts are

presented that will be used in the sequel. Our main results is established in Section 3 which is

divided into two susections.

2. BAsic RESULTS

In this section, we give a collection of auxiliary facts which will be needed in the proof of the
main results. Let C (I, R) be the Banach space of all continuous functions from I into R with the

norm
ISl = sup{[9 (£)] : £€1)

L'(J,R) refers to the Banach space of measurable functions y : | — IR which are Lebesgue

18]l = f |9 (£)]de

and AC' (J,R) be the space of functions u : [1,I'] — R i-differentiable and whose ith derivative,

integrable; it is normed by

90 is absolutely continuous.
We begin by defining Hadamard fractional integrals and derivatives, and we introduce some

properties that can be used thereafter.

Definition 2.1. [18] The Hadamard fractional integral of order o € R™ for a function ¢ € Ca,b],
0<a<&<b< oo, isdefined as

I (&) = i@ f 5 (tog §)@_1 20,
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where T (.) is the Gamma function and log (.) = log; (.)

Definition 2.2. [18]Let0 <a <b < coand 6 = &4. The Hadamard derivative of fractional order p € R*
for a function ¢ € C"! ([a,b],R) is defined as

v (6) =" (1) (6) = i (e8] [ fogs) " £

wheren—1< p<neR", n=[g] + 1 denotes the integer part of the real number .

Lemma 2.1. ([18], Property 2.24) If a, o, C > 0O, then

(DQ (log E)C—l) (&)= L(©) (log %)C_@_l ,

rC-o
(Ié’ (log S)C—l) (&) = % (log %)Cﬂ]_l :

(D@ (log g)a—j) (&) =0, forj=1,.., [0 +1.

Lemma 2.2. ([18]) Let o > 0 and 9 € [1,00) N L [1,00). Then the solution of Hadamard fractional
differential equation D?9 (&) = 0 is given by

n

9(&) =Y ci(loge)”™,

i=1
and the following formula holds:

n

1209 (&) = 9 (&) + ) ci (log &),

i—1
forsomec; € R,i=1,2,..,n, wheren = [o] + 1.

For aseparable Banach space (7, ||.||),1letP (V) ={Ae Y : A= 0}, P, (V) ={A e P(Y) : Wis bounded},
Pa(Y) ={AeP(Y): Wisclosed}, Py (Y) = {AeP(Y) : Wiscompact}, P (Y) = {A e P (Y) : Wis convex}
and Peycp (Y) = Pep (V) N Pey (7).

Let @, ¥ be two sets, ¢ : & — P (V) a set-valued map, and A ¢ ¥. We define

graph () ={(9,v): 9 e P, ve ¥}.
Let A > 0 and let
B={9€eT: |9 <A

and
U={8eC(LT): 0 <A}
Clearly U = C (], B).
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Definition 2.3. A multivalued map I1: ] XY — P, (Y) is said to be measurable if for every x € Y the

function
Er—d (x, 11(8)) = inf{llx —zll : zeT1(£)},

is measurable.

Definition 2.4. A multivalued map ¢ : ] X Y — P (Y) is called L'-Caratheodory if
(i) & V> I1(&,9) is measurable for all 9 € R,

(ii) T V> I1 (&, 9) is upper semi-continuous for almost all & € [1,¢], and

(iii) for each ¢ > 0, there exists f. € L' (I, R*) such that

lIT (&, 9)|| = sup {lwl, w € IT(&,9)} < £ (&),

forall |9| < ¢ and fora.e. £ € ].
The multivalued map I1 is said to be Caratheodory if it satisfies (i) and (ii).

For each ¢ € C(], 7) define the set of selections of IT by
Sop = {0 €L (1) @ (£) €1T(£,9(8)) aT-E € ).

Let (7,d) be a metric space induced from the normed space (7, |I.||). The function H; : P (Y) x
P (Y) — R4 U {oo} given by:

H; (U, B) = max {sup d(a,B),supd (b, ‘21)} ,
ael beB
is referred to as the Hausdorff-Pompeiu metric (see [15]).
Now, recall the definition of the Kuratowski measure of noncompactness, and summarize the

main properties of this measure.

Definition 2.5. [4,5] Let I' be a Banach space and let Qr be the family of bounded subsets of I. The

Kuratowski measure of noncompactness is the map defined by
a (D) =infle >0: D c U, D;diam (D;) < e}
where D € Q.

Properties 2.1. 1) a (D) = 0 & D is compact (D is relatively compact ).

2)a (D) = a(ﬁ).

3)CcD=a(C) <a(D).

4)a(C+ D) <a(C)+a (D).

5)a(bD) =ba (D), beR.

6) a (convD) = a (D).

Here D and conv(D) denote the closure and the convex hull of the bounded set D, respectively.
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Theorem 2.1. [12]
Let T be a Banach space and C C L' (], T') countable with |3(&)| < h(&) for a.e. & € ], and every 9 € C
where h € L1(J,R+.). Then the function (&) = a(C(&)) belongs to L' (], Ry and satisfies

a({f&(v)v:SGC})SZfa(C(V))v.

Lemma 2.3. ( [11], Theorem 19.7) Let X be a separable metric space and G a multi-valued map with

nonempty closed values. Then, G has a measurable selection.

we put
k[ (0—-1)

-1 7
T(o+z-1)

(log £)°7%72. 2.1)

Lemma 2.4. For given x(.) € C(J,R), the unique solution of the problem

DY (&) =x(&), 1<é<e, 2<p<3 2.2)
9(1) =0, D19 (1) =0, 9 (e) =« (I79) () '
is
1 ST X ()
(log&)*?( P x (v)
+ (@) (F (0+2) © éi (log;) v 23)
1 ef1 e\t x(v)
g c4iloss) 5 )

Proof. Let 99 be a solution for equation D¢ (&) = x(&), for & € [1,e] and 2 < p < 3. By virtue of
the lemma 2.2, there exist constants ¢y, ¢, c3 € R provided that

6)@‘1 n(v)

v

S (&) = ﬁ € éf (log

+c1 (log &)™ + ¢ (log &) + 3 (log £)¢7°,

%
(2.4)

The conditions 9 (1) = 0, D¢719(1) = 0 imply that ¢; = ¢z = 0. For z > 0 and applying the
Hadamard integral operator I* to (2.4) and using Lemma 2.1, we have

e A

T(o+z v v

I'(e-1)
F(o+z-1)

+ ¢ (log E)QH_Z.

By using the condition 9(e) = « (I*9) (£), we get

1 K y N\ R (v) 1 . e\ 1 h(v)
CZ—E(—F(Q_'_Z)Eél(lOg;) Tv_m€£l(10g;) " V).
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By inserting the values ¢; fori = 1,2,3 in (2.4), we get

80(&) = ﬁ ff (log%)p_l h S/>V

oo £)072 " 4 =1 p(y ¢ e\ k(v
A (g [ eel) e f ) )

This means that 9 is a solution for integral equation (2.3). Conversely, one can easily see that 9

is a solution of problem (2.2) whenever 9y is a solution of the equation (2.3). m|

3. MAIN RESULT

3.1. Existence of solution. Useful Hypotheses will given in the following.
(Hy) IT: J xR — Pg0(R) is a Carathéodory multi-valued map.
(H2) For each R > 0 there exists a function p € L'(J,R ;) such that

117 (&, x)|| = sup{lxl - x (&) e (&)} <p (&),
for each (&, x) € [ x R with |y] < R, and

W
lim inf ——— =p <o
z——+400 zZ

where
1+ |w|

w =
lwIT ()  IwlT (04 2)
(H3) There exists a Carathéodory function ¢ : | X [0,2R] — R such that

(log £)¢*.

a(IT(EM(E))) <y (& a(M(E))), forallé € ], andeach M C B,

and the unique solution % € C ([0, 2R]) of the inequality
¢ 1y (v,a v
ok [ 2
(log &) ( Cfo eyt Y (va (M(v))
(s ), (s ) "

w 0+z 1% v

—ﬁff(logg)g_llp(V,aE/M(V)))V),561

_l’_

isN=0.
The main tools that will be used to establish our results are respectively the set-valued analog of

Monch fixed point theorem and an another Lemma.

Theorem 3.1. [23] Let K be a bounded, closed and convex subset of a Banach space I', U a relatively open
subset of K, and & : U— Peo(K). Assume that graph(§) is closed, § maps compact sets into relatively
compact sets, and that for some xo € U the following two conditions are satisfied:

— M compact, (3.1)

M c U, M c conv (xo U F (M))
and M = C with C ¢ M countable
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x¢ (1-AN)xo+AF(x), Vxe U\ U, A e (0,1). (3.2)
Then there exists x € U with x € F (x).

Lemma 3.1. Lef | be a compact real interval. Let I1 be a multivalued map satisfying (Hi) and let © be a
linear continuous map from L'(J,T') — C(],T'). Then the operator

@oSpy: C(J,I) — Pep,co (C(LT)), x = (©oSm,) (x) =0 (Smy)

is a closed graph operator in C (J,I') x C (], I').

Theorem 3.2. Assume that rx(ggfz_—lf)

on C(J, B), provided that

# 1that (H1)—(Hs3) hold. Then problem (1.1) has at least one solution

%fp(v)vs 1. (3.3)

Proof. Transform the problem (1.1) into a fixed point problem. Consider the multivalued operator

€ C(J,R), thereexists ¢ € Sy, such that
2\t ()

Q) =3 ﬁff(logé) vV
m(e) = (log&)”? (& 1 o) 1 (¢ e\¢ 1 o)
+ @ (F(Q+z) jf (log ;) v VT m fl (log 1_/) TV)

We shall show that o satisfies the assumptions of the set-valued analog of Monch’s fixed point

theorem. We divide the proof in five steps.
Step 1. Q (9) is convex for each x € C (], R).

iy (&) = ﬁ f1 : (1o & )@—1 0,

_%Q) f (log S)Q_l (P:EV) 1/), i=1,2.

Let C € [0,1]. Then, for each & € ], we have

£ -1 _ v
[Cify + (1 = C) g (5):ﬁf1 (10 5)0 [C(P1+(1VC)(PZ]( ),

(log&)”( C T e+ (1= o] (v)
L (F(Q+z) ‘fl (log _) v Y

1 f (105 s)@-l [Cp1+ (1-0) 2] (v)v)
I'(0) h v v '

Since ¢ has convex values, Sy, is convex, so iy + (1 —C) 1x € Q (x).

1%

Step 2. Q(M) is relatively compact for each compact M C U.
Let M C U be a compact set and let {iit,} be any sequence of elements of Q(M). We show that
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{i,} has a convergent subsequence by using the Ascoli-Arzela criterion of compactness in C(J, R).
Since 1i, € Q (M), there exist {x,} € M and ¢, € Sp1,, such that

 Losd)” e L
_%q) f (108 g)‘” %V(V) dv).
Using Theorem 2.1 and the properties of the measure of noncompactness of Kuratowski a, we
(6D < s | Z({(log%)"‘l g”—()})d
. <log| Cj)g_z (r (@K+ . fl " ({(k)g 5)”“ ﬁonv(") }) d (3.4)

trir [ ol flog )™ 22 ),

On the other hand, since M(v) is compact in C(J, R), the set {¢,, (v) : n > 1} is compact.

have

Consequently, a ({¢, (v) : n>1}) = 0 for all v € . Furthermore,

a({(tog£) 22 n > 1)) = L (tog ) a (lpw () s m 2 1) =0,

o({(1og &) 2wz 1)) = Hiog ) allpu ) mz 1) =0,

a({(log f)g_l q)”v(v) tn> 1}) = %(log 5)@_1 a{pn(v):n=1}) =0,

forall &, v € . Then (3.4) implies that {¢, (v) : n > 1}is relatively compact in C(J,R) foreach & € J.
In addition, for each &; and t;, from C(J,R) &; < & we have

[t (£2) = iy (&) = ‘% [ [(log ) )@-1] 0,

.\ ﬁ f: [(log %)@—1] Pn V(v) 0

, (log 52)@_2(—)(108 &) (r e f1 ' (1 L
e 1(10g§)"‘1 ) )‘
B[ 2
8 [T

T
(&)|(og &) = (log &) | | « ‘ 1
p [ogz 0g <1 ](r( )fl( 5)g+ 1

log " ;dv
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<ty 008"~ g
[toge2)* =g :
" || (F(Q+z+1) (log €)*" +1)}. (3.5)

The right hand side of the above inequality tends to zero, when £; — &>, that means {1, : n > 1}

is equicontinuous. Then, {11, : n > 1} is relatively compact in C(J, R).

Step 3. Q has a closed graph.
Let (xn,My) € graph (Q), n = 1, |lxn—xIl , M, —h|| — 0, as n — co. We must show that
(x,h) € graph (Q).
(Xn,Mty) € graph (Q) means that 1it, € Q (x,),which means that there exists ¢, € S ,, such that

foreach & €]
e 1 T e (v)
=g oss)

(log &) « Cr = e, (v)
+ W (T(Q+z) ﬁ (log;) v dv

—%Q) f (logS)Q_l gonv(v) dv).

Consider the continuous linear operator ® : L! (J,R) — C (J,IR) defined by

pr— 0O (p) (&) = ﬁ ff (logé)g_1 @dv
(

00 £)2°2 ¢ +2-1 ¢ (y ¢ e\ lo(v
* lgj) (r(@KJrz)fl (bgg)g 1¢£ i _r2@)£ (logT/)Q 1@@)

& -1 V) — y
€)@ = s [ (o) 20,

Clearly

-2 +z— _ v
(log¢)* ( = (o L ()0 (),
z 1 v

K
r v v
[ty e

In view, of Lemma 3.1, we state that © o S, is a closed graph operator. Moreover, we have

— 0asn — oo.

1, € © (Sn/xn) .
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Since x, — x, we get

log &)?7 K f 0= e (v)
+ w (F(Q—FZ)‘fl (log;) v dv

o-1
. f (logf) v (V)dv)
I'(0) Ju v v
for some ¢ € S ;..

Step 4. Suppose M C U, M c conv ({0} U Q (M)), and M = C for some countable set C ¢ M. Using
an estimation of type (3.5), we see that Q(M) is equicontinuous. Then from M c conv ({0} U Q (M)),
we deduce that M is equicontinuous, too. In order to apply the Arzela-Ascoli theorem, it remains
to show that M(¢) is relatively compact in C(J,R) for each & € J.

Since

C c M c onv ({0} U Q (M)) and Cis countable,

We can find a countable set H = {if, : n > 1} ¢ Q (M) withC C conv ({0} U H).
Then there exist x, € M and ¢, € S, such that

0-2 ” ¢ otz=1 o (v
+ (logj) (r(g+z)f1 (1og§)+ (PV( v

_ﬁ f; (]og S)g_l QOnV(V) dv).

From, M c C c cono ({0} U H) and the properties of the measure of noncompactness, we have

a(M (&) <a(C(&)<a(H (&) =a((i, (£): n21}).

By using Theorem 2.1 and inequality (3.4), we obtain

an@msﬁaﬁéqmgglw D
+<1og|j|)‘(r QK ({( 0+zl V)})dv
[l =2

Since ¢, (v) € IT1 (v, x (v)) and x,, € M, (H3) ensures

4%% “q””D<—mg " (p (v M(v))

< (g &) a0
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o{los ) M) < L rog )

Then

S e ) e

g slost) o).

Also, the function ¢ given by ¢ (&) = a (M (&)) belongs to C(], [0,2R]). Consequently, by (H3)
@ =0, thatisa (M (&)) forall & € ].
Then, by the Ascoli-Arzela theorem, M is relatively compact in C(J,I').

Step 5. Let h € Q (x) with x € U. Since |)( (v)| < z and (H2) holds, we have Q((T() CU.Ifit

was not true, there would exist a function y € U, but ||Q ( )()” p>Z and

i (&) = ﬁ fl 5 (1og§)@_1 @dv

0-2 " £ =1 o (v € e\¢ v
Y R TP T

for some ¢ € Sp7,. On the other hand we have

A< ”Q(X)”P
1 (4 e e )
<mj; (log;) ” dv
(logé)g_2 K ¢ o\ttt |§0 (V)|
R [r(@+z)f1 (10817) .

+ﬁ fj (log S)@‘l |(P 1(/V)|dv)
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<wfp(v)dv.

Dividing both sides by /A and taking the lower limit as /A — oo, we conclude that
C
. . W
Ahi>nm1nf2£ p(v)dv>1

which contradicts (3.3). Hence Q (T() CU.
As a consequence of Steps 1-5 together with Theorem 3.1, we can conclude that # has a fixed point
X € C(J, B) which is a solution of the problem (1.1).

O
Example 3.1. Consider
{ D09 (&) € TT(E,9(8)), E€[l,e] 66
9(1)=0,D19(1) =0, 9(e) =« (I?9) (¢)
Here p = g, xk=0,5R=1,5¢=1,5I1:[1,¢] xR — R where Il (&,9) = [0,%}. Thus,

|7 (&, 9)[| < p(2)
with p (&) = e~¢. Hence, the hypothesis (H2) is satisfied with w ~ 1,72. We can easily show that all

requirements of Theorem 3.2 are verified. Hence, problem (3.6) has at least one solution defined on J.

3.2. Filippov’s Theorem. Now, we present a Filippov’s result for the problem (1.1). Let u €
AC! (], R) be a solution of the following problem

{@@9(5):1)(5),1<5<e,2<953

9 (1) =0, Do-19 (1) =0, (6) =K (IZS) ({;) (3.7)

We will consider the following two assumptions:

(C1) The function IT: ] Xx R — P, (R) is such that

(C11) for all v € R, the map & — I1 (&, v)is measurable,
(Cip) themapo: & —d(n(&),IT(&u(&)))is integrable.
(Cz) There exists a function 6 € L® (], R ) such that

Hy(I1(5,9),11(£,9)) <5(£)[9(&) =9 (&), forall & € [0,1].
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Theorem 3.3. Assume that the conditions (Cq) and (Cy) hold. If
@ loflpr <1,

then the problem (1.1) has at least one solution v satisfying, for a.e. & € [0, 1] the estimates

9() -0 (&)< (&)
where

¢ (&) < 2w (KI6llp +llollz1)

= Tl 7
Proof. Letny = -D*9and vy = 9 (£) for a.e. £ € [1,¢], i.e. Then, by Lemma 2.4

v (&) = %@) flé (log%)g_1 I)OT(V)dV

-2 1< ¢ z— v ¢ e\ %
g [ o) o [ o))

Let Uy : [1,¢] — P(R) given by U; (&) = I1(&,v0(&)) N(y(E),0). The multi-valued map

U, (&) is measurable (see Proposition I11.4 in [7]), so there exists a function & — 1 (&) which is a

measurable selection for U;.
Let

o1 (&) = ﬁ flé (log%)g_l b (dv)

0 -2 K ‘ - v ‘ ) d
+ < gj)@ (r(@+z)f1 (logg)ﬁ 1 015 )dv_ r;wﬁ (IOgS)Q 11’2}&@).

Then, we have

|01 (&) —vo (5)|§vl (&) = i fé( %)
+ (loij) ( - f @+z—1 01(/1/) "

—f—%g)fj(log;)g o E/V)dv)
Scufa(v)dv.

[o1 (£) =20 ()| < wllollys -

So, we obtain

In the same way, the multi-valued map U, (&) = I1(&,v1 (&£)) N (1)1 (&),0(&) |vl (&) —vo (5)’) is
measurable withnonempty closed values (see [7,11]). By Lemma 2.3 (Kuratowski-Ryll-Nardzewski

selection theorem), there exists a function 1, which is a mesurable selection of U».
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Let the function

vy (&) = ﬁ ﬁg (log%)@_1 1)27(1/)611/
a

og&)?2 K ¢ = % eI~ %
T (g [ s ) 2 s [ o) )

Then
|vz(€)—vl(€)|ﬁﬁ fl g(logi)g_lp Ve ) . )=
*OO%?Q_Z[I*(@Kﬂ) f [(logg)ﬂlé ) ; )~
b (o) o 00<V>|dv).
Hence

< -16(v)|lv —vo (v
02 () o1 (~£>|£Lf1 (10g§)@ er ) =m0,

I' (o) v v
+<1o%£|>@-2( (@K+z> fg(log g)@ma V) [lor () : w0 ()
Y f (logv)glé O " UO(V)“”]

02 (€) =01 (£)] < @ 181l - llolly (3.8)

As above, the multi-valued map U3 (&) = I1(&,v2 (&)) N (1)2 (&),0(&) |vz (&) -1 (£)|) is measur-

able, so there exists a measurable selection 13 of Usz. Consider the function

-2 1< £ z— Y e e\o- v
A g [ ot o [ o))

15 et p ) e (v) o ()]
|U3 (cf) — 02 (cf)| < mﬁ (log ;) v dv

(log 5)@_2 K ¢ ANGE (Y ”02 -1 (V)H
T Ta [r(@+z)f (k’gi) ” d”

03 (&) =02 (&)] < @ 1617 -llolly (3.9)

Then
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Repeating the process forn =1,2,3, ..., we get

[0 (&) = vt ()] < @ IS - ol - (3.10)

By induction, assume that (3.9) holds for some n and check (3.10) for n 4 1. The multi-valued map

Upiq (&) =T1(& 0, (E))N (nn (&),0(&) |vn (&) —vp (E)D Since U,,+1 is a nonempty measurable
set, there exists a measurable selection 1,1 (&) € U,,+1 (&) which allows us to define for n € N

We consider

1 & o-1 "
Vi1 (E)Z—ﬁ (logé) I)+(V)dv

I' (o) v
(log&)?™? K ! O Y4 (v) 1 e\ vugr (v)
+ (@) (F<Q+Z)£ (logl—/) v V_F(Q)f(log;) v dv).
Then
| £\ 00 [on ) =01 )]
|vn+1 (&) — vy (£)| < o € éf (log ;) ” v
(log £)e? K ¢ £\er=1 o (v) ”Un (V) —vn (V)”
Lo [r (0+2) fl (10817) v dv

+ﬁ f (log S)@—l o (v) ||vn (vi— V-1 (V)”dv]

[ons1 (£) = 0a (&) < @™ 1SN |01 (v) =00 (v)]].-

Since w||6ll;1 < 1, we deduce that {v,} is a Cauchy sequence in C (J,R) converging uniformly to
some v € C (J,R). From the definition of U,,, n € N,

|91 (&) =00 ()] <6 (&) [on (&) =01 (£)], forae, &€ [1,e]. (3.11)

Hence, foralmostevery & € [1,¢], thesequence {1, (&) : n € N}isCauchyin[R, then{y, (£) : n € N}
converges almost everywhere to a measurable function {y (.)} in R.

Moreover, since no = D9 and by using (3.11), we obtain
Il)n (CE) — 1o (CE)| < |1)n (5) —Du-1 (5>| + |1)n—1 <<E) — Dp-2 <€)| + ...
1 (&) =0 (&)

n—

<Y 6(8) [or (&) = vrca ()] + |01 (&) = o (&)]

1

—_

»
Il

<5(&) ) @t Il oll +0 (&)
k=1

6 (&)

< 77
T 1-wll6llp
=Ko (&) +0(8)

ol + o (&)
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where K = W llol.
Then, for all n € IN
|9 (£) =0 (&) < K5 (&) + 0 (&). (3.12)

By (3.12), we deduce that 1, converges to 1y € L' ([0.1], R). Consequently,

v (&) = ﬁ fé (log%)g_1 #dv
(lo

1
2 K ¢ “y(v ¢ 1y (v
S s ) 2 [ 2

is a solution for the problem (1.1). Then, v € S 5.

Finally, we prove that the solution v(¢&) verifies the estimate:

3(6) =0 (&) <@ (5), EeLe].

1 ﬁg (10g é)Q_l o) ) v) dv

v 1%

K ) ff(logﬁ)““ () -v()
I'(o+2) v

(log &) ( Lo pyet=1 o (v) =y (v)]
LETOY (r(g+z)f1(1°g§) T

+% f (log E)@—l |1)0 (v) -y (V)|dv)
I'(o) J1 v %

< 15 0087 [ (b0 () =0, )]+ (1) =0, (1))
(logg)g_z z K ¢
e (0g ) (s [ (o) =9 W]+ b6 =, ) v

As n —> o0, we conclude that

|9(8) v ()] < Za)f (Ko (v) +0 (v)) dv.

1
< 2" (K|I8]l;1 + lloll;1) -
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