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Abstract. Dengue virus transmitted by mosquitoes, poses a significant global health threat, affecting millions of people

annually. In this paper, we explore the dynamics of a dengue virus transmission model, structured as an epidemiological

mathematical framework. The model divides the total population into seven compartments: susceptible humans S(t),

exposed humans E(t), infected humans I(t), recovered humans R(t), susceptible mosquitoes M(t), exposed mosquitoes

ME(t), and infected mosquitoes MI(t). We employed the Chebyshev polynomial-exponential method (CPEM) and

Tamimi-Ansari method (TAM) to conduct an in-depth semi-analytical examination of this model. The numerical

simulation using MATLAB® ode45 solver was used to compare the results with CPEM and TAM, validating the accuracy

and effectiveness of the obtained solutions. The comparison shows no significant differences between the CPEM with

numerical results, which leads to a interesting findings. Additionally, by varying the sensitive parameters, we analyzed

the behavior of the different compartments within the model. This investigation provides valuable insights into the

responses of dengue transmission under various conditions, demonstrating the potential of novel semi-analytical

methods for studying epidemiological models of infectious diseases, which is highly beneficial for researchers in the

field.

1. Introduction

The dengue virus is a mosquito-borne infection spread mostly by Aedes aegypti and Aedes

albopictus mosquitoes. It causes dengue fever, an illness that leads to high fever, severe headaches,

eye pain, joint and muscle aches, rashes, and mild bleeding. In extreme cases, the condition can

escalate to dengue hemorrhagic fever or shock syndrome, which can be fatal. There is no specific
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antiviral therapy for dengue; therefore, prevention focuses on controlling mosquito populations

and avoiding bites, while supportive care can significantly improve recovery [1–4].

[5] presents a mathematical model for dengue fever transmission dynamics that includes a

treatment function, analyzes the existence and stability of equilibria, demonstrates the possibility

of backward bifurcation, and uses real data from six Indian states to estimate the key parameter

corresponding to disease transmission. [6] describes an epidemiological model for dengue illness

and conducts a sensitivity analysis to establish the relative impact of model parameters in disease

transmission, as measured by the basic reproduction number R0. [7] presents a mathematical model

for the transmission of dengue fever in Medan, Indonesia, based on the SEIR (Susceptible-Exposed-

Infected-Recovered) model, analyzing the stability of the equilibrium points and determining the

disease’s endemic nature. [8] develops a deterministic model for the transmission dynamics of a

strain of dengue illness that permits transmission by exposed people and mosquitos, and then

expands the model to include an incomplete vaccination against the dengue variant. [9] develops

a host-vector SEIR-SEI mathematical model for dengue virus transmission dynamics, examines

the stability of disease-free and endemic equilibrium points, and does a sensitivity analysis to find

the most important model parameters. Recent studies by [10, 11] developed two mathematical

models of dengue viral transmission, including the humoral immune response, and analyzed the

stability of the equilibrium states (virus-free and endemic) using linearization and Lyapunov’s

direct technique.

[12] develops a SEIR-SEI mathematical model for dengue transmission, analyzing the dynamics

of human and mosquito populations, and performs sensitivity analysis to assess the impact of key

parameters on disease spread.

Analytical solutions in epidemiology are vital for understanding infectious disease dynamics

and developing effective intervention strategies. By solving differential equations that model

disease transmission, researchers can obtain explicit expressions for critical metrics such as infec-

tion rates, peak times, and equilibrium states. Various semi-analytical methods, including DTM,

ADM, HPM, LADM, TSM, SAGPM, HOIPM and VIM, have been employed to address complex

mathematical challenges. These solutions aid in predicting disease spread, assessing the impact of

control measures, such as vaccination and quarantine, and optimizing resource allocation during

outbreaks [13–23]. Over time, a variety of semi-analytical methods have been developed, with

the Tamimi-Ansari method (TAM) being particularly notable for its efficiency in accurately solv-

ing complex differential equations. This method is recognized as a powerful tool for deriving

approximate solutions for various mathematical models and systems [24–28].

Another noteworthy advancement is the innovative Chebyshev polynomial-exponential method

(CPEM). Numerous combinations of semi-analytical methods have been developed to tackle initial

value problems (IVPs), and it is crucial for these methods to demonstrate consistency, stability, zero

stability, and convergence in order to effectively handle the non-linearity inherent in such mod-

els. [29] introduced CPEM as a solution approach for linear physical models in IVPs, utilizing the
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first, second, third and fourth Chebyshev polynomials of the first kind combined with exponential

functions that outperforms PJM [30].

The primary goal of this paper is to address a system of nonlinear differential equations within

a dengue virus model utilizing both the Chebyshev polynomial-exponential method (CPEM) and

the Tamimi-Ansari method (TAM). The structure of the paper is organized as follows: Section 2

presents the mathematical model of the dengue virus, while Section 3 details the application of

CPEM to solve the dengue model. Section 4 outlines the methodology and solution of the dengue

model using TAM. In Section 5, we provide the numerical solutions along with error estimates for

the model, followed by a discussion of the results in Section 6. Finally, Section 7 concludes the

paper.

2. MathematicalModeling of Dengue Virus Transmission

In this section, we consider the dengue virus transmission model developed by N. Harshit and

P. Harjule [12]. The human population is divided into four compartments: S represents those who

are susceptible to the dengue virus, E includes individuals who have been exposed to the virus

but are not yet infected, I denotes those who are currently infected, and R represents individuals

who have recovered from the disease. Similarly, the mosquito population is categorized into three

compartments: M represents susceptible mosquitoes, EM includes exposed mosquitoes, and IM

refers to the infectious mosquito population. Equation (2.1) represents the SEIRMEMIM model,

which incorporates the dynamics of both human and mosquito populations.

dS
dt

= Ω − ζSI −κS

dE
dt

= ζSI − (σ+κ)E

dI
dt

= σE− (ς+κ)I − χI

dR
dt

= (ς+κ)I −κR + χI

dM
dt

= Υ − ρM− ξMI

dEM

dt
= ξMI − %EM − ηEMI

dIM

dt
= %EM −ϕIM − ηIMI

(2.1)

The parameter Ω symbolizes the birth rate of the human population, ζ indicating the transmission

rate from susceptible to infected human individuals. Human mortality is denoted by κ and σ

describes the speed at which exposed individuals become infected. The recovery rate is represented

by ς, while χ indicates the likelihood of death among those infected by the virus. Within the

mosquito population, Υ signifies the birth rate, and ρ represents the death rate. ξ describes the

rate at which mosquitoes become infected by humans, while % reflects how exposed mosquitoes

become infectious. The death rate of mosquitoes due to the virus is denoted by ϕ, and η reflects
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the rate at which mosquitoes transmit the virus to humans. The dengue virus transmission model

parameters and their values are listed in Table 1.

Table 1. Parameters and their numerical values [12]

Parameter Value

Ω 0.0171

Υ 0.033

ζ 0.25

ρ 0.1299

σ 0.5

ξ 0.375

ς 0.2081

% 0.5

χ 0.001493

ϕ 0.245

κ 0.01666

η 0.25

3. Chebyshev Polynomial-ExponentialMethod (CPEM)

In this section, we solve the dengue transmission model using a novel approach. We utilize a

combination of Chebyshev polynomials of the first kind along with an exponential function [29],

represented in the following form:

G(τ) = β0 + β1τ+ β2(2τ2
− 1) + β3(4τ3

− 3τ) + β4e−2τ (3.1)

Assuming that ωn serves as the numerical approximation to the theoretical solution ω(τ) and that

Gn = G(τn,ωn), we define the mesh points as follows:

τn+1 − τn = h for n = 0, 1, 2, 3, . . . (3.2)

Setting τ = τn and τ = τn+1 in (3.1):

G(τn) = β0 + β1τn + β2(2τ2
n − 1) + β3(4τ3

n − 3τn) + β4e−2τn (3.3)

and

G(τn+1) = β0 + β1τn+1 + β2(2τ2
n+1 − 1) + β3(4τ3

n+1 − 3τn+1) + β4e−2τn+1 (3.4)

The derivatives correspond to gn, g′n, g′′n , and g′′′n as follows: G′(τn) = gn, G′′(τn) = g′n, G′′′(τn) =

g′′n , and G(4)(τn) = g′′′n . By differentiating G(τ) and determining the constants, we arrive at the
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following results:

β1 = gn − nhg′n +
(
(nh)2

2
+

1
8

)
g′′n +

(
(nh)2

4
+

nh
4

+
3
16

)
g′′′n ,

β2 =
4g′n − 4nhg′′n − 2nhg′′′n − g′′′n

16
,

β3 =
2g′′n + g′′′n

48
,

β4 =
g′′′n

16e2τn
.

(3.5)

The undetermined coefficients β1, β2, β3, and β4 are defined in equation (3.5). According to this

definition, the mesh points τn and τn+1 are represented as τn = τ0 + nh and τn+1 = τ0 + (n + 1)h.

Let τ0 = 0, we obtain:

τn = nh, τn+1 = (n + 1)h

Thus,

τn+1 − τn = (n + 1)h− nh = h (3.6)

τ2
n+1 − τ

2
n = ((n + 1)h)2

− (nh)2 = h2(2n + 1) (3.7)

τ3
n+1 − τ

3
n = ((n + 1)h)3

− (nh)3 = h3(3n2 + 3n + 1) (3.8)

Subtracting (3.4) from (3.3), we obtain:

G(τn+1)−G(τn) = β1(τn+1−τn)+β2(2τ2
n+1−2τ2

n)+β3(4τ3
n+1−4τ3

n−3τn+1 + 3τn)+β4

(
e−2τn+1 − e−2τn

)
(3.9)

Substituting (3.6), (3.7), and (3.8) into (3.9), we get:

=⇒ β1h + 2β2h2(2n + 1) + β34h3(3n2 + 3n + 1) − 3h + β4h
(
e−2(n+1)h

− e−2nh
)

(3.10)

From (3.5) with τn = nh, we have:

β4 =
g′′′n

16e−2nh

β3 =
2g′′n + g′′′n

48

β2 =
4g′n − 4nhg′′n − 2nhg′′′n − g′′′n

16

β1 = gn − nhg′n +
(
(nh)2

2
+

1
8

)
g′′n +

(
(nh)2

4
+

nh
4

+
3
16

)
g′′′n

(3.11)

By substituting equation (3.11) and setting G(τn+1) − G(τn) = ωn+1 − ωn, we obtain the CPEM

approach for solving the dengue model can be expressed as:

ωn+1 = ωn + hgn + h2
(
g′n −

g′′′n

8

)
+ h3

(
g′′n
6

+
g′′′n

12

)
+

(
h
8
+

e−2h

16
−

1
16

)
g′′′n (3.12)
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with initial conditions:

ω(τ0) = ω0

The semi-analytical solution for the dengue model (2.1) has been obtained using a novel semi-

analytical method that combines the exponential function with Chebyshev polynomials of the first

kind, whereωi denotes the various compartments in the dengue transmission SEIRMMEMI model.

This method (3.12) demonstrates fourth order accuracy, as evidenced by the local truncation error.

A comprehensive comparative analysis was performed to assess the performance of the CPEM

(3.12) in linear physical models [29]. The results demonstrate that the CPEM is more efficient,

necessitating less computational time and fewer gradient evaluations per iteration. However, the

accuracy of this method has yet to be evaluated with nonlinear physical models and real-world

applications. Therefore, this paper examines its accuracy and efficiency in the context of dengue

virus transmission.

4. Tamimi-AnsariMethod (TAM)

4.1. TAM Methodology. Consider the following nonlinear differential equation [27]:

L(W) + N(W) + f = 0, (4.1)

with the initial condition

W(0) = m, (4.2)

where L is a linear operator, N represents a nonlinear operator, f is a known function, and W is

the unknown function.

Let W0 be the initial approximation, determined by solving the initial problem:

L(W0) + f = 0 and W0 = m, (4.3)

The subsequent approximate solution is obtained by solving the following equation:

L(W1) + f + N(W0) = 0 with W1 = m, (4.4)

This leads to a straightforward iterative procedure for solving a series of nonlinear problems:

L(Wn+1) + f + N(Wn) = 0 with Wn = m, (4.5)

Here, Wn serves as an approximate solution to (4.5), and the overall solution to the problem is

expressed as [26, 28]:

W = lim
n→∞

Wn. (4.6)
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4.2. Semi-analytical solution using TAM. To solve the dengue transmission model using the

Tamimi-Ansari method (TAM), we start by defining the model equations in terms of the linear

and nonlinear operators, as well as the corresponding functions. First, consider the nonlinear

differential equation provided in Equation (4.1), subject to the initial condition in Equation (4.2).

The method begins by identifying an initial approximation W0, which is found by solving the

linearized problem in Equation (4.3). This serves as the foundation for the iterative process,

where subsequent approximations are determined by solving Equation (4.4). Next, we apply

this approach to our model, which is designed to capture the dynamics of dengue transmission.

The dengue virus model (2.1) is composed of several compartments representing the human and

mosquito populations, each governed by a specific differential equation.

We define the linear operators for each compartment in the model as follows:

L1(S(t)) =
dS(t)

dt

L2(E(t)) =
dE(t)

dt

L3(I(t)) =
dI(t)

dt

L4(R(t)) =
dR(t)

dt

L5(M(t)) =
dM(t)

dt

L6(EM(t)) =
dEM(t)

dt

L7(IM(t)) =
dIM(t)

dt

(4.7)

The nonlinear interactions in the model are represented by the following operators:

N1(S(t)) = −ζS(t)I(t) −κS(t)

N2(E(t)) = ζS(t)I(t) − (σ+κ)E(t)

N3(I(t)) = σE(t) − (ς+κ)I(t) − χI(t)

N4(R(t)) = (ς+κ)I(t) −κR(t) + χI(t)

N5(M(t)) = −ρM(t) − ξM(t)I(t)

N6(EM(t)) = ξM(t)I(t) − %EM(t) − ηEM(t)I(t)

N7(IM(t)) = %EM(t) −ϕIM(t) − ηIM(t)I(t)

(4.8)

The functions associated with each compartment are defined as:

f1(t) = Ω

f2(t) = 0

f3(t) = 0

(4.9)
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f4(t) = 0

f5(t) = Υ

f6(t) = 0

f7(t) = 0

By iteratively applying the TAM approach, we can progressively refine the solution for each com-

partment of the dengue virus transmission model, leading to a more accurate representation of the

dynamics involved in the spread of the virus within both human and mosquito populations. The fi-

nal solution to the problem in Equation (4.6) is given by the limit of the sequence of approximations

as n approaches infinity, as shown in Equation (4.10).

L1(Sn+1(t)) + N1(Sn(t)) + f1(t) = 0, Sn+1(0) = m1

L2(En+1(t)) + N2(En(t)) + f2(t) = 0, En+1(0) = m2

L3(In+1(t)) + N3(In(t)) + f3(t) = 0, In+1(0) = m3

L4(Rn+1(t)) + N4(Rn(t)) + f4(t) = 0, Rn+1(0) = m4

L5(Mn+1(t)) + N5(Mn(t)) + f5(t) = 0, Mn+1(0) = m5

L6(EM(n+1)(t)) + N6(EMn(t)) + f6(t) = 0, EM(n+1)(0) = m6

L7(IM(n+1)(t)) + N7(IMn(t)) + f7(t) = 0, IM(n+1)(0) = m7

(4.10)

The initial problem for each variable must be solved to get the initial approximation, and by

integrating, we get:
S0(t) = m1 + Ωt

E0(t) = m2

I0(t) = m3

R0(t) = m4

M0(t) = m5 + Υt

EM0(t) = m6

IM0(t) = m7

(4.11)

In the first step, solve the following problem:

S′1(t) = N1(S0(t)), S1(0) = m1

E′1(t) = N2(E0(t)), E1(0) = m2

I′1(t) = N3(I0(t)), I1(0) = m3

R′1(t) = N4(R0(t)), R1(0) = m4

M′1(t) = N5(M0(t)), M1(0) = m5

E′M1(t) = N6(EM0(t)), EM1(0) = m6

I′M1(t) = N7(IM0(t)), IM1(0) = m7

(4.12)
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This solution represents the first iteration of the model: S1(t), E1(t), I1(t), R1(t), M1(t), EM1(t), and

IM1(t). Similarly, we solve the following problem:

S′2(t) = N1(S1(t)), S2(0) = m1

E′2(t) = N2(E1(t)), E2(0) = m2

I′2(t) = N3(I1(t)), I2(0) = m3

R′2(t) = N4(R1(t)), R2(0) = m4

M′2(t) = N5(M1(t)), M2(0) = m5

E′M2(t) = N6(EM1(t)), EM2(0) = m6

I′M2(t) = N7(IM1(t)), IM2(0) = m7

(4.13)

This solution represents the second iteration of the model: S2(t), E2(t), I2(t), R2(t), M2(t), EM2(t),
and IM2(t). This process continues to obtain the approximations at n → ∞ for Sn(t), En(t), In(t),
Rn(t), Mn(t), EMn(t), and IMn(t).
Thus, the semi-analytical solution for the dengue virus transmission model (2.1) using the Tamimi-

Ansari method (TAM) is obtained as follows:

S(t) = 10− 5.14950t + 0.02090283500t2
− 0.1740987485t3 + 0.1794810978t4

− 0.02420660426t5
− 0.01397161503t6

− 0.00001914226826t7
− 6.439281423× 10−9t8 . . .

(4.14)

E(t) = 3 + 3.45002t− 0.8692511666t2 + 0.3236851040t3
− 0.1231058406t4

+ 0.02423552455t5 + 0.01397161503t6 + 0.00001914226826t7 + 6.439281423× 10−9t8 . . .
(4.15)

I(t) = 2 + 1.047494t + 0.7440056700t2
− 0.2009863661t3 + 0.05182908005t4

− 0.009757880322t5 + 0.002020717596t6 + 0.0009979725020t7 + 1.196391766× 10−6t8

+ 3.577378569× 10−10t9 . . .

(4.16)

R(t) = 1 + 0.435846t + 0.1148687328t2 + 0.05547326729t3
− 0.01159948821t4

− 0.002552838023t5
− 1.090550074× 10−6t6 . . .

(4.17)

M(t) = 5− 4.3665t + 0.9390160500t2
− 0.1686816323t3 + 0.08531374807t4

− 0.09766629570t5
− 0.02691906061t6

− 0.00007881179105t7
− 4.761746066× 10−8t8 . . .

(4.18)

EM(t) = 2 + 1.750t− 3.667285375t2
− 0.1081185410t3

− 0.07952868529t4

+ 0.1823356616t5 + 0.05280600143t6 + 0.0001330439770t7 + 7.531534960× 10−8t8 . . .
(4.19)
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IM(t) = 1 + 0.255t + 1.149075750t2
− 0.3207818229t3

− 0.1260229600t4

− 0.006946361196t5 + 0.0006198227896t6 + 5.139350928× 10−7t7 . . .
(4.20)

5. Numerical Simulation

In this section, we numerically solve the dengue virus transmission model using CPEM and

TAM. A numerical simulation of the system of Equations (2.1) was developed using the ode45 solver.

In this analysis, we assumed the initial human populations of 10 individuals in the susceptible

human class, 3 in the exposed human class, 2 in the infected human class, and 1 in the recovered

human class. For the mosquito population, we assumed 5 individuals in the susceptible mosquito

class, 2 in the exposed mosquito class, and 1 in the infected mosquito class. This establishes the

initial conditions of the system (2.1) as S(0) = 10, E(0) = 3, I(0) = 2, R(0) = 1, M(0) = 5,

ME(0) = 2, and MI(0) = 1. Solutions for the susceptible human S(t), exposed human E(t),
infected human I(t), recovered human R(t), susceptible mosquitoes M(t), exposed mosquitoes

ME(t), and infected mosquitoes MI(t) compartments are calculated at specific time points: t = 0,

0.01, 0.04, 0.08, 0.1, 0.4, 0.7 and 1.

5.1. Numerical solution by CPEM. Table 2 presents the numerical values obtained using the

Chebyshev polynomial-exponential method (3.12).

Table 2. Numerical values of (2.1) using CPEM

t S(t) E(t) I(t) R(t) M(t) EM(t) IM(t)

0.00 10.00000 3.00000 2.00000 1.00000 5.00000 2.00000 1.00000

0.01 9.94851 3.03442 2.01055 1.00437 4.95643 2.01732 1.00257

0.04 9.79404 3.13664 2.04307 1.01762 4.82682 2.06717 1.01051

0.08 9.58809 3.27061 2.08845 1.03563 4.65660 2.12877 1.02153

0.10 9.48511 3.33662 2.11198 1.04479 4.57258 2.15752 1.02719

0.40 7.94123 4.25220 2.52606 1.19598 3.39986 2.43485 1.11087

0.70 6.42208 5.01998 3.03518 1.37783 2.40161 2.44892 1.15922

1.00 4.98670 5.60594 3.60941 1.59563 1.59822 2.24350 1.14087

5.2. Numerical solution by TAM. Table 3 presents the numerical values obtained using the

Tamimi-Ansari method (4.14)-(4.20).
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Table 3. Numerical values of (2.1) using TAM

t S(t) E(t) I(t) R(t) M(t) EM(t) IM(t)

0.00 10.00000 3.00000 2.00000 1.00000 5.00000 2.00000 1.00000

0.01 9.94851 3.03441 2.01055 1.00437 4.95643 2.01713 1.00266

0.04 9.79404 3.13663 2.04308 1.01762 4.82683 2.06413 1.01202

0.08 9.58809 3.27060 2.08846 1.03563 4.65661 2.11647 1.02758

0.10 9.48510 3.33662 2.11199 1.04479 4.57258 2.13821 1.03666

0.40 7.93669 4.25880 2.52641 1.19594 3.39392 2.10636 1.26203

0.70 6.38326 5.07627 3.03999 1.37719 2.34661 1.40872 1.60017

1.00 4.83859 5.81957 3.63560 1.59203 1.36448 0.13034 1.95094

5.3. Numerical solution by ode45 solver. Table 4 presents the numerical values obtained using

the ode45 solver, the simulations were performed using MATLAB®.

Table 4. Numerical values of (2.1) using ode45 solver

t S(t) E(t) I(t) R(t) M(t) EM(t) IM(t)

0.00 10.00000 3.00000 2.00000 1.00000 5.00000 2.00000 1.00000

0.01 9.94851 3.03441 2.01056 1.00437 4.95644 2.01730 1.00257

0.04 9.79404 3.13661 2.04310 1.01762 4.82686 2.06711 1.01052

0.08 9.58810 3.27050 2.08854 1.03565 4.65672 2.12856 1.02155

0.10 9.48512 3.33643 2.11213 1.04481 4.57278 2.15716 1.02721

0.40 7.94126 4.25210 2.52611 1.19599 3.39996 2.43471 1.11086

0.70 6.42213 5.01982 3.03525 1.37787 2.40179 2.44873 1.15916

1.00 4.98687 5.60563 3.60949 1.59570 1.59851 2.24329 1.14075

5.4. Error estimation. In this subsection, we will analyze the error percentages of CPEM and TAM

by comparing them with results from the ode45 solver for validation purposes. Since the dengue

virus transmission model in Equation (2.1) does not have an exact solution, the ode45 solver

is employed as a benchmark to estimate the errors in the numerical solutions. The difference

between the two sets of results is evaluated using the following error estimation formula:

Error estimation % =

∣∣∣∣∣Num− SA
Num

∣∣∣∣∣× 100 (5.1)

In this context, Num refers to the results obtained from the ode45 solver, while SA corresponds to

the outcomes from the semi-analytical methods CPEM (3.12) and TAM (4.14)-(4.20). This formula

is utilized to estimate the errors based on the data presented in Tables 5 and 6.
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Table 5. Error estimation values of the CPEM (3.12)

t S(t) E(t) I(t) R(t) M(t) EM(t) IM(t)

0.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.01 0.000000 0.000330 0.000497 0.000000 0.000202 0.000991 0.000000

0.04 0.000000 0.000956 0.001468 0.000000 0.000829 0.002903 0.000990

0.08 0.000104 0.003363 0.004309 0.001931 0.002577 0.009866 0.001958

0.10 0.000105 0.005695 0.007102 0.001914 0.004374 0.016689 0.001947

0.40 0.000378 0.002351 0.001979 0.000836 0.002941 0.005750 0.000900

0.70 0.000779 0.003188 0.002306 0.002903 0.007494 0.007759 0.005176

1.00 0.003409 0.005530 0.002216 0.004387 0.018142 0.009361 0.010519

Average 0.000597 0.002676 0.002484 0.001392 0.004202 0.005695 0.002573

Table 6. Error estimation values of the TAM (4.14)-(4.20)

t S(t) E(t) I(t) R(t) M(t) EM(t) IM(t)

0.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.01 0.000000 0.000000 0.000497 0.000000 0.000202 0.008427 0.008977

0.04 0.000000 0.000638 0.000979 0.000000 0.000622 0.144163 0.148438

0.08 0.000104 0.003058 0.003830 0.001931 0.002362 0.567990 0.590279

0.10 0.000211 0.005695 0.006628 0.001914 0.004374 0.878470 0.919968

0.40 0.057548 0.157569 0.011876 0.004181 0.177649 13.486206 13.608375

0.70 0.605251 1.124542 0.156165 0.049352 2.297453 42.471404 38.045654

1.00 2.973408 3.816520 0.723371 0.229993 14.640509 94.189784 71.022573

Average 0.454564 0.622985 0.093273 0.035921 2.139849 17.282602 13.841989

6. Discussion of Results

The individual populations S, E, I, R, M, ME, and MI in the dengue virus transmission model (2.1)

were determined by solving the system of equations using the Chebyshev polynomial-exponential

method (CPEM) and Tamimi-Ansari method (TAM). The parameter values listed in Table 1 and

assumed initial conditions were used in the analysis, and Tables 2 and 3 gives the numerical values

of our semi-analytical expressions for concentrations S, E, I, R, M, ME, and MI. Using ode45 solver,

a comparison of the CPEM and TAM with numerical simulation (Table 4) was performed. Table 5

provides the error estimates for CPEM, showing that the overall error is less than 0.006%. Similarly,

Table 6 presents the error estimates for TAM, where the overall error remains below 18%. The

tables clearly show that CPEM consistently provides a more accurate approximation, even within
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a limited time interval.

Figure 1 presents the combined effects of varying the transmission rate ζ on both the susceptible

and exposed human populations. Increasing the transmission rate ζ results in a decrease in the

susceptible human population, and rise in the exposed human population, indicating that the

disease transmission impacts cause individuals to move to the exposed class. Figure 2 shows the

combined effects of varying the infection rate σ on the exposed and infected human populations.

This indicates that the spread of dengue disease accelerates as the infection rate increases. Figure

3 illustrates the combined effects of varying the rate χ of infectious people dying due to dengue

on both the infected and recovered human populations. Figure 4 depicts the combined effects of

varying the recovery rate ς on the infected and recovered human populations. This indicates that

dengue transmission slows down as early vaccination or effective treatment leads to an increase

in the recovery rate, helping the population recover through measures such as vaccines and other

interventions. Figure 5 shows the combined effects of varying the transmission rate η of the

virus from mosquitoes to humans on the populations of exposed and infected mosquitoes. This

indicates that an increase in η leads to a rise in both EM and IM classes. Finally, Figure 6 illustrates

the overall dynamics of the dengue virus transmission model (2.1) as determined by the newly

proposed CPEM (3.12). These figures enable us to analyze the model’s behavior and suggest

potential preventive measures for controlling the transmission of the dengue virus.

Figure 1. Combined effects of varying transmission rate ζ on susceptible and ex-

posed human populations
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Figure 2. Combined effects of varying rate of exposed people becoming infected σ

on exposed and infected human populations

Figure 3. Combined effects of varying rate of infectious people dying due to dengue

virus χ on infected and recovered human populations
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Figure 4. Combined effects of varying rate at which infectious people recover from

illness ς on infected and recovered human populations

Figure 5. Combined effects of varying rate at which mosquitoes transmit the virus

to humans η on exposed and infected mosquitoes
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Figure 6. Dengue virus transmission dynamics (2.1) by CPEM (3.12)

7. Conclusion

This paper investigated an system of ordinary differential equation modeling the transmission

of the dengue virus using an epidemiological framework. While traditional approaches such

as Homotopy perturbation, Homotopy analysis, Adomian decomposition, variational iteration

and Taylor series methods are commonly employed to solve epidemiological problems, we in-

troduced a novel methods called the Chebyshev polynomial-exponential method (CPEM) and

Tamimi-Ansari method (TAM) to derive semi-analytical solutions for the dengue transmission

SEIRMMEMI model. TAM efficiently decomposes the original equation into linear, nonlinear, and

functional components, while CPEM solves the system of equations iteratively, facilitating con-

vergence of the solutions. The numerical results are examined across various time intervals and

a comparison of the semi-analytical solutions with numerical simulations (using the ode45 solver)

showed that CPEM exhibited good agreement, whereas TAM was unable to accurately capture

the disease dynamics over time. Numerical values were calculated using both methods to analyze

the model’s behavior and thus, innovative method like CPEM can make significant advantages

in the field of epidemiology. Additionally, we observed that an increase in the transmission rate

over time leads to a increase in the infected human population. In contrast, a higher treatment

rate resulted in a decrease in the infected human population and an increase in the recovered

human population. This paper offers valuable insights into dengue virus transmission dynam-

ics, underscoring the need to lower infection rates by adopting preventive strategies. It stresses

the significance of enhancing public awareness and employing proactive measures to curb the

spread of the disease and promote early diagnosis. Managing dengue virus infections effectively

focuses on providing supportive care to ease symptoms since no specific antiviral treatments exist.
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Furthermore, implementing preventive strategies like mosquito born control and raising public

awareness are vital for lowering transmission rates and reducing the occurrence of the disease.

We conclude that effective measures to reduce contact rates can help control dengue virus trans-

mission, while appropriate recovery strategies implemented by authorities can enhance recovery

rates and mitigate the disease’s impact.
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