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Abstract. In this article, we present a mathematical model for the transmission of HIV with the compartment of

individuals in remission and vertical transmission describing the dynamics of the spread of the HIV/AIDS epidemic in

a community. In the mathematical analysis of the model, we compute the basic reproduction number R0 and study the

existence and stability of the disease-free equilibrium point. We also formulate an appropriate optimal control problem

and study the conditions necessary for disease control to determine the role of preventive measures and treatment

in reducing the spread of HIV/AIDS. Indeed, we study the impact of these control variables taken separately and

combined. So we find that treatment is more cost-effective in reducing the spread of HIV than preventive measures.

Finally, the numerical results conform to the theoretical analysis.

1. Introduction

AIDS (Acquired Immune Deficiency Syndrome) first appeared in the 1980s in the United States

[34]. In 1983, HIV (Human Immunodeficiency Virus), the retrovirus that infects humans and causes

AIDS was identified at the Pastor Institute of Paris [34]. This retrovirus weakens the immune

system, making it vulnerable to multiple opportunistic infections. AIDS is now considered a

pandemic that took away the lives of an estimated 40.4 million [32.9 million - 51.3 million] people

between 1981 and 2022 [1]. For the biology and epidemiology of HIV/AIDS, we refer the reader

to [35], [34], [36] and references cited therein.

Numerous mathematical models have proven their usefulness in describing and understanding

the dynamics of HIV infection: see, for example, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], and the
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references cited therein. In [21], the authors presented the impact of optimal control on HIV/AIDS

treatment and screening of unaware infected individuals on the dynamics of disease transmission.

Their study focuses on a homogeneous population with constant immigration of susceptible

individuals, incorporating the use of condoms, screening of unaware infected individuals, and

treatment of those infected. The authors of [13] examined the mathematical modeling of HIV/AIDS

transmission dynamics with drug resistance compartments. They studied the role of passive

immunity and pharmacotherapy in reducing viral replication and disease transmission.

Karrakchou et al. [14] studied the fundamental role of chemotherapy treatment in controlling viral

reproduction in an HIV patient. Additionally, Adams et al. [15] derived therapeutic strategies

for HIV by formulating and analyzing an optimal control problem using two types of dynamic

treatments representing reverse transcriptase (RT) inhibitors and protease inhibitors (PIs). Finally,

Gul et al. [16] examined the stability of a SIR epidemic model and optimal vaccination. For optimal

control applied to other epidemic models, we refer the reader to [17], [18], [19], [20], as well as

the references cited therein. The authors of [21] also studied the impact of combined strategies

in controlling HIV/AIDS and found that the most cost-effective approach combines all control

strategies. In [22], the authors demonstrated that PrEP significantly reduces HIV transmission.

We based our work on the paper by [22], whose model also considers antiretroviral treatment

for HIV-infected individuals with or without AIDS symptoms, as well as on the article by [23],

whose authors included vertical transmission in their model, to which we added the compartment

for individuals in remission. The addition of the remission compartment also takes into account

current developments in the fight against HIV/AIDS. Indeed, according to the UNAIDS 95-95-95

strategy [1], [24], individuals who normally adhere to antiretroviral treatment until their viral load

suppression do not transmit HIV to their sexual partners. The aim is to show that a mathematical

model including vertical transmission and individuals in remission accurately reflects reality, both

from a biological perspective and in terms of progress in the fight against HIV/AIDS. This could

reduce disease spread if treatment is closely monitored and vertical transmission is controlled. The

current availability of antiretroviral medications, combined with the possibility of preventing HIV

infection through preventive measures, motivates our choice of two control variables: preventive

measures (such as condom use, screening, awareness, abstinence, sexual partner fidelity, etc.) and

antiretroviral treatment.

The paper is organized as follows: The model is formulated in Section 2. In Section 3, we address

the mathematical analysis of the model. Section 4 presents a numerical simulation to demonstrate

the consistency between the theoretical results of the analysis and the numerical results. Section 5

presents the study of optimal control analysis and its numerical solutions. Finally, the conclusion

is given in Section 6.

2. Model formulation

In this section, we propose a compartmental SIAHR model to describe the transmission dynam-

ics of HIV/AIDS. This model includes the individual remission compartment due to the technical
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advancements in the fight against HIV. Vertical transmission, a significant transmission mode,

especially in developing countries, is also considered in our model. Lambda denotes recruitment

into the population. The introduction of vertical transmission reduces the recruitment in the

population by an amount ΛpI because newborns from this transmission are already infected and

this appears in the compartment of infected individuals without clinical signs of the disease. The

model divides the human population into five mutually exclusive compartments: the susceptible

compartment S, the compartment of infected individuals without clinical signs I, the compartment

of individuals with AIDS A, the compartment of individuals under antiretroviral treatment H, and

the compartment of individuals with suppressed viral load, i.e., the remission compartment R.

The movement between the different compartments occurs as follows: in S, a susceptible indi-

vidual becomes infected after adequate contact with an infected individual. An individual in

the I class can undergo antiretroviral treatment and move to the H class, or they may ignore the

treatment and naturally progress to the A compartment. In the A class, an individual undergoing

treatment can also move to the H class. Individuals in the H class can enter the R compartment if

they adhere properly to the treatment or shift to the A compartment if they neglect it. The variables

and parameters of the model are summarized in the following tables:

Table 1: Variables used in the model
Variables Descriptions

S Individuals susceptible to disease

I HIV-infected individuals without clinical signs

A HIV-infected individuals with clinical signs

H HIV-infected individuals on treatment

R Individuals in remission, i.e those who are on treatment and whose viral load is suppressed

N Total population N = S + I + A + H + R

Table 2: Parameters used in the model
Parameters Meaning

Λ Recruitment of the population

η Infectivity of AIDS patients compared to infected individuals without clinical symptoms of

the disease

α HIV/AIDS transmission rate

β1 Rate of transfer from the compartment of infected individuals without clinical signs to the

AIDS compartment

β2 rate of transfer from the AIDS class to the compartment of individuals on treatment

λ rate of transfer of individuals on treatment to the AIDS class

p probability of HIV-positive newborns through vertical transmission

ε probability of infected individuals without clinical signs progressing to the AIDS phase

ρ Probability of individuals who have failed their treatment and move up to the AIDS class

µ0 Natural mortality rate

µ1 HIV-induced mortality rate
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Susceptible individuals contract HIV infection following effective contact with infected persons,

at a rate K defined by:

K =
α(I + ηA)

N
where α is the effective contact rate for HIV transmission, and η is the modification parameter

η ≥ 1 that accounts for the relative infectivity of individuals with AIDS symptoms compared to

those infected without symptoms of the disease.

We make the following assumptions:

(H1): The total recruitment into the population is Λ −ΛpI;
(H2): Vertical transmission of HIV can occur when the mother is infected and not undergoing

treatment, with a proportion ΛpI;
(H3): The probabilities p, ε, and ρ; the parameters Λ, α, β1, β2, λ, ν, µ0, and µ1 are all non-negative;

(H4): Individuals infected with HIV only die from the disease when it progresses to the AIDS

phase, at a rate of (µ0 + µ1)A;

(H5): We base our model on the achievement of the 95-95-95 targets for testing, treatment, and

viral load suppression, which the United Nations committed in June 2021 to reaching by 2030. [24];

(H6): People living with HIV who undergo antiretroviral treatment until viral load suppression do

not transmit the virus to their sexual partners and are categorized in the remission compartment;

(H7): We assume that at least 95% of infected individuals are aware of their serological status;

(H8): Those who do not properly follow their treatment transition to the AIDS phase, as the

appearance of symptoms is an indicative sign;

(H9): All newborns infected with HIV through vertical transmission are in the compartment of

HIV-infected individuals without clinical signs;

(H10): We assume that Λp < β1 + µ0, the rate of vertical transmission is less than the sum of the

rate of progression from the phase of infection without clinical signs to the AIDS phase and the

natural mortality rate. Thus, we have the following diagram:

The system of differential equations describing the HIV model with vertical transmission, while

accounting for the remission compartment, is presented as follows:

dS(t)
dt

= Λ −ΛpI(t) − (K + µ0)S(t);
dI(t)

dt
= KS(t) + ΛpI(t) − εβ1I(t) − (1− ε)β1I(t) − µ0I(t);

dA(t)
dt

= εβ1I(t) − β2A(t) − (µ0 + µ1)A(t) + ρλH(t);
dH(t)

dt
= (1− ε)β1I(t) + β2A(t) − ρλH(t) − (1− ρ)λH(t) − µ0H(t);

dR(t)
dt

= (1− ρ)λH(t) − µ0R(t)

(2.1)

With the following initial conditions:

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, H(0) ≥ 0 et R(0) ≥ 0.

After reducing the model (2.1) and setting k1 = −Λp + β1 + µ0, k2 = β2 + µ0 + µ1 and k3 = λ+ µ0,
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Figure 1. Diagram accounting for vertical and horizontal transmission of HIV

we obtain: 

dS(t)
dt

= Λ −ΛpI(t) − (K(t) + µ0)S(t);
dI(t)

dt
= K(t)S(t) − k1I(t);

dA(t)
dt

= εβ1I(t) − k2A(t) + ρλH(t);
dH(t)

dt
= (1− ε)β1I(t) + β2A(t) − k3H(t);

dR(t)
dt

= (1− ρ)λH(t) − µ0R(t)

(2.2)

With the following initial conditions:

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, H(0) ≥ 0 et R(0) ≥ 0.

3. Mathematical analysis of the model

In this section, we show that the model is well-posed. We calculate the disease-free equilibrium

point and the basic reproduction number R0. Finally, we study the stability of the disease-free

equilibrium point of the model 2.2.

3.1. Invariant region.

Lemma 3.1. the biologically feasible region of the HIV/AIDS model 2.2 given by:

Ω =
{
(S(t), I(t), A(t)H(t), R(t)) ∈ R5

+ : S + I + A + H + R ≤
Λ
µ0

}
,
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is positively invariant and attractive.

Proof: The rate of change of the total population is:
dN(t)

dt
= Λ − µ0N(t) − µ1A(t)

Thus:
dN(t)

dt
+ µ0N(t) ≤ Λ (3.1)

because µ1 > 0 and A(t) ≥ 0.

Let
dN(t)

dt
+ µ0N(t) = 0 the homogeneous equation associated with the differential inequality 3.1

The solution to our homogeneous equation is:N(t) = ke−µ0t, k ∈ R. And for t = 0, we have

N(0) = k
Using the method of variation of constants, we have:

k′(t)e−µ0t
− µ0k(t)e−µ0t + µ0k(t)e−µ0t = Λ =⇒ k′(t)e−µ0t = Λ

k′(t) = Λeµ0t, and after integration, we have: k(t) =
Λ
µ0

eµ0t + C where C is an integration constant

determined by the initial conditions.

Since N(0) = k(0) =
Λ
µ0

then C = N(0) −
Λ
µ0

.

And finally N(t) ≤
( Λ
µ0

eµ0t + N(0) −
Λ
µ0

)
e−µ0t

that is to say N(t) ≤ N(0)e−µ0t +
Λ
µ0

(
1− e−µ0t

)
And by letting t approach +∞, we have: N(t) ≤

Λ
µ0

< ∞.

Consequently, Ω is positively invariant as long as N(t) ≤
Λ
µ0

.

Theorem 3.1. the solutions S(t), I(t), A(t), H(t) and R(t) of the model (2.2) of HIV/AIDS, with non-
negative initial conditions in Ω remain non-negative in Ω for all t ≥ 0.

Before presenting the proof of the theorem 3.1, we will state a technical result that we will use

subsequently.

Lemma 3.2. Let x(t), a(t), and y(t) be three functions of time, if

dx(t)
dt
− a(t)x(t) = y(t) (3.2)

with y(t) ≥ 0, ∀t > 0 and x(0) ≥ 0 then any solution x(t) of (3.2) is positive for all t > 0;

Proof: To demonstrate the positivity of the solutions of (3.2), let us multiply it by:e−(
∫ t

0 a(s)ds) We

then have:

e−(
∫ t

0 a(s)ds)
[dx(t)

dt
− a(t)x(t)

]
= e−(

∫ t
0 a(s)ds)y(t) (3.3)

That is to say
dx(t)

dt
e−(

∫ t
0 a(s)ds)

− a(t)e−(
∫ t

0 a(s)ds)x(t) = e−(
∫ t

0 a(s)ds)y(t)
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Next, we have:
dx(t)

dt
e−(

∫ t
0 a(s)ds) +

d
dt

(
−

∫ t
0 a(s)ds

)
e−

∫ t
0 a(s)dsx(t) = e−

∫ t
0 a(s)dsy(t)

Furthermore, we have:
dx(t)

dt
e−(

∫ t
0 a(s)ds) +

d
dt

(
e−

∫ t
0 a(s)ds

)
x(t) = e−

∫ t
0 a(s)dsy(t)

Thus, we obtain the following:

d
dt

[
e−

∫ t
0 a(s)dsx(t)

]
= e−

∫ t
0 a(s)dsy(t) (3.4)

Integrating equation (3.4) from 0 to t, we have:∫ t
0

d
dt

[
e−

∫ t
0 a(s)dsx(t)

]
=

∫ t
0 e−

∫ t
0 a(u)duy(s)ds

i.e.

e−
∫ t

0 a(s)dsx(t) − x(0) =
∫ t

0
e−

∫ t
0 a(u)duy(s)ds (3.5)

By multiplying (3.5) by: e
∫ t

0 a(s)ds, it follows that:

x(t) = e
∫ t

0 a(s)dsx(0) +
∫ t

0
e−

∫ t
s a(u)duy(s)ds (3.6)

Let A(t) =
∫ t

0 a(s)ds

then equation (3.6) becomes x(t) = eA(t)x(0) +
∫ t

0 eA(t−s)y(s)ds

Or alternatively x(t) = eA(t)
[
x(0) +

∫ t
0 e−A(s)y(s)ds

]
We have thus constructed a positive solution for equation (3.2).

Proof: From the first equation of (2.2), we have:
dS(t)

dt
+ (K(t) + µ0)S(t) = Λ −ΛpI(t) and according to lemma 3.2, we obtain:

S(t) = e
∫ t

0 (K(s)+µ0)ds
[
S(0) +

∫ t

0
e−

∫ t
0 (K(s)+µ0)ds(Λ −ΛpI(s))ds

]
≥ 0.

Similarly, we can demonstrate that the other state variables of the model (2.2) are positive for all

t ≥ 0, that is I(t) ≥ 0, A(t) ≥ 0, H(t) ≥ 0 and R(t) ≥ 0. This concludes the proof.

Based on the above results, it is sufficient to examine the dynamics of HIV/AIDS transmission

represented by the model (2.2) in the biologically feasible region Ω, where the model is considered

mathematically and epidemiologically well-posed.

3.2. Disease-free equilibrium point. Let E0 be the disease-free equilibrium point commonly re-

ferred to as DFE. The following theorem provides the existence and uniqueness of this equilibrium

point.

Theorem 3.2. the system (2.2) has a disease-free equilibrium point given by:

E0 =
( Λ
µ0

, 0, 0, 0, 0
)

(3.7)

Proof: In the absence of HIV, the infectious compartments ( I, A, and H) are empty. This also

means that no individuals will be in remission, i.e., R is also empty. We can then assume, taking
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into account the initial conditions, that

I = A = H = R = 0 (3.8)

By setting all the equations of the system (2.2) equal to zero, we obtain: S =
Λ
µ0

.

Hence, the disease-free equilibrium point is: E0 =
( Λ
µ0

, 0, 0, 0, 0
)
.

3.3. Basic reproduction number R0. The basic reproduction number R0 is defined as the average

number of secondary cases generated by an infectious individual introduced into a completely

susceptible population during their infectious period. If R0 < 1, then HIV will die out in the

population, whereas if R0 > 1, HIV will spread in the population and become endemic. R0 thus

plays a crucial role in the management and control of an epidemic. To calculate R0, we use the

method of Van den Driessche and Watmough [25] through the Next Generation Matrix algorithm

they described. We know that the compartments containing the infected/infectious individuals

are I, A, and H, while those not containing them are S and R. We can rewrite the system (2.2) in

the form:
dx
dt

= F (x) −V(x) (3.9)

where F is the matrix of new infections andV is the transition matrix between the compartments

of the system. Considering the system (2.2), it follows that:

F =



α(I + ηA)S
N

0

0


and V =



k1I

−εβ1I + k2A− ρλH

−(1− ε)β1I − β2A + k3H


The Jacobian matrices of these two matrices at the disease-free equilibrium point E0 are respec-

tively:

F =



α αη 0

0 0 0

0 0 0


and V =



k1 0 0

−εβ1 k2 −ρλ

−(1− ε)β1 −β2 k3


(3.10)

The matrix V is invertible because its determinant detV = k1(k2k3 − β2ρλ) is non-zero.
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V−1 =



1
k1

0 0

εβ1k3 + ρλ(1− ε)β1

k1(k2k3 − β2ρλ)

k3

k2k3 − β2ρλ

ρλ

k2k3 − β2ρλ

εβ1β2 + (1− ε)β1k2

k1(k2k3 − β2ρλ)

−β2

k2k3 − β2ρλ
k2

k2k3 − β2ρλ


(3.11)

The next-generation matrix FV−1 is given by

FV−1 =



α
k1

+
αη(εβ1k3 + ρλ(1− ε)β1)

k1(k2k3 − β2ρλ)

αηk3

k2k3 − β2ρλ

αηρλ

k2k3 − β2ρλ

0 0 0

0 0 0


The basic reproduction number R0 is given by the spectral radius of the next-generation matrix

ρ(FV−1).

R0 =
α
k1

+
α(ηεβ1k3 + ηρλ(1− ε)β1)

k1(k2k3 − β2ρλ)

That is to say:

R0 =
α[k2k3 − β2ρλ+ ηεβ1k3 + ηρλ(1− ε)β1]

k1(k2k3 − β2ρλ)
(3.12)

3.4. Local stability of the disease-free equilibrium point. To conclude the stability of the disease-

free equilibrium point, it is necessary to establish a relationship between the model parameters

in (2.2), which leads to determining a threshold under the condition that the eigenvalues of the

Jacobian matrix have negative real parts. For this, we use the characteristic polynomial and the

Routh-Hurwitz stability conditions. The stability of the disease-free equilibrium is governed by

the basic reproduction number R0.

Theorem 3.3. The disease-free equilibrium point E0 is locally and asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof: The Jacobian matrix J for the model (2.2) is expressed as:

J =



−
α(I(t) + ηA(t))(N − S)

N2 − µ0 −ΛP−
αS(N − (I(t) + ηA(t)))

N2 −
αηS(N − (I(t) + ηA(t)))

N2 0 0
α(I(t) + ηA(t))(N − S)

N2

αS(N − (I(t) + ηA(t)))
N2 − k1

αηS(N − (I(t) + ηA(t)))
N2 0 0

0 εβ1 −k2 ρλ 0

0 (1− ε)β1 β2 −k3 0

0 0 0 (1− ρ)λ −µ0


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The Jacobian matrix J(E0) of the model (2.2) at the disease-free equilibrium is given by:

J(E0) =



−µ0 −Λp− α −αη 0 0

0 α− k1 αη 0 0

0 εβ1 −k2 ρλ 0

0 (1− ε)β1 β2 −k3 0

0 0 0 (1− ρ)λ −µ0


Let P(Ψ) = det(J(E0) − ΨI5) be the characteristic polynomial associated with the Jacobian ma-

trix J(E0), where Ψ is the set of eigenvalues of J(E0) and I5 is the identity matrix.

P(Ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ0 −Ψ −Λp− α −αη 0 0

0 α− k1 −Ψ αη 0 0

0 εβ1 −k2 −Ψ ρλ 0

0 (1− ε)β1 β2 −k3 −Ψ 0

0 0 0 (1− ρ)λ −µ0 −Ψ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Two eigenvalues, Ψ1 = Ψ2 = −µ0, are negative. For the remaining eigenvalues, we consider

the following square matrix of order 3, Q(Ψ):

Q(Ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α− k1 −Ψ αη 0

εβ1 −k2 −Ψ ρλ

(1− ε)β1 β2 −k3 −Ψ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
After some algebraic manipulations, we have:

Q(Ψ) = Ψ3 + Ψ2
(
k1 + k2 + k3 − α

)
+ Ψ

(
k1k2 + k1k3 + k2k3 − α(k2 + k3) − β2ρλ − αη

)
+

(
k1k2k3 +

αβ2ρλ− k1β2ρλ− αk2k3 − αηεβ1k3 − αηρλ(1− ε)β1

)
.

By setting a1 = k1 + k2 + k3 − α;
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a2 = k1k2 + k1k3 + k2k3 − α(k2 + k3) − β2ρλ− αη

and a3 = k1k2k3 + αβ2ρλ− k1β2ρλ− αk2k3 − αηεβ1k3 − αηρλ(1− ε)β1,

The characteristic polynomial Q(Ψ) becomes:

Q(Ψ) = Ψ3 + a1Ψ2 + a2Ψ + a3. (3.13)

To prove the local stability of the disease-free equilibrium point E0 of the model (2.2) by applying

the Routh-Hurwitz criteria, we must show that: a1 > 0, a1a2 − a3 > 0 and a3 > 0.

We have a1 > 0 because k1 + k2 + k3 > α;

a3 = k1k2k3 + αβ2ρλ− k1β2ρλ− αk2k3 − αηεβ1k3 − αηρλ(1− ε)β1 = k1(k2k3 − β2ρλ)(1−R0)

a3 > 0, if R0 < 1;

a1a2 − a3 =
(
k1 + k2 + k3 − α

)(
k1k2 + k1k3 + k2k3 − α(k2 + k3)− β2ρλ− αη

)
− k1(k2k3 − β2ρλ)(1−R0),

that is to say:

a1a2 − a3 = k1k2k3(2 + R0) + β2ρλk1(1 − R0) + k1k2

(
k1 + k2 − 2α

)
+ k1k3

(
k1 + k3 − 2α

)
+ k2k3

(
k2 +

k3 − 3α
)
+ (k2 + k3)(α2

− αηεβ1) + αηεβ1(α− k1) − αηεβ1k2
2

Thus, we have a1a2 − a3 > 0.

Since the Routh-Hurwitz criteria are satisfied, we conclude that the disease-free equilibrium point

is locally and asymptotically stable.

3.5. Global stability of the disease-free equilibrium point. To study the global stability of the

disease-free equilibrium point E0, we will construct a Lyapunov function using the matrix method

developed by Zhisheng Shuai and P. Van den Drissche. [26].

Theorem 3.4. The disease-free equilibrium point E0 is globally and asymptotically stable in Ω if R0 ≤ 1.
If R0 > 1, E0 is unstable and the disease persists uniformly in the population.

Proof: The general disease transmission model can then be written as:

x′ = F (x, y) −V(x, y) (3.14)

with x = (I, A, H)T and y = (S, R)T.

A systematic method is presented to guide the construction of the Lyapunov function.

f (x, y) = (F−V)x−F (x, y) +V(x, y) (3.15)
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Considering the compartments of infected/infectious individuals, then equation (3.14) can be

written as:

x′ = (F−V)x− f (x, y) (3.16)

We have: f (x, y) =





α αη 0

0 0 0

0 0 0


−



k1 0 0

−εβ1 k2 −ρλ

−(1− ε)β1 −β2 k3







I

A

H



+



k1I 0 0

−εβ1I + k2A− ρλH

−(1− ε)β1I − β2A + k3H


−



αIS
N

+
αηAS

N

0

0


After some algebraic calculations, we have:

f (x, y) = α(I + ηA)



1−
S
N

0

0


Since S ≤ N, then f (x, y) ≥ 0 and according to equation (3.10) and equation (3.11), F ≥ 0 and

V−1
≥ 0

We also have f
(
x,

( Λ
µ0

, 0
))

= α(I + ηA)



1− 1

0

0


= 0 in Ω.

V−1F =



α
k1

αη

k1
0

α[εβ1k3 + ρλ(1− ε)β1]

k1(k2k3 − β2ρλ)

αη[εβ1k3 + ρλ(1− ε)β1]

k1(k2k3 − β2ρλ)
0

α[εβ1β2 + ρλ(1− ε)β1k2]

k1(k2k3 − β2ρλ)

αη[εβ1β2 + ρλ(1− ε)β1k2]

k1(k2k3 − β2ρλ)
0


According to [26], the Lyapunov function is defined by: L = ωTV−1x where ωT = (ζ1, ζ2, ζ3) ≥ 0

is a left eigenvector of the matrix V−1F corresponding to the eigenvalue R0. Thus, we have the
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following equality:(ζ1, ζ2, ζ3)V−1F = R0(ζ1, ζ2, ζ3) that is to say:



α
k1
ζ1 +

α[εβ1k3 + ρλ(1− ε)β1]

k1(k2k3 − β2ρλ)
ζ2 +

α[εβ1β2 + ρλ(1− ε)β1k2]

k1(k2k3 − β2ρλ)
ζ3 = R0ζ1

αη

k1
ζ1 +

αη[εβ1k3 + ρλ(1− ε)β1]

k1(k2k3 − β2ρλ)
ζ2 +

αη[εβ1β2 + ρλ(1− ε)β1k2]

k1(k2k3 − β2ρλ)
ζ3 = R0ζ2

0 = R0ζ3

(3.17)

Resolving equation (3.17) gives ωT =
(
ζ1,

k1(R0 −
α
k1
)(k2k3 − β2ρλ

α(εβ1k3 + ρλ(1− ε)β1)
ζ1, 0

)
; ζ1 ∈ R+

We have: L = ωTV−1x, that is to say:

L =
[( (R0 −

α
k1
)

α
+

1
k1

)
I +

k1k3(R0 −
α
k1
)

α(εβ1k3 + ρλ(1− ε)β1)
A +

k1ρλ(R0 −
α
k1
)

α(εβ1k3 + ρλ(1− ε)β1)
H
]
ζ1

We have: L is a Lyapunov function for the system (2.2) and L ≥ 0 ∀ R0 ≥
α
k1

The differentiation with respect to time t of L gives:

L′ = ωTV−1x′ = ωTV−1[(F−V)x− f (x, y)],
that is to say

L′ = ωT(R0 − 1)x−ωTV−1 f (x, y)

Next, we have:

L′ =

ζ1,
k1

(
R0 −

α
k1

)
(k2k3 − β2ρλ

α(εβ1k3 + ρλ(1− ε)β1)
ζ1, 0

 (R0 − 1)



I

A

H


−


( (R0 −

α
k1
)

α
+

1
k1

)
ζ1;

k1k3(R0 −
α
k1
)

α(εβ1k3 + ρλ(1− ε)β1)
ζ1;

k1ρλ(R0 −
α
k1
)

α(εβ1k3 + ρλ(1− ε)β1)
ζ1

α(I + ηA)



1−
S
N

0

0


This finally gives us:
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L′ = (R0 − 1)

ζ1I +
k1

(
R0 −

α
k1

)
(k2k3 − β2ρλ)

α(εβ1k3 + ρλ(1− ε)β1
ζ1A

−
 1

k1
+

(
R0 −

α
k1

)
α

α(I + ηA)



1−
S
N

0

0


ζ1

Since S ≤ N, if R0 ≤ 1, then L′ < 0. Furthermore, L′ = 0 for I = A = 0 and S =
Λ
µ0

.Therefore, the

largest invariant set of the model (2.2) when L′ = 0 is the disease-free equilibrium point E0.

We have constructed an appropriate Lyapunov function for the system (2.2) and shown that this

function is strictly decreasing along the trajectories of the system, that is, L′ ≤ 0.

Therefore, according to LaSalle’s invariance principle [37], E0 is globally and asymptotically stable.

4. Numerical simulation

A picture is worth a thousand words, as they say. In this section, we perform numerical

simulations to illustrate the theoretical results obtained from the mathematical analysis. We use

Matlab Runge-Kutta ode45 [27], [38]. The values of the various parameters used for the numerical

simulation of the model (2.2) are based on the literature or assumed to be biologically plausible

(see Table 3). The system (2.2) is considered with the initial conditions given by:

S(0) = 89040; I(0) = 4700; A(0) = 100; H(0) = 3580; R(0) = 2580, (4.1)

the fixed parameter values from Table 3 and a final time value of T = 20 (years).

Table 3: Parameter values used for the HIV/AIDS model (2.2).
Parameters Meaning Values Reference

N(0) Total population 100000 assumed

Λ Recruitment rate 380 assumed

α HIV/AIDS transmission rate 0.00011 assumed

β1 Rate of transfer from the compartment of infected individuals with-

out clinical signs to the AIDS compartment

0.3 [28]

β2 rate of transfer from the AIDS class to the compartment of individuals

on treatment

0.33 [29]

λ rate of transfer of individuals on treatment to the AIDS class 0.2 assumed

η AIDS infectivity versus HIV infection without clinical signs of the

disease

1.05 [30]

p probability of HIV-positive newborns through vertical transmission 0.0001 Fitting

ε probability of infected individuals without clinical signs progressing

to the AIDS phase

0.1 assumed

ρ Probability of individuals who have failed their treatment and move

up to the AIDS class

0.09 [29]

µ0 HIV natural mortality rate 1/57 assumed

µ1 HIV-induced mortality rate 0.7 assumed
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Figure 2 shows the solution of the system of equations (2.2) with the initial conditions (4.1). The

numerical result in Figure 3 for the system (2.2) indicates that the disease-free equilibrium is locally,

globally, and asymptotically stable. Indeed, in this case, the transmission rate α is very low, while

the recovery rate λ is high relative to the transmission rate, making the basic reproduction number

R0 less than one, R0 = 0, 0777 < 1.

Figure 2. The graph shows the behavior of the equations of the HIV/AIDS transmission
model (2.2).

Figure 3. The graph shows the solution curves at the disease-free equilibrium.
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By observing the graphs in these two figures 2, 3, we see that the dynamics of susceptible

decreases, as individuals in this compartment migrate to the compartment of infected individuals

without clinical signs of the disease. Next, the dynamics of the two infection classes decrease

because individuals in these classes undergo treatment and eventually move to the compartment

of individuals under treatment. Moreover, the dynamics of this last compartment decrease due to

the suppression of viral load in individuals under treatment. These individuals then move to the

remission compartment, which explains the growth of the dynamics for this compartment. These

results are consistent with the analytical results seen in the previous sections.

5. Analysis of optimal control

In this section, we formulate and study an optimal control problem. The dynamics of an

epidemic are observed using time-dependent controls over a finite time interval [0, T]. We then

apply the Pontryagin maximum principle to determine the conditions for effective control over

this interval [13]. The objective is to explore different epidemic control scenarios by incorporating

the following control variables into the system model (2.2):

1. The control u1 ∈ [0, 1] represents preventive measures (condom use, behavior change, awareness,

testing, etc.) taken by susceptible individuals to protect themselves against HIV over the time

interval [0, T].
2. The control u2 ∈ [0, 1] represents the treatment of infected individuals, with or without clinical

symptoms, who have decided to undergo treatment over a certain time interval [0, T].
The controls u1(t) and u2(t) aim to minimize both the number of infected individuals and the cost

of treatment over the time interval [0, T].
The model (2.2) then becomes:

dS(t)
dt

= Λ −ΛpI(t) − µ0S(t) − (1− u1(t))
αS(t)(I(t) + ηA(t))

N
;

dI(t)
dt

= (1− u1(t))
αS(t)(I(t) + ηA(t))

N
+ ΛpI(t) − (u2(t)β1 + µ0)I(t);

dA(t)
dt

= εβ1I(t) + ρλH(t) − (u2(t)β2 + µ0 + µ1)A(t);
dH(t)

dt
= (u2(t) − ε)β1I(t) + u2(t)β2A(t) − (λ+ µ0)H(t);

dR(t)
dt

= (1− ρ)λH(t) − µ0R(t).

(5.1)

The objective is to find the optimal values u∗1 and u∗2 of the controls u1 and u2 over time, such that

the associated state trajectories S∗, I∗, A∗, H∗, and R∗ are solutions of the system described in (5.1)

over the time interval [0, T] with the following given initial conditions:

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 (5.2)

and (u∗1, u∗2) minimizes the objective functional given by:

J(u1(.), u2(.)) =
∫ T

0
(A1I + A2A +

1
2
(B1u2

1 + B2u2
2))dt (5.3)
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Where A1, A2, B1, and B2 are positive weights. The terms B1u2
1 and B2u2

2 represent the costs

associated, respectively, with preventive measures (i.e., condom use, behavior change, awareness,

testing, · · · ) and the treatment of infected individuals with or without clinical symptoms. We chose

a quadratic cost for the controls in line with other publications on epidemic control [31], [32], [21].

Indeed, costs are rarely linear and are often presented as nonlinear functions of control. Moreover,

this choice also allows for an analogy with the energy expended for these two measures.

The control system described in equation (5.1), consisting of ordinary differential equations in R5,

is considered with the set of admissible control functions defined by:

U = {(u1, u2) ∈ L∞(0, T)|0 ≤ (u1(t), u2(t)) ≤ umax,∀t ∈ [0, T]} (5.4)

We consider that the optimal control problem consists of determining (S∗(.), I∗(.), A∗(.), H∗(.), R∗(.))
associated with an admissible control u∗1(.) ∈ U and u∗2(.) ∈ U over the time interval [0, T],
satisfying equation (5.1) and the initial conditions from equation (5.2), while minimizing both the

number of infected individuals and the cost function from equation (5.3):

J(u∗1(.), u∗2(.)) = min
U

J(u(.)) (5.5)

5.1. The Pontryagin maximum principle. he problem is solved using a well-established control

theory, as outlined in the book [39], [40] by Lenhart and Workman. The necessary conditions that

an optimal control problem must satisfy arise from Pontryagin’s Maximum Principle [39]. Thus,

the HamiltonianH associated with the system (5.1) and the cost (5.3) is given by:

H = A1I + A2A +
1
2
(B1u2

1 + B2u2
2) + λS[Λ − ΛpI(t) − µ0S(t) − (1 − u1(t))

αS(t)(I(t) + ηA(t))
N

] +

λI[(1− u1(t))
αS(t)(I(t) + ηA(t))

N
+ ΛpI(t)− (u2(t)β1 +µ0)I(t)] +λA[εβ1I(t) + ρλH(t)− (u2(t)β2 +

µ0 + µ1)A(t)] + λH[(u2(t) − ε)β1I(t) + u2(t)β2A(t) − (λ+ µ0)H(t)] + λR[(1− ρ)λH(t) − µ0R(t)]
Where λS, λI, λA, λH, and λR are adjoint variables, also known as Lagrange multipliers.

By applying Pontryagin’s Maximum Principle [39], [33], as well as the existence results for an

optimal control problem from [33], we obtain:

Theorem 5.1. Let S∗, I∗, A∗, H∗ and R∗ be the optimal solutions with the associated optimal control variables
(u∗1, u∗2) for the optimal control problems (5.1) and (5.3), then there exist adjoint variables λS ; λI ; λA ; λH

and λR satisfying:

λ̇S = (1− u∗1)
α(I∗ + ηA∗)(N − S∗(t))

N2 (λS − λI) + λSµ0;

λ̇I = −A1 + [(1−u∗1)αS∗(t)
N − (I∗(t) + η ∗A∗(t))

N2 +Λp](λS −λI) +λI(u∗2β1 +µ0)−λAεβ1 −λH(u∗2 −

ε)β1;

λ̇A = −A2 + (1− u∗1)αηS∗(t)
N − (I∗(t) + η ∗A∗(t))

N2 (λS − λI) + λA(u∗2β2 + µ0 + µ1) − λHu∗2β2

λ̇H = −λAρλ+ λH(λ+ µ0) − λR(1− ρ)λ;
λ̇R = λRµ0.
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With the transversality conditions λS(T) = λI(T) = λA(T) = λH(T) = λR(T) = 0.
Moreover, the optimal control variables u∗1(t) and u∗2(t) are given by:

u∗1(t) = min
{
umax, max

{
0,
αS∗(t)(I∗(t) + ηA∗(t))(λI − λS)

B1N

}}
.

u∗2(t) = min
{
umax, max

{
0,
λIβ1I∗(t) − λAβ2A∗(t) − λH(β1I∗(t) + β2A∗(t))

B2

}}
.

Proof: In particular, the Hamiltonian is convex with respect to u∗1(t) and u∗2(t) , which implies

the existence of a solution. The first-order condition for optimization is satisfied. Next, we differ-

entiate the Hamiltonian with respect to all the state variables S, I, A, H and R, and we obtain the

time derivatives λ̇S(t), λ̇I(t), λ̇A(t), λ̇H(t) and λ̇R(t) of the adjoint variables, that is:
dλS

dt
= −

∂H
∂S

= (1− u∗1)
α(I∗ + ηA∗)(N − S∗(t))

N2 (λS − λI) + λSµ0;

dλI

dt
= −

∂H
∂I

= −A1 + [(1 − u∗1)αS∗(t)
N − (I∗(t) + η ∗A∗(t))

N2 + Λp](λS − λI) + λI(u∗2β1 + µ0) −

λAεβ1 − λH(u∗2 − ε)β1;
dλA

dt
= −

∂H
∂A

= −A2 + (1 − u∗1)αηS∗(t)
N − (I∗(t) + η ∗A∗(t))

N2 (λS − λI) + λA(u∗2β2 + µ0 + µ1) −

λHu∗2β2
dλH

dt
= −

∂H
∂H

= −λAρλ+ λH(λ+ µ0) − λR(1− ρ)λ

dλR

dt
= −

∂H
∂R

= λRµ0.

Thus, we obtain the equations stated in Theorem 5.1 with the transversality conditions.λS(T) =

λI(T) = λA(T) = λH(T) = λR(T) = 0.

We then consider the optimal controls. u∗1(t) and u∗2(t):
∂H

∂u1(t)
= 0 =⇒ u∗1(t) =

αS∗(I∗ + ηA∗)(λI − λS)

B1N
;

∂H

∂u1(t)
= 0 =⇒ u2(t)∗ =

λIβ1I∗ − λAβ2A∗ − λH(β1I∗ + β2A∗)
B2

Next, using standard control arguments involving bounds on the controls, we conclude that for

u∗1(t):

u1(t)∗ =


0,

αS∗(I∗ + ηA∗)(λI − λS)

B1N
≤ 0

αS∗(I∗ + ηA∗)(λI − λS)

B1N
, 0 <

αS∗(I∗ + ηA∗)(λI − λS)

B1N
< 1

umax,
αS∗(I∗ + ηA∗)(λI − λS)

B1N
≥ 1

which can be expressed in compact form as:

u1(t)∗ = min
{
umax, max

{
0,
αS∗(I∗ + ηA∗)(λI − λS)

B1N

}}
.

Similarly, for u∗2(t), we have:

u2(t)∗ = min
{
umax, max

{
0,
λIβ1I∗(t) − λAβ2A∗(t) − λH(β1I∗(t) + β2A∗(t))

B2

}}
.

The proof is thus completed.

5.2. Numerical solution of the optimal control problem for HIV. The extremum given by The-

orem 5.1 is now computed numerically by implementing a fourth-order backward Runge-Kutta
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method (see, for example, Reference [21]). This iterative method involves solving the system of

equation (5.1) with a hypothesis for the controls over the time interval [0, T] using a fourth-order

Runge-Kutta scheme and the transversality conditions. λS(T) = λI(T) = λA(T) = λH(T) =

λR(T) = 0. Next, the adjoint system in Theorem 5.1 is solved backward in time using a fourth-

order Runge-Kutta scheme, employing the current iteration solution of the system (5.1). The

controls are updated using a convex combination of the previous controls and the values u∗1 and

u∗2 from Theorem 5. The iteration is stopped when the values of the unknowns from the previous

iteration are very close to those of the current iteration.

For the numerical simulations, we consider the initial conditions given by (4.1). Additionally,

we assume that umax = 0.5, represents a shortage of resources or poor utilization of preventive

measures against HIV u1(.) or the treatment of individuals infected with HIV u2(.), meaning that

the set of admissible controls is given by:

U = {(u1, u2) ∈ L∞(0, T)|0 ≤ (u1(t), u2(t)) ≤ 0.5,∀t ∈ [0, T]} (5.6)

with T = 20 (years), the weighting constants are assumed to be A1 = 0, 75, A2 = 0, 25, B1 = 2 and

B2 = 1.

Figure 4 shows the numerical solution of the optimal control problem for equations (5.1)-(5.5) with

the initial conditions from equation (4.1) and the admissible control set from equation (5.6) for u∗1
only

Figure 5 shows the numerical solution of the optimal control problem for equations (5.1)-(5.5) with

the initial conditions from equation (4.1) and the admissible control set from equation (5.6) for u∗2
only.

Figure 6 shows the numerical solution of the optimal control problem for equations (5.1)-(5.5) with

the initial conditions from equation (4.1) and the admissible control set from equation (5.6) for u∗1
and u∗2 simultaneously.

Figures 7 and 8 illustrate the behavior of the optimal controls u∗1 and u∗2, respectively.
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Figure 4. Optimal state variables for the control problem of equations (5.1)-(5.5) subject
to the initial conditions of equation (4.1) and the admissible control set of equation (5.6)

concerning the dynamics of state variables S, I, A, H, and R using only the control u∗1.

Figure 5. Optimal state variables for the control problem of equations (5.1)-(5.5) subject
to the initial conditions of equation (4.1) and the admissible control set of equation (5.6)

concerning the dynamics of state variables S, I, A, H, and R using only the control u∗2.
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Figure 6. Optimal state variables for the control problem of equations (5.1)-(5.5) subject
to the initial conditions of equation (4.1) and the admissible control set of equation (5.6),
concerning the dynamics of state variables S, I, A, H, and R using the control measures u∗1
and u∗2.

Figure 7. Optimal control u∗1 for the HIV optimal control problem in equations (5.1)-(5.5)

subject to the initial conditions of equation (4.1) and the admissible control set of equation
(5.6).
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Figure 8. Optimal control u∗2 for the HIV optimal control problem in equations (5.1)-(5.5)

subject to the initial conditions of equation (4.1) and the admissible control set of equation
(5.6).

By performing numerical simulations using only the preventive measures u1, then with treat-

ment u2 alone, and finally combining both controls u1 and u2, we observe that treatment is more

effective than preventive measures in reducing the spread of HIV/AIDS. Indeed, in Figure 4, where

only u1 was used, the results differ from those in Figure 6, where both controls u1 and u2 were

applied. On the other hand, in Figure 5, where only u2 was used, we obtain trajectories that are

approximately equal to those in Figure 6, where both controls u1 and u2 were applied. By compar-

ing Figure 2, which presents the model without control variables, and Figure 6, where two control

variables have been introduced the preventive measures u1 and the treatment u2 we observe that

the combined interventions, as illustrated in Figure 6, are effective in reducing the number of

individuals infected with HIV/AIDS. The numerical results clearly illustrate our main objective in

applying the optimal control tool, which is to minimize the number of infected individuals and

treatment costs while maximizing the number of individuals in remission.

6. Conclusion

In this article, we formulated a deterministic model to describe the spread and transmission of

HIV/AIDS in a population. After formulating the model, we determined the basic reproduction

number R0, which predicts that the disease will vanish in the population if R0 < 1 or will persist

if R0 > 1, after studying the existence and stability of the disease-free equilibrium. Numerical

simulations show that with antiretroviral treatments, HIV can disappear or at least be controlled in a

given population. Medical research should aim at preventing HIV through vaccines or developing

new antiretroviral molecules that will eliminate HIV from the human body so that patients can

permanently stop lifelong treatments. This will allow us to have mathematical models of HIV with
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compartments for recovered individuals. Additionally, we included two time-dependent control

variables: preventive measures and the treatment of infected individuals. The results show that

treatment is more cost-effective in reducing the spread of HIV than preventive measures. Finally,

the numerical results from the optimal control section clearly show that combined interventions, as

illustrated in Figure 6, are effective in reducing the number of individuals infected with HIV/AIDS.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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