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Abstract. In this paper, some of the famous and known topological indices for the inverse graph of Generalized

quaternion group, including: Hosoya polynomial, Wiener index, hyper-Wiener index, first Zagreb index, second

Zagreb index, ABC index, eccentric index, eccentric-connectivity index, total eccentric index, first Zagreb eccentric

index, second Zagreb Eccentric index, graph energy index, and Estrada index.

1. Introduction

The graph theory has very important applications not only in mathematics but in many branches

of science such as physics, biology, and chemistry. The graph denoted by G = (V, E) is a math-

ematical tool used to model the objects as vertices V and the relations between these objects as

edges E. One of the important concept related to the graph is the topological index, also called

a molecular descriptor, which is a mathematical formula that can be applied to any graph. From

this index, it is possible to analyze mathematical values and investigate some properties of the

graph.To achieve the objective of our research which involves studying some of this indices for a

type of graph-related to finite groups called the Inverse graph, this section has two subsections:

1.1. Literature Review of Topological Indices:
The concept of topological indices first occurred in 1947 by Harold Wiener [19]. Over than

3000 topological graph indices are registered in Chemical databases. A natural way for their

classification is by the origin of parameters used in their definitions. According to that, we have

the following classification of the toplogical indices as four major categories. Each category of them

includes many types of topological indices and in this paper we focus on the following indices as
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demonstrated below by this diagram:

I. Distance-based topological indices.

• Wiener index.

• Hosoya polynomial.

• Hyper-Wiener index.

II. Degree-based topological indices.

• First Zagreb index.

• Second Zagreb index.

• ABC-index.

III. Eccentricity-based topological indices.

• Eccentric-connectivity index.

• Total eccentricity index.

• First Zagreb eccentricity.

• Second Zagreb eccentricity

IV. Eigenvalue-based topological indices.

• Graph Energy.

• Estrada index.

Topological
indices

Eigenvalue-
based topo-

logical indices

Estrada index 2011

Graph Energy 1978

Eccentricity-
based topo-

logical indices Second Zagreb eccentricity 2012

First Zagreb eccentricity 2012

Total eccentricity index 2015

Eccentric-connectivity index 1997

Degree-based
topologi-

cal indices
ABC-index 1998

Second Zagreb index 1972

First Zagreb index 1972

Distance-based
topologi-

cal indices
Hyper-Wiener indexl 1993

Hosoya polynomial 1988

Wiener index 1947
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1.1.1. Distance-based topological indices:

One of the most investigated categories of topological indices used in mathematical chemistry,

which are defined in terms of the distance between the vertices of the graph. The first distance-

based index is the wiener index [19]. Another distance-based indices listed below:

- Hosoya polynomial:
The Hosoya polynomial was introduced by Haruo Hosoya in 1988 [10], as a counting polynomial

it counts the number of distances of paths of different lengths in a molecular graph. If G is a

connected graph with n vertices and m edges then the Hosoya polynomial is defined as:

H(G, x) :=
∑
k≥0

d(G, k)xk (1.1)

where d(G, k) is the number of pairs of its vertices at distance k. Note that d(G, 1) = m and

d(G, 0) = 0 if G simple graph has no loop.

- Wiener index:

The Wiener index was first introduced in 1947 by Harold Wiener [19] and defined as:

W(G) :=
∑

u,v∈V(G)

d(u, v) (1.2)

Remark 1.1. There is a relation between the Wiener index and the Hosoya polynomial given as follows:

W(G) =
∂
∂x

H(G, x)|x=1 (1.3)

- Hyper-Wiener index:

The Hyper-Wiener index of cyclic graphs was introduced by Randić in 1993 [16], as a generalization

of the Wiener index, and defined as:

WW(G) :=
1
2

W(G) +
1
2

∑
{u,v}⊂V(G)

d2(u, v) (1.4)

where d2(u, v) = (d(u, v))2. There is another formula for this index given by:

WW(G) :=
1
2

diam(G)∑
k≥1

k(k + 1)d(G, k) (1.5)

Remark 1.2. There is a relation between the Hyper-Wiener index and the Hosoya polynomial given as
follows:

WW(G) =
1
2
(
∂2

∂x2 H(G, x))|x=1 (1.6)
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1.1.2. Degree-based topological indices:
Degree-based topological indices are defined in terms of the degrees of the vertices of a graph.

The first degree-based topological index was put forward in 1975 by Milan Randić [15]. There are

many degree-based indices, such as:

- Zagreb index :

One of the oldest graph index is the well-known Zagreb index, which was first introduced by

Gutman and Trinajstić in 1972 [8]. There are the first Zagreb index and the second Zagreb index

defined as follows:

- First Zagreb index:
The first Zagreb index M1 is equal to the sum of squares of the degrees of vertices. Some authors

call M1 the Gutman index:

M1(G) :=
∑

u∈V(G)

d2(u) (1.7)

- Second Zagreb index:
The second Zagreb index is equal to the sum of the products of the degrees of pairs of adjacent

vertices :

M2(G) :=
∑

{u,v}∈E(G)

d(u).d(v) (1.8)

- ABC index or Atom-Bond-Connectivity index:
In 1998, Estrada and authors [3], introduced a new index, which was later known as the Atom-Bond

Connectivity abbreviated as ABC index and defined as:

ABC(G) :=
∑

{u,v}∈E(G)

√
d(u) + d(v) − 2

d(u)d(v)
(1.9)

1.1.3. Eccentricity-based topological indices:
Topological indices, which are based on eccentricity of the vertices in a graph G, are known as

Eccentricity-based topological indices.

- Eccentric-connectivity index:
Sharma, Goswami, and Madan would introduce the Eccentric-connectivity index in 1997 [17],

which is defined as:

ξc(G) :=
∑

u∈V(G)

d(u).Ecc(u) (1.10)

- Total eccentricity index:
The Total Eccentricity index was introduced by Farooq in 2015 [4] and defined as:

ξ(G) :=
∑

u∈V(G)

Ecc(u) (1.11)

Some new modified versions of Zagreb indices are expressed in terms of Eccentricity [5] as

follows:
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- The First Zagreb eccentricity index:

E1(G) :=
∑

u∈V(G)

(Ecc(u))2 (1.12)

- The Second Zagreb eccentricity index:

E2(G) :=
∑

{u,v}∈E(G)

Ecc(u).Ecc(v) (1.13)

1.1.4. Eigenvalue-based topological indices:

- Graph energy:

The first Eigenvalue-based topological index was introduced in 1978 [7] by Ivan Gutman called

the Graph energy index. This index is defined using the eigenvalues of an adjacency matrix A(G)

in the following way:

E(G) :=
n∑

i=1

|λi| (1.14)

where λi is the i-th eigenvalue of A(G) for all i = 1, 2, 3, ..., n.

- Estrada index:

Next to Graph energy, the second most investigated topological index based on eigenvalues of an

adjacency matrix known as the Estrada index and defined as follows:

EE(G) :=
n∑

i=1

eλi (1.15)

Graph measurements

symbol term and definition

d(v) degree of a vertex v is the number of edges in G that are incident with v

d(u, v) distance between any two vertices u and v is the length of the shortest

path between u and v.

D(v) =
∑

u∈G d(u, v); the sum of distances between the vertex v and

vertex u of G

d(G, k) the number of vertex pairs at distance k.

Ecc(u) the eccentricity of a vertex u is the maximum d(u, v) for any v in G
; Ecc(u) := max{d(u, v) : v ∈ V(G)}.

diam(G) the diameter of G is the greatest distance between any two vertices in G

Table 1. Graph measurements

Some of the graph measurements we need and used in our paper given in Table 1 above.
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1.2. Literature Review of the Inverse graph of generalized quaternion group:
The inverse graph GS(Γ) associated with a finite group (Γ,?) was first introduced by alfuraidan

and Zakariya in 2017 [1]. It is a simple undirect graph with a vertex set V(GS) coinciding with the

elements of the group Γ and two distinct vertices u and v are adjacent in GS(Γ) if and only if either

u? v ∈ S or v? u ∈ S where S = {a ∈ Γ : a , a−1
}. For any finite group Γ, the inverse graph GS(Γ)

is empty if and only if |S| = 0. Hence the inverse graph of a finite group with all of its elements

being self-invertible is empty. For more properties and information about the inverse graph [1].

Theorem 1.1. For any finite abelian group Γ with at least three elements and a non-empty subset S of
non-self-invertible elements, then the inverse graph GS(Γ) is connected.

Theorem 1.2. Let Γ be a finite group. The diameter of a connected inverse graph diam(GS(Γ)) = 2.

In group theory, a generalized quaternion group of order 2n has the following presentation:

Q2n =< a, b/a2n−1
= e, a2n−2

= b2, b−1ab = a−1 > (1.16)

Example 1.1. (i) At n = 2 the quaternion group:

Q22 = {e, a, a2, a3
} � Z4

where the sets of nonself invertible and self invertible elements are S = {a, a3
} and S

′

= {e, a2
}

respectively. which is the commutative group and GS(Q22) � GS(Z4) is a 4-cycle graph given in
Figure 1.

a

e

a3

a2

Figure 1. GS(Q22)

(ii) If n = 3 we have the standard quaternion group of order 8.

Q8 = {e, a, a2, a3, b, ab, a2b, a3b}

The inverse graph GS(Q8) is given in Figure 2 where the sets of nonself invertible and self invertible
elements are S = {a, a3, b, ab, a2b, a3b} and S

′

= {e, a2
} respectively.
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a

e

a3

a2b

a3b

a2

ab

b

Figure 2. GS(Q23)

(iii) If n = 4 we have the generalized quaternion group of order 16.

Q16 = {e, a, a2, a3, a4, a5, a6, a7, b, ab, a2b, a3b, a5b, a6b, a7b}

The inverse graph GS(Q16) where the sets of nonself invertible and self invertible elements are
S = {a, a2, a3, a5, a6, a7, b, ab, a2b, a3b, a5b, a6b, a7b} and S

′

= {e, a4
} respectively.

In general, the inverse graph GS(Q2n) has the set of self invertible elements S
′

= {e, a2n−2
}.

Theorem 1.3. Let Γ be a finite group and the set S , φ is a non-empty. The associated inverse graph GS(Γ)

is:

(i) 2-regular if Γ is a group of four elements.
(ii) (2n

− 2)-regular graphs if Γ is a generalized quaternion group of order 2n where n > 2.

Definition 1.1. Let G be a simple undirect graph of order n. The adjacency matrix A(G) = (ai j)n×n is a
zero-one symmetric square matrix of dimension n× n where:

ai j =

 1 if {vi, v j} ∈ E
0 if {vi, v j} < E

In [12], we study and find the adjacency matrix for the inverse graph of the generalized quater-

nion group Q2n , the characteristic polynomial of it, and its eigenvalues, given as:

Theorem 1.4. For the inverse graph GS(Q2n) we have:
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A((GS(Q2n)) =

e a2n−2
a a−1

· · · b b−1
· · ·



e 0 0 1 1 · · · 1 1 · · ·

a2n−2
0 0 1 1 · · · 1 1 · · ·

a 1 1 0 0 · · · 1 1 · · ·

a−1 1 1 0 0 · · · 1 1 · · ·

...
...

...
...

. . .
...

...
...

b 1 1 1 1 · · · 0 0 · · ·

b−1 1 1 1 1 · · · 0 0 · · ·

· · ·
...

...
...

... · · ·
...

...
...

2n×2n

Theorem 1.5. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n ≥ 3, the
characteristic polynomial of the adjacency matrix A(GS(Q2n)) is:

PA((GS(Q2n ))(λ) = λ
n
2 (λ+ 2)

n
2−1[λ− (2n

− 2)] (1.17)

Corollary 1.1. Let GS(Q2n) be an inverse graph of generalized quaternion group Q2n where n ≥ 3, the
adjacency spectrum of it is given as:

Spec(A(GS(Q2n)) =

2n
− 2 0 −2

1 2n

2
2n

2 − 1


From theorem 1.5, we get the important result:

Corollary 1.2. For any n ≥ 2 the inverse graph GS(Qn) is connected.

2. Methodology

A simple connected graph G = (V, E) is a finite nonempty set of vertices V(G) with a finite

nonempty set E(G) of unordered pairs of distinct vertices of G called edges. To compute the

topological indices for graph G, we need to compute some of the graph measurements as; length,

distance, diameter, eccentricity, radius, and so on as given in Table 1. For this aim, we use

mathematical induction on the order and the size of the graph and apply fundamental calculus.

Moreover, we use some software such as Matlab and Maple for mathematical calculations and

verifications.

3. Main Results

In this section, we will compute and prove some topological indices for the inverse graph

GS(Qn). Accordingly, this section is devided into four subsections:
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3.1. Distance-based topological indices of GS(Qn):

Consider the inverse graph GS(Qn) of order 2n of the generalized quaternion group Q2n given

in (1.16). From the regularity of GS(Qn) we have the following:

Lemma 3.1. (1) deg(v) = 2n
− 2 for all v ∈ V(GS(Qn).

(2) The size of GS(Qn) is |E(GS(Qn)| =
2n(2n

−2)
2 .

Lemma 3.2. The group Q2n has only two self-invertible elements; {e, a2n−2
}, so S = Q2n \ {e, a2n−2

}.

Theorem 3.1. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2. The
Hosoya polynomial of it given by:

H(GS(Q2n), x) := (22n−1
− 2n
− 2n−1

− 2n−2 + 2)x + (2n−1 + 2n−2
− 2)x2

Proof. Since diam(GS(Γ)) = 2, then d(u, v) = 1 or 2 for all u, v ∈ V(GS) , u , v. From the definition

of the inverse graph GS(Q2n) :

- The vertex v , e with v2
∈ S

′

is not adjacent to its inverse v−1.

- The vertex v , e with v2 < S
′

is not adjacent to its inverse v−1. Also it is not adjacent to the vertex

u such that u.v ≡ a2n−2
(mod2n−1) which their number is 2n−2

− 1. Hence the number of vertices

having distance 2 is:
2n
− 2
2

+ 2n−2
− 1 = 2n−1 + 2n−2

− 2

- The number of vertices with distances 1 is 2n(2n
−2)

2 − (2n−1 + 2n−2
− 2) = 22n−1

− 2n
− 2n−1

− 2n−2 + 2.

�

Theorem 3.2. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2, the
Wiener index given by:

W(GS(Q2n)) := 22n−1
− 2n−2

− 2

Proof. From Remark (1.3) we have:

W(G) =
∂
∂x

H(G, x)|x=1

Then from theorem 3.1 we get:

W(G) = 22n−1
− 2n−2

− 2

�

Theorem 3.3. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2, the
Hyper-Wiener index is :

WW(GS(Q2n)) = 2n + 2n−1
− 4
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Proof. From (1.6) we have:

WW(G) =
1
2
(
∂2

∂x2 H(G, x))|x=1

Then from theorem 3.1 we get:

WW(GS(Q2n)) =
1
2
(
∂2

∂x2 [(2
2n−1
− 2n
− 2n−1

− 2n−2 + 2)x + (2n−1 + 2n−2
− 2)x2]|x=1

Therefore, WW(GS(Q2n)) = 2n + 2n−1
− 4.

�

3.2. Degree-based topological indices of Inverse graph GS(Qn).

Theorem 3.4. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2, The
first Zagreb index:

M1(GS(Q2n)) := 2n(2n
− 2)2

Proof. From Lemma 3.1 we know that deg(v) = 2n
− 2 for all v ∈ V(GS(Qn). Hence from (1.7) we

have:

M1(GS(Q2n)) =
∑

u∈V(G)

(2n
− 2)2 = 2n(2n

− 2)2

�

Theorem 3.5. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n , where n > 2. The
second Zagreb index:

M2(GS(Q2n)) = 2n−1(2n
− 2)3

Proof. From (1.8), the second Zagreb index M2 is equal to the sum of the products of the degrees of

pairs of adjacent vertices of the graph, and from Lemma 3.1 we know that deg(v) = 2n
− 2 for all

v ∈ V(GS(Qn). On the other hand, the number of the edges of |E(GS(Qn)) =
2n(2n

−2)
2 . Hence from

(1.8) we have:

M2(GS(Q2n)) =
∑

(u,v)∈E(G)

(2n
− 2)(2n

− 2) =
2n(2n

− 2)
2

(2n
− 2)2

M2(GS(Q2n)) = 2n−1(2n
− 2)3

�

Theorem 3.6. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n , where n > 2. The
ABC-index or Atom-Bond-Connectivity index is:

ABC(G) = 2n−1
√

2n+1 − 6

Proof. From (1.9), we have ABC(G) :=
∑
{u,v}∈E(G)

√
d(u)+d(v)−2

d(u)d(v) , then:

ABC(G) =
∑

{u,v}∈E(G)

√
(2n − 2) + (2n − 2) − 2

(2n − 2)2
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ABC(G) =
2n(2n

− 2)
2

√
2(2n − 2) − 2
(2n − 2)2

Hence, ABC(G) = 2n−1
√

2n+1 − 6.

�

3.3. Eccentricity-based topological indices of Inverse graph GS(Qn).

Theorem 3.7. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2. The
Eccentric-connectivity index

ξc(G) = 2n+1(2n
− 2)

Proof. From (1.10) and Ecc(u) = 2 for all u ∈ V(GS) we have:

ξc(G) =
∑

u∈V(G) d(u).Ecc(u) =
∑

u∈V(G) 2(2n
− 2) = 2n[2(2n

− 2)] = 2n+1(2n
− 2).

�

Theorem 3.8. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2. The
Total Eccentricity index:

ξ(G) = 2n+1

Proof. From (1.10) and Ecc(u) = 2 for all v ∈ V(GS) we have:

ξ(G) :=
∑

u∈V(G) Ecc(u) = 2n+1. �

Theorem 3.9. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2,The
First Zagreb eccentricity index:

E1(GS(Q2n)) = 2n+2

Proof. From (1.11) and Ecc(u) = 2 for all v ∈ V(GS) we have:

E1(GS(Q2n)) =
∑

u∈V(G)

(Ecc(u))2 = 2n+2

�

Theorem 3.10. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2,
The Second Zagreb eccentricity index:

E2(GS(Q2n)) = 2n+1(2n
− 2)

Proof. From (1.12) and Ecc(u) = 2 for all v ∈ V(GS) we have:

E2(G) :=
∑

{u,v}∈E(G)

Ecc(u).Ecc(v) = (
2n(2n

− 2)
2

)22 = 2n+1(2n
− 2)

�
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3.4. Eigenvalue-based topological indices of Inverse graph GS(Qn).

Theorem 3.11. Let GS(Q2n) be an inverse graph of the generalized quaternion group Q2n where n > 2.
The graph energy index is:

E(G) := 2(2n
− 2)

Proof. From (1.14) and Corollary 1.1 we have:

E(G) =
n∑

i=1

|λi| = 1.(2n
− 2) + 0.(

2n

2
) + | − 2|.(

2n

2
− 1) = (2n

− 2) + 2(
2n
− 2
2

)

Hence, E(G) = 2(2n
− 2).

�

Theorem 3.12. Let GS(Q2n) be an inverse graph of generalized quaternion group Q2n where n > 2 . The
Estrada index index is:

EE(G) = e2n
−2 + (

2n

2
) + (

2n

2
− 1).e−2

Proof. From (1.13) and Corollary 2.1 we have:

EE(G) =
n∑

i=1

eλi = 1.e2n
−2 + (

2n

2
).e0 + (

2n

2
− 1).e−2

EE(G) = e2n
−2 + (

2n

2
) + (

2n

2
− 1).e−2

�

The following tablecontains the topological indices given in this section for GS(Q22); n = 2, 3, 4.

Topological indices for GS(Q2n); n = 2, 3, 4

Index n=2 n=3 n=4

H(GS(Q2n), x) 3x + x2 20x + 4x2 102x + 10x2

W(GS(Q2n)) 5 28 122

WW(GS(Q2n)) 2 8 20

M1(GS(Q2n)) 16 288 3136

M2(GS(Q2n)) 16 864 21952

ABC(GS(Q2n)) 2
√

2 4
√

10 8
√

26

ξc(GS(Q2n)) 16 96 448

ξ(GS(Q2n)) 8 16 32

E1(GS(Q2n)) 16 32 64

E2(GS(Q2n)) 16 96 448

E(GS(Q2n)) 4 12 28

EE(GS(Q2n)) e2 + 2 + e−2 e6 + 4 + 3e−2 e14 + 8 + 7e−2
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4. Discussion

The concept of graphs related to algebraic structures is one of the useful methods to study the

properties of these algebraic structures. To describe the structure of a group, Arthur Cayley was

the first who introduce in 1878 the concept of a graph for a group called Cayley graph. There

are many interesting algebraic problems that arise from the translation of some graph-theoretic

parameters such as topological indices. The concept of an Inverse graph of a finite group was

first introduced in 2017. It has been studied by many researchers, we mention one of them for

example [6], about some of the topological indices for inverse graphs associated with finite cyclic

group. In our paper, we studied and proved many results about the topological indices for this

graph in case the group is a generalized quternion group. The nature of this group was reflected in

the structure of the graph. Our studying has become easy because the graph is a regular graph with

a fixed diameter equal to 2. We just compute Hosoya polynomial and many topological indices.

In the future, many topics can be studied for the inverse graph concerning different groups.

5. Conclusion

In conclusion, we achieved our goal from this study. We compute and proved many theo-

ries about topological indices; Hosoya polynomial (Theorem 3.1), Wiener index (Theorem 3.2),

Hyper-Wiener index (Theorem 3.3), First Zagreb index (Theorem 3.4), Second Zagreb index (The-

orem 3.5), ABC index (Theorem 3.6), Eccentric-Connectivity index (Theorem 3.7), Total Eccentric

index (Theorem 3.8), First Zagreb Eccentric index (Theorem 3.9), Second Zagreb Eccentric index

(Theorem 3.10), Graph Energy index (Theorem 3.11), and Estrada index (Theorem 3.12) for the

inverse graph.These results underscore the need for continued research in this area, as well as the

development of this concept of graphs for different groups.
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