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Abstract. The exponentiated Weibull mixture model (EWMM) is the most frequently used probability distribution in

the disciplines of reliability engineering and applied linguistics. Exponentiated Weibull distributions, on the other

hand, are unbounded. A variety of applications digitalize the monitored data and have bounded service regions.

Different types of double truncated Weibull mixture models (BEWMM) are discussed in this article. These include

the double truncated exponential mixture model (BEMM), the double truncated Rayleigh mixture model (BRMM), the

double truncated Weibull mixture model (BWMM), and the double truncated generalized exponential mixture model

(BGEMM). By combining a mixture model and bounded support regions, we can create a model that is extremely

scalable and can capture a variety of statistical properties of the results, such as mean behavior, distribution, form, and

tail behavior. We propose an alternative method for evaluating the model parameters, which aims to maximize the

upper bound on the data log-likelihood function. We evaluate the (BEWMM) execution using simulated and actual

data.
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1. Introduction and basic definitions

The finite mixture model provides a natural representation of heterogeneity in a finite number

of latent classes. It concerns modelling a statistical distribution by a mixture (or weighted sum)

of other distributions, such as, machine learning, design acknowledgment, and Bioinformatics.

The basic purpose of enthusiasm of this methodology is in its capacity to utilize prior figuring

out how to demonstrate the powerlessness probabilistically. Among the estimations in light of

the Bayesian framework, the Weibull mixture model (WMM) ( [1]- [3]) is a without a doubt

comprehended technique used for by and large applications. An advantage of WMM is that it

requires a little measure of parameters for learning. Also, these parameters can be profitably

assessed by getting the expectation maximization (EM) figuring ( [4]- [5]) to maximize the log-

likelihood function. Notwithstanding the way that the WMM is a versatile and fit contraption for

data examination, it is fragile to abnormalities and might provoke over the top influence capacity

to little amounts of data core interests. Furthermore, for some associated issues, the tail of the

Weibull distribution is taller than required. As of late, there has been a developing examination

enthusiasm for a Bayesian system in light of the displaying of the probability density function

of the information by means of the exponentiated Weibull distribution (EWD) ( [6]- [8]). EWD

has been effectively utilized as a part of image and video coding ( [9] and [10]), composition

segregation and recovery ( [11]- [13]), change discovery [14], and image denoising [15]. This

conveyance has one parameter (ν) more than the Weibull distribution. The parameter γ controls

the tails of the distribution and makes sense of if the latter is beaten or level. It justifies indicating

that the Weibull and Rayleigh distributions are particular cases for the exponentiated Weibull

distribution, where ν = 1; ν = 1 and γ = 2, independently. Thusly, the exponentiated Weibull

mixture model (EWMM) has the flexibility required to fit the condition of the data better than

the Weibull mixture model (WMM). One drawback of the previously stated blend models is that

their appropriations are unbounded with a supporting range of (0,∞). We extend all the past

models to the double truncated case such that their disseminations are unbounded with a range

(−∞,∞). We find in various certified applications that the watched data constantly fall within

the restricted reinforce territories ( [16]- [18]). For instance, in the zone of sign handling, the force

range is semi-limited. In the region of picture PC vision, the pixels are more often than not in

the constrained extent. In ( [19]- [22]), a double truncated Weibull mixture model (BWMM) was

proposed for discourse preparing. Notwithstanding, in numerous applications, the tail of the

Weibull distribution is taller than required. Likewise, the BWMM is not sufficiently adaptable to

fit the state of the information. Roused by the previously stated perceptions, we present in this

paper the high flexibility of a double truncated exponentiated Weibull mixture model (BEWMM)

for examining information, which incorporates the EMM, WMM, RMM, GEMM, and BWMM, as

special cases with less degree of freedom. Our methodology varies from those talked about above

by the accompanying articulations. Firstly, there is a development of the exponentiated Weibull

distribution in this paper. The BEWMM Model is of noticeable significance for image coding and
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compression applications. This new distribution has a versatility to fit differing conditions of

watched data, for instance, bounded support data and non-Gaussian. In addition, all aspects of

our model can show the watched data with different restricted reinforce regions. Finally, to gage

the parameters of the proposed model, we propose another technique, remembering the finished

objective to open up the higher bound to the data log-likelihood function. We display through

wide reenactments that the proposed model is superior to anything diverse methods considering

the exhibit in the probability density function of the data by a method for constrained mix model.

Whatever is left of this paper is created as takes after: Section 2 depicts the proposed method in

purpose of interest; Section 3 demonstrates the parameter estimation; Section 4 sets out the trial

results; and Section 5 shows our conclusions.

2. Proposed technique

Given a K parts of mixture model, the probability density function of the random variable xi is

f (xi|Θ) =
K∑

j=1

ρ jp(xi|θ j), (2.1)

where Θ addresses the model parameters. The prior probability ρ j satisfies the prerequisites

ρ j ≥ 0 and
K∑

j=1

ρ j = 1. (2.2)

As showed up in (2.1), the key goal of quantifiable showing is to develop a model that can best

depict the measurable properties of the essential source. The mixture models have relied on upon

to demonstrate the concealed distributions. Note that p(xi|θ j) can be any kind of distribution.

In EMM ( [23]- [24]), WMM ( [25]- [27]), and EWMM ( [7] and [8]), p(xi|θ j) is the exponential

distribution φ(xi|µ j, β j), the Weibull distribution Υ(xi|µ j, β j,γ j) and the exponentiated Weibull

distribution T(xi|µ j, β j, ν j,γ j), individually. These distributions are all unbounded with support

range (0,∞). We extend all the previous models to the double truncated case such that their

distributions are unbounded with a support range (−∞,∞). So along the paper we express the

accompanying tradition that all the given models have two sided. Remembering the deciding

objective to thrashing this issue, we propose another finite mixture model that has the flexibility

to fit unmistakable conditions of watched data, for instance, non-Gaussian and bounded support

data. To begin with, for each part (meant by Ω j), we portray ∂ j to be the bounded support region

in R, and the marker function as

δ(xi|Ω j) =

1, if xi ∈ Ω j

0, if otherwise.
(2.3)
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With the marker function δ(xi|Ω j) in (2.3), we characterize a double truncated exponentiated

Weibull distribution

Υi j = Υ(xi|µ j, β j, ν j,γ j) =
T(xi|µ j, β j, ν j,γ j)δ(xi|Ω j)∫

∂ j
T(x|µ j, β j, ν j,γ j)dx

, (2.4)

The distribution in (2.4) is according to the accompanying:

T(xi|µ j, β j, ν j,γ j) =
ν jγ jβ j

2
|xi − µ j|

γ j−1 exp(−β j|xi − µ j|
γ j)(1− exp(−β j|xi − µ j|

γ j))ν j−1, (2.5)

where

β j =
1

σ
γ j

j

[
ν j

∫
∞

0
x

2
γ j e−x(1− e−x)ν j−1dx

] γ j
2

. (2.6)

The parameters µ j, γ j, ν j, σ j, and β j are positive parameters corresponding to the mean, power,

shape, standard deviation and scale, respectively. The BEWD is a very flexible family of distribu-

tions, it includes double truncated exponential, double truncated Generalized exponential, double

truncated Rayleigh and double truncated Weibull as special cases. The parameter γ j controls the

tails of the distribution and figures out if the last is crested or level. In (2.4),
∫
∂ j

T(x|µ j, β j, ν j,γ j)dx

is the standardization steady and is recognized as the offer of T(x|µ j, β j, ν j,γ j) that has a place

with the bounded support regions ∂ j. The thought to characterize the distribution Υi j in (2.4)

depends on the way that the watched information are digitalized and have bounded support.

We relegate Υi j as equivalent to T(x|µ j, β j, ν j,γ j) in the support region ∂ j, and as zero outside. It

justifies determining that the proposed appropriation in (2.4) will reliably satisfy the conditions of

the probability density [28]:

Υ ≥ 0 and
∫
∞

−∞

Υ(x|µ j, β j, ν j,γ j) dx = 1. (2.7)

Given the distribution Υ(xi|µ j, β j, ν j,γ j) in (2.4), the log-likelihood function is composed in the

structure

L(Θ) =
N∑

i=1

log
K∑

j=1

ρ jΥi j(xi|θ j). (2.8)

From (2.8), we can see that every segment of the proposed model can demonstrate the watched

information with various bounded support regions ∂ j. We can characterize any shape taking

into account the earlier information about the watched information. By looking at the scientific

articulations of the proposed model with the EMM ( [23], [24], [29] and [30]), we see that on the off

chance that we set γ j = 1, ν j = 1 and the bounded support region is relegated as δ(xi|Ω j) = 1 for

every mark Ω j, our strategy is like the EMM. If we set ν j = 1 and δ(xi|Ω j) = 1, then our method is

similar to the WMM. When ν j = 1, γ j = 2, and δ(xi|Ω j) = 1 the proposed method is similar to the

RMM in ( [31]- [32]). And our method is similar to the EWMM [8] when δ(xi|Ω j) = 1. Presently,

we contrasted our technique and BEMM in ( [33]- [34]), and in the event that we put γ j = 1,

ν j = 1and δ(xi|Ω j) = δ(xi|Ωk): ∀ j, k = {1, 2, 3, ..., K}, our strategy is like the BEMM. Essentially,

our strategy is like the double truncated Weibull mixture model (BWMM) [35] when we put ν j = 1
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and δ(xi|Ω j) = δ(xi|Ωk): ∀ j, k = {1, 2, 3, ..., K}. Accordingly, it could be said that the fundamental

model of the proposed technique is a speculation of the EMM, WMM, RMM, GEMM, BEMM,

BWMM, BRMM [36], and BGEMM [37] models. The special cases of the proposed method see

Table 1. Given the log-likelihood function in (2.8), the following goal is to upgrade the parameter

set keeping in mind the end goal to maximize this log-likelihood function.

3. Maximizing the log-likelihood function

As yet, the discussion has focused on Υi j in (2.4) for showing the fundamental distributions. With

a particular finished objective to adjust the parameters Θ = {ρ j,µ j, β j, ν j,γ j}, we need to maximize

the likelihood function in (2.8). For all cases, the strategy is the maximum likelihood method,

based in a numerical scheme. The difference lies rather in the numerical scheme (direct estimation

or Newton-Raphson method), so remembering the finished objective to present accommodatingly,

we subdivide this range into three subsections.

3.1. Mean estimation. Following the logarithm is a monotonically increasing function, it is more

advantageous to maximize the likelihood L(Θ) in (2.8). The variable ωi j is defined as

ωi j =
ρ jΥi j(xi|θ j)∑K

m=1 ρmΥi j(xi|θm)
with

K∑
j=1

ωi j = 1. (3.1)

To maximize this function in (2.8), we consider the derivation of the function L(Θ) with the means

µ j at the (t + 1) iteration step. We have

∂L
∂µ j

=
N∑

i=1

ωi j

Υi j

Υi j

∂µ j

=
N∑

i=1

ωi j

{
|xi − µ j|

−1sign(µ j − xi)
(
γ j − 1− β jγ j|xi − µ j|

γ j+

(ν j − 1)β jγ j|xi − µ j|
γ j exp(−β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−1

)
−

1∫
∂ j

T(x|θ j)dx

[ ∫
∂ j

|x− µ j|
−1sign(µ j − x)

(
γ j − 1− β jγ j|x− µ j|

γ j+

(ν j − 1)β jγ j|x− µ j|
γ j exp(−β j|x− µ j|

γ j)(1− exp(−β j|x− µ j|
γ j))−1

)
T(x|θ j)dx

]}
,

(3.2)

where sign(x) is equal to 1, if x ≥ 0 and -1, otherwise. Notice that in (3.2), the term∫
∂ j

|x− µ j|
−1sign(µ j − x)

(
γ j − 1− β jγ j|x− µ j|

γ j+

(ν j − 1)β jγ j|x− µ j|
γ j exp(−β j|x− µ j|

γ j)(1− exp(−β j|x− µ j|
γ j))−1

)
T(x|θ j)dx,
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is the expectation of the function

|x− µ j|
−1sign(µ j − x)

(
γ j − 1− β jγ j|x− µ j|

γ j+

(ν j − 1)β jγ j|x− µ j|
γ j exp(−β j|x− µ j|

γ j)(1− exp(−β j|x− µ j|
γ j))−1

)
,

under the probability distribution T(x|θ j). At that point, this desire can be approximated as ( [16]

and [28]) ∫
∂ j

T(x|θ j)dx ≈
1
M

M∑
m=1

δ(vm j /Ω j), (3.3)

∫
∂ j

|x− µ j|
−1sign(µ j − x)

(
γ j − 1− β jγ j|x− µ j|

γ j+

(ν j − 1)β jγ j|x− µ j|
γ j exp(−β j|x− µ j|

γ j)(1− exp(−β j|x− µ j|
γ j))−1

)
T(x|θ j)dx ≈

1
M

M∑
m=1

δ(vm j |Ω j)|vm j − µ
(t)
j |
−1sign(µ(t)j − vm j)

(
γ(t)j − 1− β(t)j γ

(t)
j |vm j − µ

(t)
j |

γ
(t)
j +

(ν(t)j − 1)β(t)j γ
(t)
j |vm j − µ

(t)
j |

γ
(t)
j exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )(1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j ))−1

)
(3.4)

such that vm j ∼ T(x|θ(t)j ) indicates the random variable that is drawn from the probability distri-

bution T(x|θ(t)j ), and M is the number of random variables vmj. Note that M is an extensive whole

number worth. We utilize M = 106 for our experiments.

From (3.3) and (3.4),
∂L
∂µ j

in (3.2) has the following form

∂L
∂µ j
≈

N∑
i=1

ωi j

{
|xi − µ j|

−1sign(µ j − xi)
(
γ j − 1− β jγ j|xi − µ j|

γ j+

(ν j − 1)β jγ j|xi − µ j|
γ j exp(−β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−1

)
+ R j

}
,

(3.5)

where

R j =
1∑M

m=1 δ(vm j /Ω j)

M∑
m=1

δ(vm j /Ω j)|vm j − µ
(t)
j |
−1sign(µ(t)j − vm j)

[
γ(t)j − 1− β(t)j γ

(t)
j |vm j − µ

(t)
j |

γ
(t)
j +

(ν(t)j − 1)β(t)j γ
(t)
j |vm j − µ

(t)
j |

γ
(t)
j exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )(1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j ))−1

]
.

(3.6)

Using the theory of robust statistics ( [17], [38]), any estimate U is defined by an implicit equation:

N∑
i=1

f (xi −U) = 0⇒ %i =
f (xi −U)

xi −U
and U =

∑N
i=1 %ixi∑N
i=1ωi

. (3.7)

Now we can apply (3.7) to the
∂L
∂µ j

in (3.5), the solution of
∂L
∂µ j

= 0 yields the solutions µ j of at the

(t + 1) step:
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µ(t+1)
j =

∑N
i=1ω

(t)
i j

{
|xi − µ

(t)
j |
−2xiEi j + R j

}
∑N

i=1ω
(t)
i j |xi − µ

(t)
j |
−2Ei j

, (3.8)

where

Ei j =
(
γ j − 1− β jγ j|xi − µ j|

γ j+

(ν j − 1)β jγ j|xi − µ j|
γ j exp(−β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−1

)
.

3.2. Shape, scale and power parameters estimation. The accompanying step is to redesign the

examination of the parameter ν j. This incorporates holding interchange parameters settled and

improving the examination of ν j using the Newton Raphson method [ [13], [18], [39]]. Every cycle

requires the first and second derivatives of the objective function regarding the parameter ν j

ν(t+1)
j = ν(t)j −

∂L
∂ν j

∂2L
∂ν2

j
+ ε

∣∣∣∣
ν j=ν

(t)
j

, (3.9)

where ε is a scaling element. The derivative of the function L(Θ) regarding ν j is given by

∂L
∂ν j

=
N∑

i=1

ωi j

Υi j

Υi j

∂ν j
=

N∑
i=1

ωi j

{ 1
ν j

+ log
(
1− exp(−β j|xi − µ j|

γ j)
)
−

∫
∂ j

[
1
ν j
+ log

(
1− exp(−β j|x− µ j|

γ j)
)]

T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}
.

(3.10)

Using (3.3) and (3.4), the term
∂L
∂ν j

can be approximated as

∂L
∂ν j

∣∣∣∣
ν j=ν

(t)
j

≈

N∑
i=1

ωi j

{ 1
ν j

+ log
(
1− exp(−β j|xi − µ j|

γ j)
)
−

∑M
m=1 δ(vm j |Ω j)

(
1
ν
(t)
j

+ log
(
1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )

))
∑M

m=1 δ(vm j |Ω j)

}
.

(3.11)

The term
∂2L
∂ν2

j

is given by

∂2L
∂ν2

j

=
N∑

i=1

[
ωi j(1−ωi j)

{ 1
ν j

+ log
(
1− exp(−β j|xi − µ j|

γ j)
)
−

∫
∂ j

{
1
ν j
+ log

(
1− exp(−β j|x− µ j|

γ j)
)}

T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}2
+

(3.12)
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ωi j

{
−1
ν2

j

+
(
∫
∂ j

T(x|θ j) f dx)2

(
∫
∂ j

T(x|θ j)dx)2
−

∫
∂ j
(−1
ν2

j
+ f 2)T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}]
,

where

f (xi|θ j) =
1
ν j

+ log
(
1− exp(−β j|xi − µ j|

γ j)
)
. (3.13)

Also by using (3.3) and (3.4), the term
∂2L
∂ν2

j

can be approximated as

∂2L
∂ν2

j

∣∣∣∣
η j=η

(t)
j

≈

N∑
i=1

[
ω(t)

i j (1−ω
(t)
i j )

{ 1

ν(t)j

+ log
(
1− exp(−β(t)j |xi − µ

(t)
j |

γ
(t)
j )

)
−

∑M
m=1 δ(vm j |Ω j)

{
1
ν
(t)
j

+ log
(
1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )

)}
∑M

m=1 δ(vm j |Ω j)

}2
+

ω(t)
i j

{
−1

(ν(t)j )2
+

(
∑M

m=1 δ(vm j |Ω j)( f (t)))2

(
∑M

m=1 δ(vm j |Ω j))2
−

∑M
m=1 δ(vm j |Ω j)(

−1
(ν

(t)
j )2

) + ( f (t))2)∑M
m=1 δ(vm j |Ω j)

}]
,

(3.14)

where

f (t) =
1

ν(t)j

+ log
(
1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )

)
. (3.15)

For scale parameter estimation β j by using the Newton Raphson method, we have

β(t+1)
j = β(t)j −

∂L
∂β j

∂2L
∂β2

j
+ ε

∣∣∣∣
β j=β

(t)
j

. (3.16)

The derivative of the function L(Θ) with respect to β j is given by

∂L
∂β j

=
N∑

i=1

ωi j

Υi j

Υi j

∂β j

=
N∑

i=1

ωi j

{
g(xi|θ j) −

∫
∂ j

g(x|θ j)T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}
,

(3.17)

where

g(xi|θ j) =
1
β j
− |xi − µ j|

γ j + (ν j − 1)|xi − µ j|
γ j exp(−β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−1. (3.18)

Like to (3.3) and (3.4), the term
∂L
∂β j

can be approximated as

∂L
∂β j

∣∣∣∣
β j=β

(t)
j

≈

N∑
i=1

ω(t)
i j

{
g(xi|θ

(t)
j ) −

∑M
m=1 δ(vm j |Ω j)g(vm j |θ

(t)
j )∑M

m=1 δ(vm j |Ω j)

}
. (3.19)
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The calculation of the terms
∂2L
∂β2

j

is obtained as

∂2L
∂β2

j

=
N∑

i=1

[
ωi j(1−ωi j)

{
g(xi|θ j) −

∫
∂ j

g(x|θ j)T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}2
+

ωi j

{∂g(xi|θ j)

∂β j
+

(
∫
∂ j

T(x|θ j)g(x|θ j)dx)2

(
∫
∂ j

T(x|θ j)dx)2
−

∫
∂ j
(
∂g(x|θ j)

∂β j
+ g2(x|θ j))T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}]
,

(3.20)

where
∂g
∂β j

=
−1
β2

j

− (ν j − 1)|xi − µ j|
2γ j exp(−β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−2.

Similar to (3.3) and (3.4), the term
∂2L
∂β2

j

can be approximated as

∂2L
∂β2

j

∣∣∣∣
β j=β

(t)
j

≈

N∑
i=1

[
ω(t)

i j (1−ω
(t)
i j )

{
g(xi|θ j) −

∑M
m=1 δ(vm j |Ω j)g(vm j |θ j)∑M

m=1 δ(vm j |Ω j)

}2
+

ω(t)
i j

{
(
∂g(xi|θ j)

∂β j
)(t) +

(
∑M

m=1 δ(vm j |Ω j)g(t)(vm j |θ j))
2

(
∑M

m=1 δ(vm j |Ω j))2
−

∑M
m=1 δ(vm j |Ω j)((

∂g(vmj |θ j)

∂β j
)(t) + (g(t)(vm j |θ j))

2)∑M
m=1 δ(vm j |Ω j)

}]
,

(3.21)

where

g(t) =
1

β(t)j

− |vm j − µ
(t)
j |

γ
(t)
j

+ (ν(t)j − 1)|vm j − µ
(t)
j |

γ
(t)
j exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j )(1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j ))−1,

(3.22)

and

(
∂g(xi|θ j)

∂β j
)(t) =

−1
(β2

j )
(t)
− (ν(t)j − 1)|xi − µ

(t)
j |

2γ(t)j exp(−β(t)j |xi − µ
(t)
j |

γ
(t)
j )(1− exp(−β(t)j |xi − µ

(t)
j |

γ
(t)
j ))−2.

(3.23)

The power parameter estimation γ j by Newton Raphson technique is

γ(t+1)
j = γ(t)j −

∂L
∂γ j

∂2L
∂γ2

j
+ ε

∣∣∣∣
γ j=γ

(t)
j

. (3.24)

The derivative of the function L(Θ) with respect to γ j is given by

∂L
∂γ j

=
N∑

i=1

ωi j

Υi j

Υi j

∂γ j
=

N∑
i=1

ωi j

{
h(xi|θ j) −

∫
∂ j

h(x|θ j)T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}
, (3.25)
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where

h(xi|θ j) =
1
γ j

+ log |xi − µ j| − β j|xi − µ j|
γ j log |xi − µ j|×[

1− (ν j − 1) exp(−β j|xi − µ j|
γ j)(1− exp(−β j|xi − µ j|

γ j))−1
]
.

(3.26)

Such (3.3) and (3.4), the term
∂L
∂γ j

can be approximated as

∂L
∂γ j

∣∣∣∣
γ j=γ

(t)
j

≈

N∑
i=1

ω(t)
i j

{
h(xi|θ

(t)
j ) −

∑M
m=1 δ(vm j |Ω j)h(vm j |θ

(t)
j )∑M

m=1 δ(vm j |Ω j)

}
. (3.27)

The calculation of the terms
∂2L
∂γ2

j

is obtained as

∂2L
∂γ2

j

=
N∑

i=1

[
ωi j(1−ωi j)

{
h(xi|θ j) −

∫
∂ j

h(x|θ j)T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}2
+

ωi j

{∂h(xi|θ j)

∂γ j
+

(
∫
∂ j

T(x|θ j)h(x|θ j)dx)2

(
∫
∂ j

T(x|θ j)dx)2
−

∫
∂ j
(
∂h(x|θ j)

∂γ j
+ h2(x|θ j))T(x|θ j)dx∫
∂ j

T(x|θ j)dx

}]
,

(3.28)

where
∂h(xi|θ j)

∂γ j
=
−1
γ2

j

− β j|xi − µ j|
γ j log2

|xi − µ j|+

β j(ν j − 1)|xi − µ j|
γ j exp(−2β j|xi − µ j|

γ j)(1− exp(−β j|xi − µ j|
γ j))−2 log2

|xi − µ j|×[
− β j|xi − µ j|

γ j exp(β j|xi − µ j|
γ j) + exp(β j|xi − µ j|

γ j) − 1
]
.

Similar to (3.3) and (3.4), the term
∂2L
∂γ2

j

can be approximated as

∂2L
∂γ2

j

∣∣∣∣
γ j=γ

(t)
j

≈

N∑
i=1

[
ω(t)

i j (1−ω
(t)
i j )

{
h(xi|θ j) −

∑M
m=1 δ(vm j |Ω j)h(vm j |θ j)∑M

m=1 δ(vm j |Ω j)

}2
+

ω(t)
i j

{
(
∂h(xi|θ j)

∂γ j
)(t) +

(
∑M

m=1 δ(vm j |Ω j)h(t)(vm j |θ j))
2

(
∑M

m=1 δ(vm j |Ω j))2
−

∑M
m=1 δ(vm j |Ω j)((

∂h(vmj |θ j)

∂γ j
)(t) + (h(t)(vm j |θ j))

2)∑M
m=1 δ(vm j |Ω j)

}]
,

(3.29)

where

h(t)(vm j |θ j) =
1

γ(t)j

+ log |vm j − µ
(t)
j | − β

(t)
j |vm j − µ

(t)
j |

γ
(t)
j log |vm j − µ

(t)
j |×[

1− (ν(t)j − 1) exp(−β(t)j |vm j − µ
(t)
j |

γ
(t)
j )(1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j ))−1

]
,

(3.30)
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and

(
∂h(vm j |θ j)

∂γ j
)(t) =

−1

(γ(t)j )2
− β(t)j |xi − µ

(t)
j |

γ
(t)
j log2

|vm j − µ
(t)
j |+

β(t)j (ν(t)j − 1)|vm j − µ
(t)
j |

γ
(t)
j exp(−2β(t)j |vm j − µ

(t)
j |

γ
(t)
j )(1− exp(−β(t)j |vm j − µ

(t)
j |

γ
(t)
j ))−2 log2

|vm j − µ
(t)
j |

×

[
− β(t)j |vm j − µ

(t)
j |

γ
(t)
j exp(β(t)j |vm j − µ

(t)
j |

γ
(t)
j ) + exp(β(t)j |vm j − µ

(t)
j |

γ
(t)
j ) − 1

]
.

(3.31)

3.3. Prior probability estimation and the algorithm. In this part is to update the estimate of the

prior probability ρ j. Note that the prior probability ρ j should satisfy the constraints in (3.1). The

constraint
∑K

j=1 ρ j = 1 enables

ρ(t+1)
j =

1
N

N∑
i=1

ω(t)
i j . (3.32)

So far, the discussion has focused on estimating Θ(ρ j,µ j, β j, ν j,γ j) of the model. The various steps

of the proposed mixture model can be summarized as follows

Step 1: Initialize the parameters Θ(ρ j,µ j, β j, ν j,γ j). + The initialization of the parameters

Θ(ρ j,µ j, β j) in our method are the same as that of BGGMM [37]. The initial value of γ j is set

to 2 and the initial value of ν j is set to 1, for the simulation data. The initial value of γ j is set to 1

and the initial value of ν j is set to 2, for the real data, since for the real data in many of the image

processing examples the wavelet histogram fitting is approximately follows Gaussian distribution.

Step 2: Evaluate the variables ωi j in (3.1).

Step 3: Re-estimate the parameters Θ(ρ j,µ j, β j, ν j,γ j), where the most common value of scaling

parameter ε is 10−20 for our experiments.

+ Update the means by using (3.8).

+Update the parameter ν j in (3.9).

+Update the parameter β j in (3.16).

+Update the parameter γ j in (3.24).

+Update the prior probability ρ j in (3.32).

Step 4: Evaluate the function in (2.8) and check for the convergence of either the function, or the

parameter values. In the event that the convergence is not fulfilled, then go to step 2.

Looking at the mathematical expressions of the parameter learning of ρ j,µ j, β j, ν j,γ j, we can see

that our methodology, which is to maximize the higher bound on the data log-likelihood function,

offers a closed form M-step with computational intricacy like that of the standard EM algorithm.

In any case, for the standard EM algorithm, so as to estimate the parameter γ j, we have to set
∂L(Θ)

∂γ j
equal to zero and acquire the parameters γ j at the cycle (t + 1) step. Shockingly, as a

result of the complexity of equations L(Θ) in (2.8), there are no closed form overhaul mathematical

statements for parameter by embracing the standard EM algorithm. Conversely with the standard
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EM algorithm, our methodology can make it simple to evaluate the parameters ν j, β j and γ j from

perceptions by maximizing the higher bound on the data log-likelihood function as appeared

in (3.9), (3.16) and (3.24) separately. In the following segment, we will exhibit the robustness,

accuracy, and effectiveness of the proposed model, as compared with other methodologies.

4. Experiments

We show the execution of the proposed technique in different examinations. The execution

of BEWMM is contrasted with the WMM [25], RMM [31], EMM [23], EWMM [21], BWMM [35],

BRMM [36], GEMM [13], and BGEMM [37] all with their double truncated forms. These strategies

are instated by the K-mean algorithm like the introduction of the proposed technique. To gauge

the fitting precision of every model, we utilize the goodness of-fit measurement value χ2, which is

figured as takes after [13]:

χ2 =
∑

x

[O(x) − E(x)]2

E(x)
, (4.1)

where O(x), and E(x) speak to the observational and expected frequencies, individually, for the

watched information. Note that, all the thought about strategies were rehashed 10 runs and the

normal estimation of the measurement qualities is recorded. Also we use information criterions

such as Akaike information criterion (AIC) [40], correct Akaike information criterion (CAIC) [41]

and Bayesian information criterion (BIC) [42] to complement our results. In the main test the

histogram of the watched information are displayed in Fig.1 (a) and (b), where the watched

information are in the interval (- 0.8, 0.6). We generate 90000 random numbers from BEWMM

with parameters ρ1 = 5291
90000 , ρ2 = 37084

90000 , γ1 = 0.87, γ2 = 1.67, µ1 = −0.2, µ2 = 0.3, β1 = 15.4084,

β2 = 55.8645, ν1 = 2.3, and ν2 = 1.2. In this test, the quantity of segments for all thought about

techniques is allocated an estimation of 2 (K = 2). In Fig. 2(b), the WMM strategy is extremely

poor and the tail of the Weibull distribution is taller than required, with χ2 = 411.23. The GEMM,

RMM, and EWMM strategies enhance the outcome, with χ2 = 15.09, χ2 = 12.87, and χ2 = 12.73,

individually. Contrasted with WMM, GEMM, RMM, and EWMM, we find that BEWMM is the

most powerful and has the least χ2 = 12.56. In the second examination the histogram of the

watched information are exhibited in Fig.2 (a) and (b-g), where the watched information are in the

interval (0.1, 0.5). In this trial, the quantity of parts for all thought about techniques is appointed

an estimation of 1(K = 1). We generate 47524 random numbers from BEWMM with parameters

γ1 = 1.67, µ1 = 0.32, β1 = 55.8645, and ν1 = 1.2. In Fig. 2(b-g), the WMM is exceptionally poor and

the tail of the Weibull distribution is taller than required, with χ2 = 3299.2108. Also for the models

BWMM (χ2 = 3276.5167) with taller tail, EMM (χ2 = 1429.2013) and BEMM (χ2 = 1413.0125)

are middle taller, GEMM (χ2 = 33.6702), BGEMM (χ2 = 33.4213), BMM (χ2 = 32.06), EWMM

(χ2 = 28.77), RMM (χ2 = 29.23), and BRMM (χ2 = 29). We find that BEWMM is the most powerful

and has the least χ2 = 28.33. This shows, to fit the information, the proposed approach utilizes less

mind boggling models than the BWMM approaches. This perspective is of noticeable significance
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for image coding and compression applications ( [43], [44]). In the following investigation of Fig. 3,

we will clarify in subtle element why the execution of the proposed technique is superior to that of

these strategies. In this test, two illustrations with the histogram of the watched information, where

the watched information are in the interval (−0.5,−0.1). We generate 47524 random numbers from

BEWMM with parameters K = 1, γ1 = 1.5385, µ1 = −0.3, β1 = 44.8662, and ν1 = 1.3. Fig. 3 (b) and

(c) demonstrate the aftereffects of BΓMM, WMM, BWMM, BRMM, BGGMM, and our technique,

separately. As demonstrated, the techniques with the supporting locales (WMM, BWMM, and

BEMM) with (χ2 = 3201), (χ2 = 3198), and (χ2 = 1215) respectively are extremely poor, where the

tail of the double truncated Weibull distribution and the Weibull distribution are taller than other

models. the BEMM model (χ2 = 1413.0125) is middle taller. The GEMM (χ2 = 33.2109), BGEMM

(χ2 = 32.9183), EWMM (χ2 = 28.32), RMM (χ2 = 28.92), and BRMM (χ2 = 28.83) techniques

enhance the outcome. In this analysis, the BEMM is not sufficiently adaptable to fit the state of

the information. Contrasting these methodologies, we find that BEWMM (χ2 = 28.05) is the most

powerful. In correlation, the precision of the goodness-of-fit measurement esteem got by utilizing

our strategy is exceptionally high. As said over, the fundamental model of the proposed technique

is a speculation of the BGEMM, GEMM, WMM, BWMM, RMM, BRMM, EMM, EWMM and BEMM

models. In the fourth examination the histogram of the watched information are exhibited in Fig.4

(a) and (b-c), where the watched information are in the interval (-0.8, 0.6). We generate 90000

random numbers from BEWMM with parameters ρ1 = 5291
90000 , ρ2 = 37084

90000 , γ1 = 0.87, γ2 = 0.83,

µ1 = −0.2, µ2 = 0.3, β1 = 15.4084, β2 = 14.6282, ν1 = 2.3, and ν2 = 2.4. In this trial, the quantity

of parts for all thought about techniques is appointed an estimation of 2(K = 2). In Fig. 4(b-c),

the WMM is exceptionally poor with (χ2 = 1512.03), where the tail of the Weibull distribution

is taller than other models, after that the tails of EMM and BEMM models are in middle tall.

Also for the models EMM (χ2 = 632) and BEMM (χ2 = 627) have some poorness. The models

GEMM (χ2 = 147.83), and EWMM (χ2 = 143.02) are good for some extent. We find that BEWMM

is the most powerful and has the least (χ2 = 141.35). This shows, to fit the information, the

proposed approach utilizes less mind boggling models than the WMM approaches. The wavelet

approximation coefficient is an essential issue in PC vision as it assumes a noteworthy part in an

extensive variety of applications. In the following test, as appeared in Fig. 5, we measure the

precision of the proposed model for wavelet histogram fitting. In Fig. 5(a), we demonstrate to

one genuine picture. This picture (lena) of size (N = 90000) is disintegrated into three high-pass

subbands (CH, CV, CD) and one low-pass subband (CA). In this paper, the Daubechies channel

bank (db4) is utilized. In Fig. 5(b), we demonstrate the wavelet coefficients of the high-pass

subband(CH) with K = 2. In Fig. 5(c-g), we display the outcomes acquired by utilizing the WMM,

RMM, EMM, GEMM, and BEWMM strategies, separately. As demonstrated, the tail of the Weibull

distribution In Fig. 5(c) is taller than required and the tail of Rayleigh distribution In Fig. 5(e)

is shorter than required. In Fig. 5(d) and 5(f), EMM, and GEMM give an all the more intense

and adaptable methodology for demonstrating information contrasted with the WMM. As clear
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from the outcomes, the proposed technique outflanks different strategies with the most minimal

χ2 = 13.69. In Fig. 6 (a) the original image of size (N = 63948), in Fig. 6 (b) the estimate of the

wavelet coefficients of high-pass subband (CH), (c) BWMM (χ2 = 3300), (d) BEMM (χ2 = 15.07),

(e) BRMM (χ2 = 621.33), (f) BGEMM (χ2 = 13.96), and (g) BEWMM (χ2 = 13.75). The tail of the

double truncated Weibull distribution in Fig. 6(c) is taller than required and the tail of double

truncated Rayleigh distribution in Fig. 6(e) is shorter than required. In Fig. 7 (a) the original

image of size (N = 70917), in Fig. 7 (b) the estimate of the wavelet coefficients (level 3, CH) with

K = 2. In Fig. 7 (c) BWMM (χ2 = 1479.23), (d) BEMM (χ2 = 143.3), (e) RMM (χ2 = 230.09), and

(f) BGEMM (χ2 = 257), the proposed strategy beats different strategies with the most minimal

χ2 = 130.27. Also we have the tail of the double truncated Weibull distribution in Fig. 7(c) is

taller than required and the tail of Rayleigh distribution in Fig. 7(e) is shorter than required. In

Fig. 8, we explain the approximation of the wavelet coefficients (level 3, CH) with K = 1 for the

previous image, (a) BEMM (χ2 = 22.43), and (b) BEWMM (χ2 = 19.89). In the following analysis of

Fig. 9, we actualize the technique with the supporting districts (WMM, RMM, EMM, GEMM, and

BEWMM) for the genuine information. In this investigation, estimate of the wavelet coefficients

with K = 1. (a) The third unique image of size (N = 63948), (b) wavelet coefficients (level 2, CD),

(c) WMM (χ2 = 2150), (d) EMM (χ2 = 16), (e) RMM (χ2 = 2143.29), (f) GEMM (χ2 = 15.92), and

(g) BEWMM (χ2 = 15.73). As we can see, the exactness of WMM, and RMM are very poor. Be

that as it may, in this genuine trial, the tails of the Weibull distribution and Rayleigh distribution

are shorter than required compared to other models. the BEWMM is sufficiently adaptable to fit

the state of these genuine information. To complement our results the value of log-likelihood (L),

Akaike information criterion (AIC), correct Akaike information criterion (CAIC), and Bayesian

information criterion (BIC) test statistic for different models are given in Tables 2-10. We see that

BEWMM model is the best among those distributions since it has the smallest value of AIC, CAIC,

and BIC test.

5. Conclusions

A finite mixture model taking into account the demonstrating of the probability density

function, utilizing the finite exponentiated Weibull distribution of two tail, has been proposed

in this paper. The upside of the proposed distribution is that it has the adaptability to fit

distinctive states of watched information, for example, non-Gaussian and bounded support

information. We propose a substitute methodology so as to maximize the higher bound on the

information log-likelihood function with a specific end goal to gauge the model parameters.

Exploratory assessment of our calculation has been led utilizing manufactured and genuine

information, along these lines showing the incredible execution of the proposed model. One

constraint is that the proposed strategy performs just nearby improvement. Hence, it relies on

upon the beginning stage. What’s more, the terrible introduction can prompt awful results.

One conceivable answer for conquer this issue is to apply worldwide improvement keeping in

mind the end goal to appraise the model parameters. Another restriction is that our strategy is
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connected just to analyze univariate information. One conceivable expansion of this work is to

utilize the limited multivariate exponentiated Weibull mixture model for investigating associated

information. Another conceivable augmentation of this work for useful K setting or finding is to

receive the variational Bayesian (VB) learning, Akaike information criterion (AIC), correct Akaike

information criterion (CAIC), Bayesian information criterion (BIC), or minimum description

length (MDL) to naturally upgrade the parameter K.
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Figure 1. The estimated histogram with K = 2. (a) The histogram of the observed

data, (b) the estimated histogram of WMM (χ2 = 411.23), GEMM (χ2 = 15.09),

RMM (χ2 = 12.87), EWMM (χ2 = 12.73), and BEWMM (χ2 = 12.56).
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Figure 2. The estimated histogram with K = 1. (a) The histogram of the observed

data, (b) the estimated histogram of BWMM (χ2 = 3276.5167), BGEMM (χ2 =

33.4213), and BRMM (χ2 = 29), (c) WMM (χ2 = 3299.2108), and EWMM (χ2 =

28.77), (e) RMM (χ2 = 29.23), (f) GEMM (χ2 = 33.6702), (g) EMM (χ2 = 1429.2013),

BEMM (χ2 = 1413.0125), and BEWMM (χ2 = 28.33).
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Figure 3. The estimated histogram with K = 1. (a) The histogram of the observed

data, (b) the estimated histogram of BWMM (χ2 = 3198), BEMM (χ2 = 1215),

BGEMM (χ2 = 32.9183), and BRMM (χ2 = 28.83), (c) WMM (χ2 = 3201), GEMM

(χ2 = 33.2109), EWMM (χ2 = 28.32), RMM (χ2 = 28.92), and BEWMM (χ2 = 28.05).
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Figure 4. The estimated histogram with K = 2. (a) The histogram of the observed

data, (b) the estimated histogram of WMM (χ2 = 1512.03), GEMM (χ2 = 147.83),

and EWMM (χ2 = 143.02), (c) EMM (χ2 = 632), BEMM (χ2 = 627), and BEWMM

(χ2 = 141.35).
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Figure 5. Approximation of the wavelet coefficients with K = 1. (a) The original

image (lena), (b) wavelet coefficients of high-pass subband (CH), (c) WMM (χ2 =

3015.21), (d) EMM (χ2 = 16.03), (e) RMM (χ2 = 523.18), (f) GEMM (χ2 = 14.48), (g)

BGEMM (χ2 = 13.81), and (h) BEWMM (χ2 = 13.69).
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Figure 6. Approximation of the wavelet coefficients with K = 1. (a) The original

image, (b) wavelet coefficients of high-pass subband (CH), (c) BWMM (χ2 = 3300),

(d) BEMM (χ2 = 15.07), (e) BRMM (χ2 = 621.33), (f) BGEMM (χ2 = 13.96), and (g)

BEWMM (χ2 = 13.75).
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Figure 7. Approximation of the wavelet coefficients with K = 2. (a) The original

image, (b) wavelet coefficients (level 3, CH), (c) BWMM (χ2 = 1479.23), (d) BEMM

(χ2 = 143.3), (e) RMM (χ2 = 230.09), (f) BGEMM (χ2 = 257), and (g) BEWMM

(χ2 = 130.27).
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Figure 8. Approximation of the wavelet coefficients (level 3, CH) with K = 1 for the

previous image, (a) BEMM (χ2 = 22.43), (b) BGEMM (χ2 = 20.33), and (c) BEWMM

(χ2 = 19.89).
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Figure 9. Approximation of the wavelet coefficients with K = 1. (a) The original

image, (b) wavelet coefficients (level 2, CD), (c) WMM (χ2 = 2150), (d) EMM (χ2 =

16), (e) RMM (χ2 = 2143.29), (f) GEMM (χ2 = 15.92), (g) BGEMM (χ2 = 15.87), and

(h) BEWMM (χ2 = 15.73).
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Tables

Table 1. The comparative models are special cases of the BEWMM

EWMM BEWMM: δ(xi|Ω j) = 1, for all j ∈ {1, 2, 3, ..., K}
BGEMM BEWMM: γ j = 1, for all j ∈ {1, 2, 3, ..., K}
GEMM BEWMM: δ(xi|Ω j) = 1 and γ j = 1, for all j ∈ {1, 2, 3, ..., K}
BEMM BEWMM: ν j = 1 and γ j = 1, for all j ∈ {1, 2, 3, ..., K}
EMM BEWMM: δ(xi|Ω j) = 1, ν j = 1 and γ j = 1, for all j ∈ {1, 2, 3, ..., K}
BWMM BEWMM: ν j = 1, for all j ∈ {1, 2, 3, ..., K}
WMM BEWMM: δ(xi|Ω j) = 1 and ν j = 1, for all j ∈ {1, 2, 3, ..., K}
BRMM BEWMM: ν j = 1 and γ j = 2, for all j ∈ {1, 2, 3, ..., K}
RMM BEWMM: δ(xi|Ω j) = 1, ν j = 1 and γ j = 2, for all j ∈ {1, 2, 3, ..., K}

Table 2. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 1.a

The model -L AIC CAIC BIC

WMM 281.13 578.26 578.2616 653.5205

GEMM 274.39 564.78 564.7816 640.0405

RMM 224.66 461.32 461.3209 517.7654

EWMM 200.96 421.92 421.9224 515.9956

BEWMM 200.07 420.14 420.1424 514.2156

Table 3. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 2.a

The model -L AIC CAIC BIC

WMM 230.57 467.14 467.1405 493.447

BWMM 230.11 466.22 466.2205 492.527

EMM 299.08 462.16 464.1605 479.698

BEMM 228.53 461.06 463.0603 478.598

GEMM 217.33 440.66 440.6605 466.967

BGEMM 216.58 439.16 439.1605 465.467

RMM 208.04 420.08 420.0803 437.618

BRMM 207.96 419.92 419.9203 437.458

EWMM 204.91 413.82 413.8203 431.358

BEWMM 204.07 412.14 412.1403 429.678
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Table 4. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 3.a

The model -L AIC CAIC BIC

WMM 229.51 465.02 465.0205 491.327

BWMM 229.25 464.5 464.5005 490.807

BEMM 227.08 458.16 458.1603 475.698

GEMM 221.39 448.78 448.7805 475.087

BGEMM 220.14 446.28 446.2805 472.587

RMM 213.09 430.18 430.1803 447.718

EWMM 201.54 411.08 411.0808 446.156

BEWMM 201.32 410.64 410.6408 445.716

Table 5. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 4.a

The model -L AIC CAIC BIC

WMM 283.04 582.08 582.0816 657.3405

EMM 278.16 568.32 568.3209 624.7654

BEMM 227.51 567.02 567.0209 623.4659

GEMM 265.11 546.22 546.2216 621.4805

EWMM 252.88 525.76 525.7624 619.8356

BEWMM 252.67 525.34 525.3424 619.4156

Table 6. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 5.a

The model -L AIC CAIC BIC

WMM 229.37 464.74 464.7403 492.9627

RMM 226.5 457 457.0001 475.8151

EMM 219.33 442.66 442.6601 461.4751

GEMM 213.45 432.9 432.9003 461.1227

BGEMM 212.96 431.92 431.9203 460.1427

BEWMM 207.16 422.32 422.3204 459.9503
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Table 7. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 6.a

The model -L AIC CAIC BIC

BWMM 234.08 474.16 474.1604 501.3575

BRMM 228.92 461.84 461.8402 479.9717

BEMM 227.26 458.52 458.5202 476.6517

BGEMM 220.13 446.26 446.2604 473.4575

BEWMM 212.87 433.74 433.7406 470.0033

Table 8. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 7.a, with K = 2

The model -L AIC CAIC BIC

BWMM 294.31 604.62 604.622 677.9741

BGEMM 283.56 583.12 583.122 656.4741

RMM 278.05 568.1 568.1012 623.1156

BEMM 276.91 565.82 565.8212 620.8356

BEWMM 253.78 527.56 527.5631 619.2527

Table 9. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of models

fitted to data in Figure 7.a, with K = 1

The model -L AIC CAIC BIC

BEMM 228.4 460.8 460.8002 479.1385

BGEMM 222.24 450.48 450.4803 478.7027

BEWMM 216.55 441.1 441.1006 477.7771

Table 10. Log-likelihood (L), the corresponding AIC, CAIC and BIC values of

models fitted to data in Figure 9.a

The model -L AIC CAIC BIC

WMM 231.72 469.44 469.4404 496.6375

RMM 228.03 460.06 460.0602 478.1917

EMM 225.63 455.26 455.2602 473.3917

GEMM 219.29 444.58 444.5804 471.7775

BGEMM 218.73 443.46 443.4603 471.6827

BEWMM 213.4 434.8 434.8006 471.0633
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