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ABSTRACT. Accurately estimating the spatial lag model (SLM) in the presence of randomly 

missing data in the dependent variable poses a significant challenge. We introduce some 

modifications to the two-stage least squares with imputation (I2SLS) estimator previously 

proposed by Izaguirre [1] and Wang and Lee [2]. Our key contributions include (1) introducing 

the generalized nonlinear least squares (GNLS) estimator as an alternative imputation method to 

the previously used nonlinear least squares (NLS) approach in the literature, (2) incorporating 

additional instrument matrices (IM), and (3) implementing both partial and total imputations for 

all modified estimators. Through a Monte Carlo simulation (MCS) study, we evaluate the 

performance of these estimators across various scenarios of sample size, spatial weights matrix 

densities, and missingness rate. Results are compared in terms of coefficient bias and root mean 

squares errors (RMSE) for both the parameters and model fit. The findings indicate that all 

estimators demonstrate relatively strong performance in the context of estimator coefficients bias 

and RMSE. However, our modified estimators demonstrate slightly better performance 

compared to those previously documented in the literature in terms of overall RMSE. While both 

total and partial imputation approaches tend to produce similar results, partial imputation 

demonstrated superior performance in certain scenarios. Additionally, the estimators proved 

robust, maintaining their reliability across varying levels of spatial connectivity. However, higher 

missing data rates led to slightly increased bias and RMSE. 
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1. Introduction 

In recent years, there has been a revival of theoretical and empirical work on the spatial 

aspects of the economy, giving rise to a new field known as economic geography which has 

become one of the most exciting fields of contemporary economics. This area of research, 

pioneered by influential works for Krugman [3] and Fujita et al. [4], has gained prominence due 

to its exploration of the impact of location on various economic phenomena. As a result, there has 

been a growing need to employ spatial econometric techniques to analyze data and gain insights 

into spatial relationships and dependencies among variables. While SLM has become a 

fundamental tool in spatial data analysis, missing data in the dependent variable poses a 

significant challenge. With the increasing availability of geo-referenced data over the past few 

decades, researchers have access to vast amounts of information for spatial analysis. However, 

this data is often incomplete, with missing values arising from factors such as errors in data 

collection, non-response, or incomplete records. 

Missing data in SLM estimation presents a significant challenge, where leading to biased 

and inconsistent parameter estimates that can undermine the validity of spatial data analysis 

[[2],[5]]. Prior research by Yokoi [6] has demonstrated that missing observations in SLM can result 

in underestimated spatial autocorrelation and incorrect model selection, with negative 

autocorrelation often going undetected. These findings highlight the critical need for improved 

SLM estimation techniques in the presence of missing data. Our study addresses these challenges 

by building upon and modifying the existing alternatives of the I2SLS estimator proposed by 

Izaguirre [1] and Wang and Lee [2], specifically the best generalized I2SLS (IBG2SLS), series-type 

efficient I2SLS (ISTE2SLS), and asymptotic IBG2SLS (IABG2SLS). 

Our primary modifications focus on three key aspects of the estimation process: the 

imputation method, the number of imputations, and IM. While previous research by Izaguirre 

[1] and Wang and Lee [2] employed the NLS consistent estimator for imputation, we introduce 

the GNLS estimator as an alternative. Furthermore, we incorporate an additional IM used by Lee 

[7] for the best optimum generalized method of moment (BGMM) estimator and Wang and Lee 

[2] for GMM in SLM with missing data. 

To evaluate the effectiveness of our proposed estimators, we compare their performance 

to the PIABG2SLS.nls suggested by Izaguirre [1]. This benchmark was chosen because Izaguirre's 

findings indicated that while all estimators yielded quite similar results, the PIABG2SLS.nls 

showed slightly better performance in terms of variability for smaller sample sizes. 

The following sections are organized as follows: Section 2 outlines the SLM specification 

and assumptions. Section 3 reviews the estimation methods of the SLM in the case of both 

complete and incomplete data. Furthermore, we explore the challenges and limitations associated 

with SLM estimation when dealing with missing data. Section 4 discusses our modification of 
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Izaguirre's [1] approach and Wang and Lee [2] approach. We discuss the rationale behind this 

modification and outline the steps involved in implementing the modified estimators. Section 5 

provides the MCS study. Sections 6 and 7 highlight the main concluding remarks and outline the 

practical implications of our research and potential avenues for future exploration in this area. 

2. The Spatial Lag Model 

The SLM extends the standard linear regression model to incorporate spatial dependence. 

It captures the idea that the value of a dependent variable at a given location is influenced not 

only by its characteristics but also by the values of the same variable at neighboring locations. 

• Complete Data SLM Specification 

Suppose we have 𝑛 spatial units or locations in our analysis. The SLM can be expressed 

as follows: 

y𝑛 = λ0W𝑛y𝑛 + X𝑛𝛽0 + 𝜀𝑛 (1) 

where y𝑛 is an (𝑛1) vector containing the values of the dependent variable across all 

locations, λ0 is the spatial autoregressive parameter, W𝑛is an (𝑛𝑛) non-negative matrix of known 

constants capturing the connectivity or proximity among spatial units in our data, W𝑛y𝑛 is a 

spatially lagged dependent variable, X𝑛 is an (𝑛K) matrix representing the observed values of K 

exogenous explanatory variables for all 𝑛 spatial units, 𝛽0 is an (K1) vectors of coefficients that 

correspond to the explanatory variables in X𝑛, and 𝜀𝑛 is an (𝑛1) vector of 𝑖. 𝑖. 𝑑. disturbances 

such that ε𝑛~ (0, 𝜎2I𝑛). 

This SLM specification assumes that the dependent variable of unit (𝑖) is directly 

influenced by the spatially weighted dependent variable of neighboring units [8]. 

Model (1) can be written in a reduced form as:  

y𝑛 = 𝑆𝑛
−1(λ0)X𝑛𝛽0 + 𝑆𝑛

−1(λ0)𝜀𝑛 (2) 

where 𝑆𝑛(λ0) = (I𝑛 − λ0W𝑛). 

• Missing Data SLM Specification 

Now, considering the scenario where the dependent variable y𝑛 has missing values, we 

can rewrite the model (1) as shown in (3). In this equation, the vector [
y𝑛

𝑜

y𝑛
𝑚] represents the full 

vector of dependent variable values, where the first 𝑛𝑜 elements, y𝑛
𝑜, corresponding to the 

observed outcomes, and the last 𝑛𝑚 elements, y𝑛
𝑚, corresponding to the missing outcomes, where 

the total number of elements in the vector is 𝑛 = 𝑛𝑜 + 𝑛𝑚. 

[
y𝑛

𝑜

y𝑛
𝑚] = λ0W𝑛 [

y𝑛
𝑜

y𝑛
𝑚] + X𝑛𝛽0 + 𝜀𝑛 (3) 
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To systematically handle incomplete data structures, we use the selection matrices J𝑛
o =

[I𝑛𝑜×𝑛𝑜 , 0𝑛𝑜×𝑛𝑚] and J𝑛
𝑚 = [0𝑛𝑚×𝑛𝑜 , I𝑛𝑚×𝑛𝑚]. Where J𝑛

𝑜 is an (𝑛0 × 𝑛) matrix that is used to extract 

the observed elements from the full vector of y𝑛, creating a sub-vector of observed outcomes, y𝑛
𝑜 . 

While, J𝑛
𝑚 is an (𝑛𝑚 × 𝑛) matrix that is used to select the unobserved elements from the full vector 

of y𝑛, resulting in a sub-vector of missing outcomes y𝑛
𝑚 . The matrices I𝑛𝑜×𝑛𝑜 and I𝑛𝑚×𝑛𝑚 are 

identity matrices of sizes (𝑛𝑜 × 𝑛𝑜) and (𝑛𝑚 × 𝑛𝑚) respectively, while  0𝑛𝑜×𝑛𝑚  and 0𝑛𝑚×𝑛𝑜 are 

zero matrices of sizes (𝑛𝑜 × 𝑛𝑚) and (𝑛𝑚 × 𝑛0) respectively. 

By applying the selection matrix J𝑛
o on the model (3) to choose the observed elements 

from 𝑦𝑛. Thus: 

𝑦
𝑛
𝑜 = 𝜆0J𝑛

oW𝑛 [
𝑦

𝑛
𝑜

𝑦
𝑛
𝑚] + J𝑛

oX𝑛𝛽0 + J𝑛
o𝜀𝑛 (4) 

• SLM Assumptions  

A1. Assumptions of Spatial Weights Matrix: 

The spatial weights matrix, i.e., W𝑛 are non-stochastic matrices with zero diagonals.  

The spatial transformation matrices, i.e., 𝑆𝑛(λ) = (I𝑛 − λW𝑛) are invertible on the compact 

parameter spaces of spatial parameters λ. 

The admissible parameter space for the true spatial parameters λ0 is [-1, 1]. 

Spatial matrices, W𝑛 and 𝑆𝑛
−1(λ),  before W𝑛 is row-standardized, are uniformly bounded 

in both rows and columns sum in absolute value as 𝑛 goes to infinity. This assumption originated 

by Kelejian and Prucha [[9],[10]] to ensure that  𝑆𝑛(λ) is not singular. Furthermore, this allows us 

to express 𝑆𝑛
−1(λ) = ∑ λ𝑘W𝑛

𝑘∞
𝑘=0 .  

A2. Assumptions of the Error Components: The elements of the disturbance vector 𝜀𝑛, i.e., 

{εi}, 𝑖 = 1, ⋯ , 𝑛 are 𝑖. 𝑖. 𝑑 with zero mean and finite variance 𝜎0
2, and 0 < 𝜎0

2 < ∞. 

A3. Assumptions on Covariates: The regressors X𝑛 are non-stochastic and have full 

column rank. Their elements are uniformly bound constants.  Additionally, as 𝑛 approaches 

infinity, the limit of 
1

𝑛
X𝑛

′ X𝑛 exist and is non-singular. 

A4. Assumptions of the Observed Data: Proportion 
𝑛0

𝑛
 of observations tends to c, where c 

is a finite positive constant, as 𝑛 goes to infinity. This assumption indicates that the number of 

observed observations should not be too small relative to 𝑛. 

A5. Assumptions of the Instrument Matrix:  Let 𝑄𝑛 and 𝑄𝑛
𝑜 be (𝑛 × K) and (𝑛𝑜 × K) 

instrument matrices, respectively, constructed as functions of X𝑛 and W𝑛, then: 

The elements of 𝑄𝑛
𝑜 = J𝑛

𝑜𝑄𝑛  should be uniformly bounded. 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
𝑄𝑛

𝑜′𝑄𝑛
𝑜 exists and is a non-singular matrix. 
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𝑙𝑖𝑚
𝑛→∞

1

𝑛
𝑄𝑛

𝑜′ [𝐽𝑛
𝑜𝐺𝑛𝑋𝑛𝛽0 𝐽𝑛

𝑜𝑋𝑛] has full column rank (K + 1), where 𝐺𝑛 = 𝑊𝑛𝑆𝑛
−1(𝜆0). 

𝑙𝑖𝑚
𝑛→∞

1

𝑛
𝑄𝑛

′  𝑆𝑛(λ̂)𝐽𝑛
𝑜′𝐽𝑛

𝑜𝑆𝑛
−1(λ̂) [𝐺𝑛𝑋𝑛𝛽0 𝑋𝑛] has full column rank (K + 1) for any feasible 

value λ in ᴧ.  Where 𝑄𝑛
′ and J𝑛

𝑜′denote the transposes of the matrices of 𝑄𝑛 and J𝑛
𝑜, and λ̂ is the 

estimated value of λ.                                                                                       

These assumptions are frequently made in spatial econometrics; see [[1],[2],[9],[11]] 

among others. 

3. The Estimation Methods of the SLM 

• Review of Estimation Methods for SLM with Complete Data 

Because the ordinary least squares estimator is inconsistent in the presence of a spatial 

weight matrix, much of the early work has focused on a maximum likelihood (ML) approach [12]. 

the ML estimators for the SLM have been derived and applied by Anselin [13], amongst others. 

Anselin et al. [14] mentioned that this method faces significant computational complexities when 

computing the Jacobian term. |Sn|, i.e. the determinant of (n × n) matrix. Although Ord [15], 

Smirnov and Anselin [16], and others have suggested some simplification or approximation 

techniques to address this issue. The computation process remains challenging, especially for 

large sample sizes and general spatial weights matrices. To overcome these challenges, Kelejian 

and Prucha [9] proposed a 2SLS estimator, and Lee [17] further discussed the best one (B2SLS) 

within the class of instrumental variables. The proposed 2SLS estimators are computationally 

simpler but inefficient relative to ML estimators. In contrast, Lee [11] demonstrated the 

consistency and asymptotic normality of the quasi-ML (QML) estimator. Building upon this, Lee 

[7] proposed a general GMM framework for estimating SLM that combines both the advantages 

of computational simplicity and efficiency. In general, GMM estimation for SLM can be 

computationally simpler than the ML or QML methods. Additionally, it may be asymptotically 

more efficient than the 2SLS estimator and may be asymptotically efficient as the ML estimator.  

• Review of Estimation Methods for SLM with Missing Data 

To address the issue of missing data, several methods have been developed. Some of these 

methods include listwise deletion, Pairwise Deletion, Expectation-Maximization (EM) algorithm, 

and multiple imputation. Detailed information about these methods can be found in works by 

Dempster et al. [18], Little and Rubin [19], and Yaseen [20]. However, when we deal with spatial 

models, certain methods, such as listwise deletion, aren’t suitable due to the interdependence 

among the components of the dependent variable vector. Simple deletion of unobserved data 

from samples may lead to inconsistent estimates, as highlighted by Wang and Lee [2]. Table 1 

presents a summary of the proposed methods for handling missing data for SLM in the literature: 
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Table 1. The Proposed Methods for Handling Missing Data in SLM in Literature 

No. Authors 
Missing Data 

Mechanism* 
Variable The Used Methods 

1 LeSage and Pace [21] MAR & MNAR Response MLE with EM Algorithm 

2 Wolfgang et al. [22] ----- Response 
ML and Bayesian Chow-Lin 

Procedure 

3 Wang and Lee [2] MAR Response GMM & NLS & TIBG2SLS.nls 

4 Boehmke et al. [5] MCAR & MAR 
Response & 

Covariates 

EM Algorithm for Imputation 

and Estimation 

5 
Suesse and Zammit-

Mangion [23] 
MAR Response Modified EM Algorithm 

6 Amitha et al. [24] MAR Response 
Stochastic Regression 

Imputation 

7 Izaguirre [1] MAR Response 
PIBG2SLS.nls & PISTE2SLS.nls 

& PIABG2SLS.nls  

8 Seya et al. [25] MNAR Response Modifying BMCMC1 

9 Teng et al. [26] MAR Covariates MCMCINLA & EM & FIML 

Note: MAR: Missing Completely at Random, MAR: Missing at Random, MNAR: Missing 

not at Random, TIBG2SLS.nls: Best-Generalized 2SLS with NLS Total Imputation, PIBG2SLS.nls: 

Best-Generalized 2SLS with NLS Partial Imputation, PISTE2SLS.nls: Series-Type Efficient 2SLS 

with NLS Partial Imputation, BMCMC: Bayesian Markova Chain Monte Carlo, MCMCINLA: 

Markova Chain Monte Carlo Integrated Nested Laplace Approximation, FIML: Full Information 

Maximum Likelihood 

4. Proposed Estimators  

In practice, many empirical researchers “fill in” missing observations, and then estimate the 

filled equation by conventional methods. Therefore, in line with the approach suggested by 

Izaguirre [1] and Wang and Lee [2], we replace y𝑛
𝑚 in (3) by its expectation. This expectation can 
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be expressed as 𝐸(y𝑛
𝑚) = E(J𝑛

𝑚y𝑛) = J𝑛
𝑚E(y𝑛) = J𝑛

𝑚𝑆𝑛
−1(λ0)X𝑛𝛽0 = 𝐹𝑛(θ0), where 𝐹𝑛(θ0) depends 

on unknown parameters, θ0 = [λ0 𝛽0
′ ]′ . Consequently, it is necessary to estimate θ0  using a 

consistent estimator. In this context, both Izaguirre [1] and Wang and Lee [2] used NLS as an 

initial consistent estimate for imputing missing observations and then estimate the imputed 

equation by the 2SLS method. 

• Modification of Izaguirre’s (2021) Approach 

Izaguirre’s [1] approach revolves around replacing the unobserved observations, y𝑛
𝑚, in only 

the spatial lag term of dependent variables in (4) by its expected value, 𝐹𝑛(θ0).  Through some 

algebraic manipulations, this replacement leads to the derivation of the following equation: 

y𝑛
𝑜 = λ0J𝑛

𝑜W𝑛 [
y𝑛

𝑜

𝐹𝑛(θ0)
] + J𝑛

𝑜X𝑛𝛽0 + J𝑛
𝑜𝑢𝑛, 

𝑢𝑛 = [λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚𝑆𝑛

−1(λ0) + I𝑛]𝜀𝑛 (5) 

where I𝑛 is an (𝑛 × 𝑛) identity matrix. By replacing θ0 in (5) with an initial consistent estimate, 

𝜃, and performing further algebraic manipulations. The equation (6) is obtained: 

y𝑛
𝑜 = λ0J𝑛

𝑜W𝑛 [
𝑦𝑛

𝑜

𝐹𝑛(𝜃)
] + J𝑛

𝑜X𝑛𝛽0 + J𝑛
𝑜�̃�𝑛, 

�̃�𝑛 = 𝑢𝑛 − λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚𝑆𝑛

−1(λ0)C𝑛(𝜃 − 𝜃0) 

+λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚R𝑛(λ̂ − λ0) (6) 

where 

(𝜃 − 𝜃0) = [
(λ̂ − λ0)

(β̂ − β0)
], 

𝐶𝑛 = [𝐺𝑛X𝑛𝛽0 X𝑛], 

R𝑛 = 𝑆𝑛
−1(λ̂)𝐺𝑛X𝑛�̂� − 𝑆𝑛

−1(λ0)𝐺𝑛X𝑛𝛽0, 

𝐺𝑛 = W𝑛𝑆𝑛
−1(λ0) (7) 

Unlike the approach of Izaguirre [1] and Wang and Lee [2], we utilized GNLS instead of NLS 

consistent estimator. The asymptotic distribution of the GNLS estimator is provided in (8).  

√𝑛(𝜃𝑔𝑛𝑙𝑠 − θ0) = [
1

𝑛
𝐶𝑛

′ 𝐵𝑛
′ Ω𝑣,𝑛

−1  𝐵𝑛𝐶𝑛]
−1

 

[
1

√𝑛
𝐶𝑛

′ 𝐵𝑛
′ Ω𝑣,𝑛

−1  𝐵𝑛𝜀𝑛 ] + 𝑜𝑝(1) 

(8) 

where Ω𝑣,𝑛 represents the variance-covariance matrix of the error terms for the reduced model 

in equation (4). This matrix can be rewritten as: 

Ω𝑣,𝑛 = 𝑣𝑎𝑟(𝑣𝑛) = 𝑣𝑎𝑟(𝐵𝑛𝜀𝑛) = σ0
2𝐵𝑛𝐵𝑛

′ ; 

 𝐵𝑛 =  J𝑛
𝑜𝑆𝑛

−1(λ0) (9) 

Replacing from (8) into error term of (6) and using some algebra, we obtain:   
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y𝑛
𝑜 = λ0J𝑛

𝑜W𝑛 [
𝑦𝑛

𝑜

𝐹𝑛(�̂�𝑔𝑛𝑙𝑠)
] + J𝑛

𝑜X𝑛𝛽0 + J𝑛
𝑜�̃�𝑛, 

�̃�𝑛 = H𝑛𝜀𝑛 + R∗ 

(10) 

where 

H𝑛 = λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚𝑆𝑛

−1(λ0) + I𝑛 − λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚 

𝑆𝑛
−1(λ0)C𝑛[𝐶𝑛

′ 𝐵𝑛
′ Ω𝑣,𝑛

−1 𝐵𝑛𝐶𝑛]
−1

𝐶𝑛
′ 𝐵𝑛

′ Ω𝑣,𝑛
−1 𝐵𝑛, 

𝑅∗ = λ0W𝑛J𝑛
𝑚′

J𝑛
𝑚 [R𝑛(λ̂ − λ0) − 𝑆𝑛

−1(λ0)C𝑛𝑙𝑘+1𝑜𝑝 (
1

√𝑛
)] 

(11) 

𝑎𝑛𝑑 𝑙𝑘+1is an (𝑘 + 1 × 1) vector of ones.  

Given the above, after imputing θ0 by 𝜃𝑔𝑛𝑙𝑠 in (10), we need to estimate the following model by 

2SLS: 

y𝑛
𝑜 = J𝑛

𝑜�̃�𝑛 θ0 + J𝑛
𝑜�̃�𝑛 (12) 

where 

�̃�𝑛 = [W𝑛�̃�𝑛 X𝑛],      �̃�𝑛 = [
y𝑛

𝑜

𝐹𝑛(�̂�𝑔𝑛𝑙𝑠)
],   

θ0 = (
λ0

β0
′ ) 

(13) 

• Modification of Wang and Lee's (2013) Approach 

Wang and Lee's [2] approach revolve around replacing the unobserved observations, y𝑛
𝑚, in 

both the right and left-hand sides of (3) by its expected value, 𝐹𝑛(θ0).  Through some algebraic 

manipulations, this replacement leads to the derivation of the following equation: 

[
𝑦𝑛

𝑜

𝐹𝑛(𝜃)
] = λ0W𝑛 [

𝑦𝑛
𝑜

𝐹𝑛(�̂�)
] + X𝑛𝛽0 + �̆�𝑛, 

�̆�𝑛  = 𝑇𝑛𝜀𝑛 + S𝑛(λ0)J𝑛
𝑚′J𝑛

𝑚𝑆𝑛
−1(λ0)C𝑛(𝜃 − 𝜃0) + S𝑛(λ0)J𝑛

𝑚′J𝑛
𝑚𝑆𝑛

−1R𝑛(λ̂ − λ0), 

𝑇𝑛 = S𝑛(λ0)J𝑛
𝑜′ 𝐵𝑛 (14) 

By replacing (𝜃 − 𝜃0) in (14) with the asymptotic distribution of the GNLS estimator in (8) and 

performing further algebraic manipulations. The equation (15) is obtained: 

�̆�𝑛  = H𝑛
∗

𝜀𝑛 + R𝑛
∗∗ (15) 

where 

𝐻𝑛
∗ = 𝑇𝑛 + 𝑆𝑛(𝜆0)𝐽𝑛

𝑚′𝐽𝑛
𝑚𝑆𝑛

−1(𝜆0)𝐶𝑛 [
1

𝑛
𝐶𝑛

′ 𝐵𝑛
′ 𝛺𝑣,𝑛

−1  𝐵𝑛𝐶𝑛]
−1

𝐶𝑛
′ 𝐵𝑛

′ 𝛺𝑣,𝑛
−1  𝐵𝑛, 

𝑅𝑛
∗∗ = 𝑆𝑛(𝜆0)𝐽𝑛

𝑚′𝐽𝑛
𝑚 [𝑅𝑛(�̂� − 𝜆0) + 𝑆𝑛

−1(𝜆0)𝐶𝑛𝑙𝑘+1𝑜𝑝 (
1

√𝑛
)] 

(16) 

Following Wang and Lee [2], the Moore-Penrose generalized inverse of H𝑛H𝑛
′ = 𝐻𝑛

+′
𝐻𝑛

+can be 

used, because H𝑛H𝑛
′  is non-invertible, where; 
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𝐻𝑛
+ = H𝑛,𝑐

′ (H𝑛,𝑐H𝑛,𝑐
′ )

−1
(H𝑛,𝑏H𝑛,𝑏

′ )
−1

H𝑛,𝑏
′ , 

H𝑛,𝑏 = S𝑛(λ0)[J𝑛
𝑜′ + J𝑛

𝑚′J𝑛
𝑚𝑆𝑛

−1(λ0)C𝑛 [
1

𝑛
𝐶𝑛

′ 𝐵𝑛
′ Ω𝑣,𝑛

−1  𝐵𝑛𝐶𝑛]
−1

𝐶𝑛
′ 𝐵𝑛

′ Ω𝑣,𝑛
−1 ], 

H𝑛,𝑐 =  𝐵𝑛 (17) 

Table 2 provides comprehensive information regarding the notable distinctions between our 

proposed estimator and the estimators introduced by Izaguirre [1] and Wang and Lee [2]. Table 

3 and Table 4 present the final formula of I2SLS estimators with our modification. 

5. Monte Carlo Simulation Study  

In this section, we compare the performance of the modified estimators with other estimators 

provided in the literature. The MCS study considers different scenarios that encompass various 

factors affecting the estimation process. These factors include sample size, spatial weights matrix 

density level, and the percentage of missing data. 

 
Table 2. Comparison of Our Proposal with Related Estimators in Literature 

Estimator Instrument Matrix 
Our Proposals 

Izaguirre 

[1] 

Wang 

and Lee 

[2] 

Type of Imputation 

IBG2SLS1 Lee [17] 𝐶𝑛 = [𝑊𝑛𝑆𝑛
−1(𝜆0)𝑋𝑛𝛽0 𝑋𝑛] 

Partial/ 

Total 
---- Partial Total 

ISTE2SLS 
Kelejian et 

al. [27] 

�̂�𝑛
𝑘𝑝

= [∑ �̂�0
𝑘

𝑟𝑛

𝑘=0

𝑊𝑛
𝑘+1𝑋𝑛�̂�0 𝑋𝑛] ; 

𝑟𝑛 is a sequence of natural numbers, such 

that 𝑟𝑛 ↑ ∞. 

Partial/ 

Total 
Total Partial ---- 

IABG2SLS Lee [17] 𝐶𝑛 = [𝑊𝑛𝑆𝑛
−1(𝜆0)𝑋𝑛𝛽0 𝑋𝑛] 

Partial/ 

Total 
Total Partial ---- 

IBG2SLS2 Lee [7] 

𝑄𝑛.1

= [𝑊𝑛𝑆𝑛
−1(𝜆0) −

1

𝑛
𝑡𝑟(𝑊𝑛𝑆𝑛

−1(𝜆0))𝐼𝑛 𝐶𝑛] 

Partial/ 

Total 

Partial/ 

Total 
---- ---- 

IBG2SLS3 
Wang and 

Lee [2] 

𝑄𝑛.2 = 𝑇𝑛
′+𝐶𝑛; 

𝑇𝑛
+ =  𝐵𝑛

′ [ 𝐵𝑛 𝐵𝑛′]−1[J𝑛
𝑜𝑆𝑛(𝜆0)′𝑆𝑛(𝜆0)J𝑛

𝑜′]−1 
J𝑛

𝑜𝑆𝑛(𝜆0)′ 

Partial/ 

Total 

Partial/ 

Total 
---- ---- 

Imputation Method GNLS NLS NLS NLS 
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Table 3. Our Proposal with Partial Imputation 

Estimator 
Instrument 

Matrix 
Estimator based on Partial Imputation Notations 

PIBG2SLS1 Lee [17] 
�̂�𝑝𝑖𝑏𝑔2𝑠𝑙𝑠1,𝑔𝑛𝑙𝑠 = [𝑍𝑛

𝑜′
𝛺𝑢𝑛

0 ,𝑛
−1 𝐶𝑛

𝑜 (𝐶𝑛
𝑜′𝛺𝑢𝑛

0 ,𝑛
−1 𝐶𝑛

𝑜)
−1

𝐶𝑛
𝑜′𝛺𝑢𝑛

0 ,𝑛
−1 𝑍𝑛

𝑜]
−1

 

 𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 𝐶𝑛
𝑜 (𝐶𝑛

𝑜′𝛺𝑢𝑛
0 ,𝑛

−1 𝐶𝑛
𝑜)

−1

𝐶𝑛
𝑜′𝛺𝑢𝑛

0 ,𝑛
−1 𝑦𝑛

𝑜 

Ω𝑢𝑛
0 ,n 

=  𝐻𝑛
𝑜𝐻𝑛

𝑜′, 

𝐻𝑛
𝑜 = J𝑛

𝑜H𝑛, 

𝐶𝑛
𝑜 = J𝑛

𝑜𝐶𝑛, 

𝑍𝑛
𝑜 = J𝑛

𝑜𝑍𝑛 

PISTE2SLS 
Kelejian et 

al. [27] 

�̂�𝑝𝑖𝑠𝑡2𝑠𝑙𝑠,𝑔𝑛𝑙𝑠 = [𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 �̂�𝑛
𝑜𝑘𝑝

(�̂�𝑛
𝑜𝑘𝑝′

𝛺𝑢𝑛
0 ,𝑛

−1 �̂�𝑛
𝑜𝑘𝑝

)
−1

�̂�𝑛
𝑜𝑘𝑝′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑍𝑛
𝑜]

−1

 

 𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 �̂�𝑛
𝑜𝑘𝑝

(�̂�𝑛
𝑜𝑘𝑝′

𝛺𝑢𝑛
0 ,𝑛

−1 �̂�𝑛
𝑜𝑘𝑝

)
−1

�̂�𝑛
𝑜𝑘𝑝′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑦𝑛
𝑜 

�̂�𝑛
𝑜𝑘𝑝

= J𝑛
𝑜�̂�𝑛

𝑘𝑝
 

PIABG2SLS Lee [17] �̂�𝑝𝑖𝑎𝑏𝑔2𝑠𝑙𝑠,𝑔𝑛𝑙𝑠 =  (𝐶𝑛
𝑜′𝛺𝑢𝑛

0 ,𝑛
−1 𝐶𝑛

𝑜)
−1

𝐶𝑛
𝑜′𝛺𝑢𝑛

0 ,𝑛
−1 𝑦𝑛

𝑜 ----- 

PIBG2SLS2 Lee [7] 
�̂�𝑝𝑖𝑏𝑔2𝑠𝑙𝑠2,𝑔𝑛𝑙𝑠 = [𝑍𝑛

𝑜′
𝛺𝑢𝑛

0 ,𝑛
−1 𝑄𝑛.1

0 (𝑄𝑛.1
0 ′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑄𝑛.1
0 )

−1

𝑄𝑛.1
0 ′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑍𝑛
𝑜]

−1

 

 𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑄𝑛.1
0 (𝑄𝑛.1

0 ′
𝛺𝑢𝑛

0 ,𝑛
−1 𝑄𝑛.1

0 )
−1

𝑄𝑛.1
0 ′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑦𝑛
𝑜 

𝑄𝑛.1
0 = J𝑛

𝑜𝑄𝑛.1 

PIBG2SLS3 
Wang and 

Lee [2] 

�̂�𝑝𝑖𝑏𝑔2𝑠𝑙𝑠3,𝑔𝑛𝑙𝑠 = [𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑄𝑛.2
0 (𝑄𝑛.2

0 ′
𝛺𝑢𝑛

0 ,𝑛
−1 𝑄𝑛.2

0 )
−1

𝑄𝑛.2
0 ′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑍𝑛
𝑜]

−1

 

 𝑍𝑛
𝑜′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑄𝑛.2
0 (𝑄𝑛.2

0 ′
𝛺𝑢𝑛

0 ,𝑛
−1 𝑄𝑛.2

0 )
−1

𝑄𝑛.2
0 ′

𝛺𝑢𝑛
0 ,𝑛

−1 𝑦𝑛
𝑜 

𝑄𝑛.2
0 = J𝑛

𝑜𝑄𝑛.2 

 

Table 4. Our Proposal with Total Imputation 

Estimator 
Instrument 

Matrix 
Estimator based on Total Imputation 

TIBG2SLS1 Lee [17] 
�̂�𝑡𝑖𝑏𝑔2𝑠𝑙𝑠1,𝑔𝑛𝑙𝑠 = [𝑍𝑛

′ 𝐻𝑛
+′

𝐻𝑛
+𝐶𝑛(𝐶𝑛

′𝐻𝑛
+′

𝐻𝑛
+𝐶𝑛)

−1
𝐶𝑛′ 𝐻𝑛

+′
𝐻𝑛

+𝑍𝑛]
−1

 

 𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+𝐶𝑛(𝐶𝑛
′𝐻𝑛

+′
𝐻𝑛

+𝐶𝑛)
−1

𝐶𝑛
′𝐻𝑛

+′
𝐻𝑛

+�̃�𝑛 

TISTE2SLS 
Kelejian et 

al. [27] 

�̂�𝑡𝑖𝑠𝑡2𝑠𝑙𝑠,𝑔𝑛𝑙𝑠 = [𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+�̂�𝑛
𝑘𝑝

(�̂�𝑛
𝑘𝑝′

𝐻𝑛
+′

𝐻𝑛
+�̂�𝑛

𝑘𝑝
)

−1

�̂�𝑛
𝑘𝑝′

𝐻𝑛
+′

𝐻𝑛
+𝑍𝑛]

−1

 

 𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+�̂�𝑛
𝑘𝑝

(�̂�𝑛
𝑘𝑝′

𝐻𝑛
+′

𝐻𝑛
+�̂�𝑛

𝑘𝑝
)

−1

�̂�𝑛
𝑘𝑝′

𝐻𝑛
+′

𝐻𝑛
+�̃�𝑛 

TIABG2SLS Lee [17] �̂�𝑡𝑖𝑎𝑏𝑔2𝑠𝑙𝑠,𝑔𝑛𝑙𝑠 =  (𝐶𝑛
′𝐻𝑛

+′
𝐻𝑛

+𝐶𝑛)
−1

𝐶𝑛
𝑜′𝐻𝑛

+′
𝐻𝑛

+�̃�𝑛 

TIBG2SLS2 Lee [7] 
�̂�𝑡𝑖𝑏𝑔2𝑠𝑙𝑠2,𝑔𝑛𝑙𝑠 = [𝑍𝑛

′ 𝐻𝑛
+′

𝐻𝑛
+𝑄𝑛.1(𝑄𝑛.1

′𝐻𝑛
+′

𝐻𝑛
+𝑄𝑛.1)

−1
𝑄𝑛.1

′𝐻𝑛
+′

𝐻𝑛
+𝑍𝑛]

−1

 

 𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.1(𝑄𝑛.1
′𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.1)
−1

𝑄𝑛.1
′𝐻𝑛

+′
𝐻𝑛

+�̃�𝑛 

TIBG2SLS3 
Wang and 

Lee [2] 

�̂�𝑡𝑖𝑏𝑔2𝑠𝑙𝑠3,𝑔𝑛𝑙𝑠 = [𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.2(𝑄𝑛.2
′𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.2)
−1

𝑄𝑛.2
′𝐻𝑛

+′
𝐻𝑛

+𝑍𝑛]
−1

 

 𝑍𝑛
′ 𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.2(𝑄𝑛.2
′𝐻𝑛

+′
𝐻𝑛

+𝑄𝑛.2)
−1

𝑄𝑛.2
′𝐻𝑛

+′
𝐻𝑛

+�̃�𝑛 
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• Simulation Algorithm 

The simulation algorithm can be detailed in the following steps: 

1. Determine the factors of our MCS study: We generate two explanatory variables, drawing 

their observations from a normal distribution (0, 10), while the error terms are defined 

as 𝜀𝑖~𝑖. 𝑖. 𝑑 N(0, 𝜎𝜀
2 = 1). To assess the impact of sample size, we employ two different values: 

𝑛 = (50, 100) , which are deemed sufficient as larger samples yield only marginal 

improvements in results. The coefficient of spatial dependence, λ, is set to a positive medium 

value of 0.4. Additionally, we assign a value of 1 to β’s, the parameters associated with the 

explanatory variables. 

2. Generate spatial weights matrices by using the following steps: 

o We first draw the coordinates (𝑥𝑖, 𝑦𝑖) of 𝑛 spatial units from a uniform distribution (10, 30). 

o Using these coordinates, we calculate the Euclidian distance between each pair of spatial 

units, creating a full 𝑛 × 𝑛 distance matrix. 

o We then construct the spatial weights matrix by using the K-nearest neighbor structure as 

follows 

wij = {
 1 
0

 if 𝑑𝑖j ≤ d⃛ 𝑖(𝑛)∀ 𝑖 ≠ j  and 𝑖, j = 1, … , 𝑛 

otherwise
 (18) 

where wij  is an element in the matrix W𝑛 that is predefined to represent the interaction 

strength between region (𝑖) and region (j) within a set of geographical units, 𝑑𝑖j denotes the 

distance between the two regions (𝑖) and (j), and d⃛ 𝑖(𝑛) refers to a critical distance threshold 

(distance to the Kth nearest neighbor) [[28]-[30]]. For our analysis, we use K =
𝑛

5
 for W1 and 

𝐾 =
𝑛

25
 for W2. 

3. For each unique simulation, we compute the dependent variable (y) using a given weighting 

matrix, W𝑚, 𝑚 = 1,2, and a reduced form of the SLM equation. We then generate a random 

sample of missing data in the dependent variable at two distinct levels: 10% and 25%. This 

allows us to examine how the severity of missing data affects model performance and 

estimation accuracy.  

4. Our estimation process begins with a crucial preparatory step: we use the observed data to 

obtain initial consistent estimates of θ (the parameter vector) through both NLS and GNLS 

methods. These initial estimates serve as the foundation for inducing the missing observations 

in our dataset. 

5. Once we have these initial estimates and have inputted the missing data, we proceed with 

our main estimation process:       

o For each set of imputed data, we apply a suite of estimation methods. These include: 

IBG2SLS1, IST2SLS, IABG2SLS, IBG2SLS2, and IBG2SLS3. We implement these methods 

using both total and partial imputation approaches. 
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o To ensure the robustness of our results, we repeat this entire process 1000 times for each 

unique design described in our study. This repetition helps to mitigate the impact of random 

variations and provides a more reliable basis for comparing the different estimation 

methods. 

6. After completing all simulations, we calculate two key performance metrics for each model 

and estimator across the 1000 simulations, as mentioned in Saguatti [31]: 

o The average of coefficient bias, which indicates how far the estimated coefficients tend to 

deviate from their true values, is calculated as follows: 

Bias (θ̅̂) =  θ̅̂ − θ (19) 

where θ̅̂ is the average of estimates for the coefficient θ over the No. of replications (R), it is 

calculated as:  

θ̅̂ =
1

R
∑ θ̂𝑟

R

𝑟=1

 (20) 

o The RMSE, or standard error, which provides a measure of the overall accuracy of the 

estimates, taking into account both bias and variance, is defined as: 

RMSE (θ̅̂) = [
1

R
∑(θ̂𝑟 − θ)

2
R

𝑟=1

]

1
2⁄

 (21) 

Based on the above algorithm, our study encompasses 136 unique simulations for each model 

and estimator under investigation. Fig. 1 outlines the main algorithm of our MCS study. 

• Simulation Results  

The finite sample properties of all estimators are presented in Tables 5 through 8, with each 

table corresponding to a specific spatial weights matrix and sample size (n). These tables 

showcase bias and RMSE for the coefficient estimates across different values of missing data 

percentage (∝). Additionally, the tables also include overall RMSE values for each model. To 

visually represent the interplay of key factors affecting estimator performance, Fig. 2 to Fig. 5 

illustrate the effect of spatial weights matrix density, sample size, and missing data rates on the 

model RMSE for each estimator. 

 

 



Int. J. Anal. Appl. (2025), 23:67 13 

 

 

Figure 1. Algorithm of Our MCS 
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Table 5. MCS Results; 𝑛 = 50, 𝑎𝑛𝑑 W1 

Estimator 

∝= 10%, 𝑛𝑜 = 45 ∝= 25%, 𝑛𝑜 =38 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

PIABG2SLS.nls 0.001 0.029 0.000 0.016 0.000 0.016 1.205 0.001 0.031 0.001 0.017 0.001 0.017 1.409 

TIABG2SLS.nls 0.001 0.029 0.000 0.016 0.000 0.016 1.205 0.001 0.031 0.001 0.017 0.001 0.017 1.409 

PIABG2SLS.gnls 0.008 0.037 0.001 0.016 0.000 0.016 1.018 0.019 0.055 0.000 0.017 0.002 0.017 1.078 

TIABG2SLS.gnls 0.001 0.031 0.000 0.016 0.001 0.017 1.002 0.005 0.043 0.003 0.019 0.001 0.019 1.052 

PIBG2SLS1.gnls 0.002 0.029 0.000 0.016 0.000 0.016 0.993 0.007 0.035 0.000 0.017 0.001 0.017 1.007 

TIBG2SLS1.gnls 0.005 0.035 0.001 0.016 0.001 0.017 1.022 0.020 0.064 0.004 0.019 0.001 0.019 1.190 

TISTE2SLS.nls 0.000 0.029 0.000 0.016 0.000 0.016 1.200 0.001 0.031 0.001 0.017 0.001 0.017 1.399 

PISTE2SLS.gnls 0.002 0.029 0.000 0.016 0.000 0.016 0.994 0.007 0.035 0.000 0.017 0.001 0.017 1.007 

TISTE2SLS.gnls 0.005 0.035 0.001 0.016 0.001 0.017 1.022 0.020 0.064 0.004 0.019 0.001 0.019 1.190 

PIBG2SLS2.nls 0.000 0.029 0.000 0.016 0.000 0.016 0.993 0.000 0.031 0.001 0.017 0.001 0.017 0.993 

TIBG2SLS2.nls 0.000 0.029 0.000 0.016 0.000 0.016 0.992 0.001 0.031 0.001 0.017 0.001 0.017 0.993 

PIBG2SLS2.gnls 0.001 0.029 0.000 0.016 0.000 0.016 0.994 0.006 0.035 0.000 0.017 0.001 0.017 1.007 

TIBG2SLS2.gnls 0.005 0.035 0.001 0.016 0.001 0.017 1.021 0.018 0.061 0.004 0.019 0.001 0.019 1.173 

PIBG2SLS3.nls 0.000 0.029 0.000 0.016 0.000 0.016 0.992 0.001 0.031 0.001 0.017 0.001 0.017 0.993 

TIBG2SLS3.nls 0.001 0.029 0.000 0.016 0.000 0.016 0.993 0.000 0.032 0.001 0.017 0.001 0.017 0.995 

PIBG2SLS3.gnls 0.002 0.029 0.000 0.016 0.000 0.016 0.994 0.007 0.035 0.000 0.017 0.001 0.017 1.007 

TIBG2SLS3.gnls 0.000 0.039 0.000 0.017 0.001 0.017 1.031 0.015 0.120 0.002 0.031 0.004 0.030 1.243 
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Table 6. MCS Results; 𝑛 = 100, 𝑎𝑛𝑑 W1 

Estimator 

∝= 10%, 𝑛𝑜 = 90 ∝= 25%, 𝑛𝑜 = 75 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

PIABG2SLS.nls 0.002 0.028 0.000 0.011 0.000 0.011 1.191 0.000 0.032 0.000 0.012 0.000 0.012 1.308 

TIABG2SLS.nls 0.002 0.028 0.000 0.011 0.000 0.011 1.191 0.000 0.032 0.000 0.012 0.000 0.012 1.308 

PIABG2SLS.gnls 0.010 0.036 0.000 0.011 0.000 0.011 1.007 0.021 0.057 0.001 0.012 0.001 0.012 1.054 

TIABG2SLS.gnls 0.003 0.030 0.000 0.011 0.000 0.011 0.996 0.011 0.047 0.001 0.013 0.001 0.013 1.041 

PIBG2SLS1.gnls 0.003 0.028 0.000 0.011 0.000 0.011 0.994 0.007 0.034 0.001 0.012 0.000 0.012 1.007 

TIBG2SLS1.gnls 0.004 0.034 0.001 0.011 0.001 0.011 1.006 0.028 0.074 0.001 0.013 0.002 0.013 1.161 

TISTE2SLS.nls 0.002 0.028 0.000 0.011 0.000 0.011 1.190 0.000 0.031 0.000 0.012 0.000 0.012 1.300 

PISTE2SLS.gnls 0.003 0.028 0.000 0.011 0.000 0.011 0.994 0.007 0.034 0.001 0.012 0.000 0.012 1.007 

TISTE2SLS.gnls 0.004 0.034 0.001 0.011 0.001 0.011 1.006 0.028 0.074 0.001 0.013 0.002 0.013 1.161 

PIBG2SLS2.nls 0.001 0.028 0.000 0.011 0.000 0.011 0.993 0.000 0.031 0.000 0.012 0.000 0.012 0.999 

TIBG2SLS2.nls 0.002 0.028 0.000 0.011 0.000 0.011 0.993 0.000 0.031 0.000 0.012 0.000 0.012 0.999 

PIBG2SLS2.gnls 0.002 0.028 0.000 0.011 0.000 0.011 0.994 0.007 0.034 0.001 0.012 0.000 0.012 1.007 

TIBG2SLS2.gnls 0.005 0.034 0.001 0.011 0.001 0.011 1.006 0.026 0.070 0.001 0.013 0.002 0.013 1.141 

PIBG2SLS3.nls 0.002 0.028 0.000 0.011 0.000 0.011 0.993 0.000 0.031 0.000 0.012 0.000 0.012 0.999 

TIBG2SLS3.nls 0.002 0.028 0.000 0.011 0.000 0.011 0.994 0.000 0.032 0.000 0.012 0.000 0.012 1.000 

PIBG2SLS3.gnls 0.003 0.028 0.000 0.011 0.000 0.011 0.994 0.007 0.034 0.001 0.012 0.000 0.012 1.007 

TIBG2SLS3.gnls 0.001 0.034 0.000 0.011 0.000 0.011 1.006 0.022 0.185 0.003 0.021 0.002 0.022 1.190 
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Table 7. MCS Results; 𝑛 = 50, 𝑎𝑛𝑑 W2 

Estimator 

∝= 10%, 𝑛𝑜 = 45 ∝= 25%, 𝑛𝑜 = 38 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

PIABG2SLS.nls 0.000 0.013 0.000 0.016 0.000 0.017 1.258 0.000 0.014 0.001 0.018 0.000 0.018 1.422 

TIABG2SLS.nls 0.000 0.013 0.000 0.016 0.000 0.017 1.258 0.000 0.014 0.001 0.018 0.000 0.017 1.422 

PIABG2SLS.gnls 0.004 0.016 0.001 0.017 0.000 0.017 1.109 0.010 0.023 0.001 0.019 0.001 0.018 1.154 

TIABG2SLS.gnls 0.002 0.015 0.001 0.018 0.001 0.018 1.105 0.004 0.018 0.007 0.024 0.005 0.023 1.132 

PIBG2SLS1.gnls 0.001 0.013 0.000 0.016 0.000 0.017 1.094 0.003 0.015 0.000 0.017 0.001 0.017 1.102 

TIBG2SLS1.gnls 0.001 0.014 0.001 0.017 0.001 0.017 1.108 0.004 0.021 0.006 0.023 0.005 0.022 1.174 

TISTE2SLS.nls 0.000 0.013 0.000 0.016 0.000 0.017 1.255 0.000 0.013 0.001 0.017 0.001 0.017 1.420 

PISTE2SLS.gnls 0.001 0.013 0.000 0.016 0.000 0.017 1.094 0.003 0.015 0.000 0.017 0.001 0.017 1.102 

TISTE2SLS.gnls 0.001 0.014 0.001 0.017 0.001 0.017 1.108 0.004 0.021 0.006 0.023 0.005 0.022 1.174 

PIBG2SLS2.nls 0.001 0.013 0.000 0.016 0.000 0.017 1.092 0.001 0.013 0.001 0.017 0.001 0.017 1.089 

TIBG2SLS2.nls 0.001 0.013 0.000 0.016 0.000 0.017 1.092 0.000 0.013 0.001 0.017 0.001 0.017 1.089 

PIBG2SLS2.gnls 0.000 0.013 0.001 0.016 0.000 0.017 1.094 0.002 0.015 0.000 0.017 0.001 0.017 1.102 

TIBG2SLS2.gnls 0.002 0.014 0.001 0.017 0.001 0.017 1.109 0.004 0.020 0.006 0.023 0.005 0.022 1.170 

PIBG2SLS3.nls 0.000 0.013 0.000 0.016 0.000 0.017 1.092 0.000 0.014 0.001 0.017 0.000 0.017 1.090 

TIBG2SLS3.nls 0.000 0.013 0.000 0.016 0.000 0.017 1.094 0.000 0.014 0.001 0.018 0.000 0.018 1.096 

PIBG2SLS3.gnls 0.001 0.013 0.000 0.016 0.000 0.017 1.095 0.003 0.015 0.000 0.018 0.001 0.018 1.104 

TIBG2SLS3.gnls 0.000 0.015 0.001 0.017 0.001 0.017 1.117 0.001 0.024 0.004 0.023 0.002 0.022 1.189 
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Table 8. MCS Results; 𝑛 = 100, 𝑎𝑛𝑑 W2 

Estimator 

∝= 10%, 𝑛𝑜 = 90 ∝= 25%, 𝑛𝑜 = 75 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

Bias 

λ̂ 

RMSE 

λ̂ 

Bias 

β̂1 

RMSE 

β̂1 

Bias 

β̂2 

RMSE 

β̂2 

Model 
RMSE 

PIABG2SLS.nls 0.001 0.012 0.000 0.011 0.000 0.011 1.199 0.000 0.013 0.000 0.012 0.000 0.013 1.356 

TIABG2SLS.nls 0.001 0.012 0.000 0.011 0.000 0.011 1.198 0.000 0.013 0.000 0.012 0.000 0.012 1.357 

PIABG2SLS.gnls 0.006 0.015 0.001 0.011 0.001 0.011 1.061 0.012 0.024 0.002 0.013 0.001 0.013 1.099 

TIABG2SLS.gnls 0.002 0.014 0.000 0.011 0.000 0.011 1.055 0.002 0.016 0.003 0.014 0.003 0.015 1.073 

PIBG2SLS1.gnls 0.001 0.012 0.000 0.011 0.000 0.011 1.051 0.004 0.014 0.001 0.012 0.000 0.012 1.059 

TIBG2SLS1.gnls 0.002 0.013 0.001 0.011 0.001 0.011 1.057 0.010 0.024 0.004 0.014 0.004 0.015 1.119 

TISTE2SLS.nls 0.000 0.012 0.000 0.011 0.000 0.011 1.195 0.000 0.013 0.000 0.012 0.000 0.012 1.357 

PISTE2SLS.gnls 0.001 0.012 0.000 0.011 0.000 0.011 1.051 0.004 0.014 0.001 0.012 0.000 0.012 1.059 

TISTE2SLS.gnls 0.002 0.013 0.001 0.011 0.001 0.011 1.057 0.010 0.024 0.004 0.014 0.004 0.015 1.119 

PIBG2SLS2.nls 0.001 0.012 0.000 0.011 0.000 0.011 1.050 0.001 0.013 0.000 0.012 0.000 0.012 1.053 

TIBG2SLS2.nls 0.000 0.012 0.000 0.011 0.000 0.011 1.050 0.000 0.013 0.000 0.012 0.000 0.012 1.053 

PIBG2SLS2.gnls 0.000 0.012 0.000 0.011 0.000 0.011 1.051 0.003 0.014 0.001 0.012 0.000 0.012 1.059 

TIBG2SLS2.gnls 0.003 0.013 0.001 0.011 0.001 0.011 1.058 0.010 0.024 0.004 0.014 0.004 0.015 1.116 

PIBG2SLS3.nls 0.000 0.012 0.000 0.011 0.000 0.011 1.050 0.000 0.013 0.000 0.012 0.000 0.012 1.054 

TIBG2SLS3.nls 0.000 0.012 0.000 0.011 0.000 0.011 1.051 0.000 0.013 0.000 0.012 0.000 0.012 1.056 

PIBG2SLS3.gnls 0.001 0.012 0.000 0.011 0.000 0.011 1.051 0.004 0.014 0.001 0.012 0.000 0.012 1.060 

TIBG2SLS3.gnls 0.001 0.014 0.001 0.011 0.001 0.011 1.060 0.004 0.022 0.002 0.014 0.002 0.015 1.103 
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Figure 2. Average RMSE of W1- based Models Across Various Rates of Missing Data by Sample 

Sizes 

 

Figure 3. Average RMSE of W2- based Models Across Various Rates of Missing Data by Sample 

Sizes 
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Figure 4. Average RMSE of W1- based Models Across Various Sample Sizes by Missing Data 

Rates 

 

Figure 5. Average RMSE of W2- based Models Across Various Sample Sizes by Missing Data 

Rates 
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6. Discussion  

Regarding the sample size effect, there isn't a clear trend showing that smaller sample sizes 

consistently yield higher bias and RMSE compared to larger sample sizes. The differences 

between 𝑛 = 50 and 𝑛 = 100 is generally small, with some cases showing slightly better 

performance for 𝑛 = 100, especially in terms of RMSE and for W2- based Models.  

As for the missing rate impact, the results show that higher missing data rates (25% 𝑣s. 10%) 

lead to increased bias and RMSE across almost all estimators. This aligns with the expected 

challenges of dealing with more missing data in spatial lag models. 

In the context of estimator coefficients bias and RMSE, all estimators demonstrate relatively 

strong performance. 

Moreover, each of our proposed estimators exhibits superior model efficiency (Overall RMSE) 

compared to Izaguirre's estimator (PIABG2SLS.nls). For a more comprehensive understanding of 

these results, please refer to Fig. 2 through Fig. 5. 

Consistent with Smith [32] and Farber et al. [33], our results indicate that the density of the 

spatial weights matrix has a negative impact on inference. Specifically, we observe that most of 

the bias and RMSE results of spatial dependence parameter for the denser spatial weights matrix 

(W1) are greater than those for the less dense matrix (W2). This finding aligns with the notion that 

increased spatial connectivity can potentially lead to more pronounced estimation challenges in 

spatial econometric models. Despite this fact, the overall results produced by both matrices are 

remarkably similar. This finding suggests that, in our specific study context, the density of the 

spatial weights matrix does not substantially alter the outcomes of the estimation process. Such 

consistency across different matrix densities indicates robustness in the presented estimators that 

may be valuable for practitioners dealing with varying levels of spatial connectivity in their data. 

Finaly, both total and partial imputation approaches tend to produce similar results, partial 

imputation demonstrated superior performance in certain scenarios. This superior performance 

of partial imputation was particularly pronounced for the IBG2SLS1.gnls estimator. The 

advantage of partial imputation likely stems from it gives rise to the possibility of working only 

with complete data. Estimators based on partial imputation only require knowing the spatial lag 

for the observed dependent variable. This characteristic allows for more efficient and potentially 

more accurate estimation, as it leverages the available observed data more effectively. 

For future work, we can develop a robust M-estimator for the spatial lag model when the 

dataset contains outliers as presented in several regression modes such as [34], [35], [36], [37], and 

[38].  
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7. Conclusions  

This work has addressed a critical challenge in spatial econometrics: the accurate estimation of 

SLM in the presence of missing data in the dependent variable. Building upon the works of 

Izaguirre [1] and Wang and Lee [2] in this field, we have introduced and evaluated several 

modifications to imputation-based 2SLS estimators. Our key contributions include: (1) proposing 

the GNLS estimator as an alternative imputation method to the previously used NLS approach 

in the literature; (2) incorporating the additional IMs, including those used by Lee [7] for BGMM 

estimator in SLM with complete data, and those employed by Wang and Lee [2] for GMM 

estimator in SLM with missing data; (3) performing all estimators using both partial and total 

imputations strategies to balance computational efficiency with estimation accuracy; and (4) 

conducting a comprehensive MCS study to compare the performance of our modified estimators 

(see Table 2) across various spatial configurations, sample sizes, and missing data proportions. 

Our findings reveal several important insights: (1) partial imputation consistently outperforms 

total imputation in most cases; (2) all estimators show good performance with low bias and 

RMSE; (3) all of our proposed estimators outperform Izaguirre's estimator (PIABG2SLS.nls) in 

terms of model RMSE; (4) although, denser matrix generally yields higher bias and RMSE for 

spatial dependence parameter than less dense matrix, the  results from both matrices are 

remarkably similar, indicating the robustness of the estimators across different spatial 

connectivity levels; (5) higher missing data rates (25% 𝑣s. 10%) lead to slightly increased bias and 

RMSE for most estimators; and (6) no clear trend that smaller sample sizes yields higher bias or 

RMSE.  

In conclusion, we can say that the proposed estimators demonstrate improved efficiency 

compared to existing methods in the literature, making them valuable alternatives when dealing 

with missing data in SLM. Notably, these estimators exhibit robustness across varying spatial 

weight matrix densities, ensuring their reliability in diverse spatial contexts - from sparsely 

connected regions to densely interconnected areas. While increasing rates of missing data 

inevitably affect estimation efficiency, our methods effectively mitigate these impacts, providing 

dependable results even in scenarios with up to 25% missing data. These findings collectively 

enhance the toolkit available to researchers and practitioners, enabling more accurate and reliable 

spatial data analysis across a broad spectrum of real-world applications. 

While our study has advanced the understanding of SLM estimation with missing data, several 

avenues for future research remain, including: (1) investigation of non-random missing data 

patterns and their impact on estimator performance, and (2) application of these methods to real-

world datasets across various disciplines to further validate their practical utility. 
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