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Abstract. Our goal in this work is to study the existence of solution of the Distributed state-dependent integral equation

x(`) = a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds,

with conjugate feedback control

y(`) = a2(`) +

∫ ϕ2(y(`))

0
f2(s, x(s))ds.

Then some properties of this solution will be studied like uniqueness, continuous dependence and Hyers-Ulam stability.

1. Introduction

Self-reference is a concept that involves referring to oneself or one’s own attributes, characteris-

tics, or actions. It can occur in language, logic, mathematics, philosophy, and other fields.

In natural or formal languages, self-reference occurs when a sentence, idea or formula refers

to itself. The reference may be expressed either directly through some intermediate sentence or

formula or by means of some encoding.

In philosophy, self-reference also refers to the ability of a subject to speak of or refer to itself,

that is, to have the kind of thought expressed by the first person nominative singular pronoun "I"

in English.
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In mathematics and computability theory, self-reference (also known as impredicative) is the key

concept in proving limitations of many systems. Gödel’s theorem uses it to show that no formal

consistent system of mathematics can ever contain all possible mathematical truths, because it

cannot prove some truths about its own structure. The halting problem equivalent, in computation

theory, shows that there is always some task that a computer cannot perform, namely reasoning

about itself. These proofs relate to a long tradition of mathematical paradoxes such as Russell’s

paradox and Berry’s paradox, and ultimately to classical philosophical paradoxes.

Self-reference (state-dependent) was studied in many papers foe examples ( [5] and [7]- [15]).

Also, studying the stability of the solution is considered one of the important studies in our

lives. In order to model a physical process, an equation or problem can be used if a small alteration

to it results in a corresponding small alteration in the outcome. When this occurs, the equation or

problem is said to be stable.

Continuous Dependence, another important concept in stability theory, addresses the behavior

of solutions in mathematical problems under varying conditions. It ensures that small changes in

the initial conditions or parameters of a problem result in correspondingly small changes in the

solution.

Hyers-Ulam stability when applied to the problem specifically, evaluates the model’s robustness

to disturbances, while Continuous dependence is applied to the unique solution of a problem to

examine how the solutions are affected when its parameters are changed slightly.

Hyers-Ulam stability was studied im many papers for example [18]- [19].

A system of equations is said to be coupled if knowledge of one variable depends upon knowing

the value of another variable. This kind of problem was studied in many paper for examples ( [1]-

[3], [6], and [16]- [17]).

Here we study the existence of solution of the Distributed state-dependent integral equation

x(`) = a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds, (1.1)

with conjugate feedback control

y(`) = a2(`) +

∫ ϕ2(y(`))

0
f2(s, x(s))ds. (1.2)

Our paper organized as follows: Section 2 contains main results for our problem (1.1)-(1.2). In

Section 3, the uniqueness of this solution will be proved. In Section 4, continuous dependence of

the solution on ai(.), ϕi(.) and fi(., .) will be studied. In section 5, Hyers-Ulam stability will be

studied. Finally, some examples are given in Section 6.

The following theorem will be needed.

Theorem 1.1. (Schauder fixed point Theorem) [4]
Let U be a convex subset of a Banach space X, and T : U→ U is compact, continuous map. Then T has at
least one fixed point in U.
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2. Main Results

Let C = C[0, T] be the space of continuous functions on I = [0, T], with supremum norm

||u||C = sup`∈I |u(`)| for any u ∈ C.

Define

E = C×C =

{
(x(`), y(`)) : (x(`), y(`)) ∈ E and ||(x, y)||E = ||x||C + ||y||C ≤ r

}
,

and define the operator T by

T(x, y)(`) = (T1y(`), T2x(`)),

where

T1y(`) = a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds,

T2x(`) = a2(`) +

∫ ϕ2(y(`))

0
f2(s, x(s))ds.

We will prove that the operator T has a fixed point, hence the solution of problem (1.1)-(1.2) exists.

Suppose the following assumptions:

(i) fi : I×R→ R, i = 1, 2 such that

(1) for each ` ∈ I, fi(`, .) are continuous,

(2) for each u ∈ R, fi(., u) are measurable,

(3)

| fi(`, u)| ≤ b(`) + c |u(`)|, for all (`, u) ∈ I × R,

where b(.) is bounded, measurable and b = sup`∈I b(`) and c ≥ 0 is a constant.

(ii) ai : I→ R are continuous functions and a = sup`∈I |ai(`)|, i = 1, 2.

(iii) ϕi : I→ I such that

|ϕi(`) − ϕi(s)| ≤ |` − s|, ϕi(0) = 0, i = 1, 2.

(iv) there exists r satisfies the quadratic equation

a + (b−
1
2
)r + cr2 = 0.

Theorem 2.1. Assume that the assumptions (i-iv) are satisfied. Then problem (1.1)-(1.2) has at least one
solution (x, y) ∈ E.

Proof. Define the subset Sr by

Sr = {(x(`), y(`)) ∈ E : ||(x, y)||E ≤ r}.
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The set Sr is nonempty, closed and convex.

For (x, y) ∈ Sr, we have

|T2x(`)| =

∣∣∣∣∣∣a2(`) +

∫ ϕ2(y(`))

0
f2(s, x(s))ds

∣∣∣∣∣∣
≤ |a2(`)| +

∫ ϕ2(y(`))

0
| f2(s, x(s))|ds

≤ a +

∫ ϕ2(y(`))

0

(
b(s) + c|x(s)|

)
ds

≤ a + b ϕ2(y(`)) + c r ϕ2(y(`)),

||T2x||C ≤ a + b r + c r2,

then the operator T2 is uniformly bounded on Sr.

Similarly; we get

||T1y||C ≤ a + b r + c r2,

then the operator T1 is uniformly bounded on Sr.

Now,

||T(x, y)||E = ||T1y||C + ||T2x||C

≤ 2(a + b r + c r2) = r.

Therefore, T is uniformly bounded on Sr.

Now, we show that T is a completely continuous operator. Indeed, let `1, `2 ∈ I, `1 < `2 such that

|`2 − `1| < δ, we have

|T2x(`2) −T2x(`1)| =

∣∣∣∣∣∣a2(`2) +

∫ ϕ2(y(`2))

0
f2(s, x(s))ds

− a2(`1) +

∫ ϕ2(y(`1))

0
f2(s, x(s))ds

∣∣∣∣∣∣
≤ |a2(`2) − a2(`1)|+

∣∣∣∣∣∣
∫ ϕ2(y(`2))

0
f2(s, x(s))ds−

∫ ϕ2(y(`1))

0
f2(s, x(s))ds

∣∣∣∣∣∣
= |a2(`2) − a2(`1)|+

∣∣∣∣∣∣
∫ ϕ2(y(`2))

ϕ2(y(`1))
f2(s, x(s))ds

∣∣∣∣∣∣
≤ |a2(`2) − a2(`1)|+

∫ ϕ2(y(`2))

ϕ2(y(`1))

(
b(s) + c|x(s)|

)
ds

≤ |a2(`2) − a2(`1)|+ (b + c r)|ϕ2(y(`2)) −ϕ2(y(`1))|

≤ |a2(`2) − a2(`1)|+ (b + c r)|y(`2) − y(`1)|.

Similarly;

|T1y(`2) −T1y(`1)| ≤ |a1(`2) − a1(`1)|+ (b + c r)|x(`2) − x(`1)|.
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Then, the operator T(x, y) is an equi-continuous operator. Therefore from Arzela-Ascoli Theorem

we deduce that the operator {T(x, y)} is relatively compact.

Let T : Sr → Sr, for (x, y) ∈ Sr⇒ T is a continuous operator:

indeed, let {xn(`), yn(`)} is a sequence in Sr converges to (x0(`), y0(`)) for every ` ∈ I. Then

|T2xn(`) −T2x0(`)| =

∣∣∣∣∣∣
∫ ϕ2(yn(`))

0
f2(s, xn(s))ds−

∫ ϕ2(y0(`))

0
f2(s, x0(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ϕ2(yn(`))

0
f2(s, xn(s))ds−

∫ ϕ2(y0(`))

0
f2(s, xn(s))ds

+

∫ ϕ2(y0(`))

0
f2(s, xn(s))ds−

∫ ϕ2(y0(`))

0
f2(s, x0(s))ds

∣∣∣∣∣∣
≤

∫ ϕ2(yn(`))

ϕ2(y0(`))
| f2(s, xn(s))|ds

+

∫ ϕ2(y0(`))

0

∣∣∣∣∣∣ f2(s, xn(s)) − f2(s, x0(s))

∣∣∣∣∣∣ds

≤

∫ ϕ2(yn(`))

ϕ2(y0(`))

(
b(s) + c|xn(s)|

)
ds + ε |ϕ2(y0(`))|

≤ (b + c r)|ϕ2(yn(`)) −ϕ2(y0(`))|+ ε |y0(`)|

≤ (b + c r)|yn(`) − y0(`)|+ ε r.

Similarly;

|T1yn(`) −T1y0(`)| ≤ (b + c r)|xn(`) − x0(`)|+ ε r.

Then,

T(x, y) = (T1y, T2x)

is a continuous operator from E to E.

Therefore, the conditions of the Schauder fixed point Theorem hold, which implies that T has

a fixed point in Sr. Then problem (1.1)-(1.2) has a solution (x, y) ∈ E.

Corollary 2.1. Let the assumptions of Theorem (2.1) be satisfied, if x(`) = y(`), a1(`) = a2(`),ϕ1 = ϕ2

and f1 = f2 in the Distributed state-dependent integral equation (1.1) with conjugate feedback control (1.2),
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then we deduce that the following equation

x(`) = a(`) +

∫ ϕ(x(`))

0
f (s, x(s))ds

has a least one solution x ∈ C(I).

3. Uniqueness of the Solution

Theorem 3.1. Suppose that the conditions (i-2) and (ii) - (iv) of Theorem 2.1 are satisfied in addition to the
following assumptions:

| fi(`, u) − fi(`, v)| ≤ k |u − v|, i = 1, 2. (3.1)

Then problem (1.1)-(1.2) has a unique solution.

Proof. From assumption (3.1), we get

| fi(`, u) − fi(`, 0)| ≤ k |u|,

but since

| fi(`, u)| − | fi(`, 0)| ≤ | fi(`, u) − fi(`, 0)| ≤ k |u|,

therefore

| fi(`, u)| ≤ | fi(`, 0)| + k |u|,

i.e. assumptions (i− 1) and (i− 3) of theorem 2.1 are satisfied. Then from theorem 2.1 the solution

exists.

Now we prove the uniqueness of this solution:

Let (x1, y1) be a solution of problem (1.1)-(1.2), then

|x(`) − x1(`)| =

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds

− a1(`) −

∫ ϕ1(x1(`))

0
f1(s, y1(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x1(`))

0
f1(s, y(s))ds

+

∫ ϕ1(x1(`))

0
f1(s, y(s))ds−

∫ ϕ1(x1(`))

0
f1(s, y1(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x1(`))

0
f1(s, y(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ ϕ1(x1(`))

0
f1(s, y(s))ds−

∫ ϕ1(x1(`))

0
f1(s, y1(s))ds

∣∣∣∣∣∣
≤

∫ ϕ1(x(`))

ϕ1(x1(`))

∣∣∣∣∣∣ f1(s, y(s))

∣∣∣∣∣∣ds

+

∫ ϕ1(x1(`))

0

∣∣∣∣∣∣ f1(s, y(s)) − f1(s, y1(s))

∣∣∣∣∣∣ds
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≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) −ϕ1(x1(`))

∣∣∣∣∣∣
+ k|y(`) − y1(`)| |ϕ1(x1(`))|

≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣x(`) − x1(`)

∣∣∣∣∣∣
+ k |x1(`)| |y(`) − y1(`)|.

Then,

||x− x1||C ≤ (d + k r)||x− x1||C + k r ||y− y1||C,

where d = sup`∈I | fi(`, 0)|, i = 1, 2.

Similarly,

||y− y1||C ≤ (d + k r)||y− y1||C + k r ||x− x1||C.

Then

||(x, y) − (x1, y1)||E = ||x − x1||C + ||y − y1||C

≤ (d + k r)||x− x1||C + k r ||y− y1||C

+ (d + k r)||y− y1||C + k r ||x− x1||C

≤ (d + 2k r)||x− x1||C + (d + 2k r)||y− y1||C

≤ (d + 2kr)
(
||x − x1||C + ||y − y1||C

)
= α ||(x, y) − (x1, y1)||E,

where

α = d + 2 k r.

Which implies

||(x, y) − (x1, y1)||E = 0 then (x, y) = (x1, y1).

Corollary 3.1. Let the assumptions of Theorem (3.1) be satisfied, if x(`) = y(`), a1(`) = a2(`),ϕ1 = ϕ2

and f1 = f2 in the Distributed state-dependent integral equation (1.1) with conjugate feedback control (1.2),
then we deduce that there exists a unique continuous solution of the following equation

x(`) = a(`) +

∫ ϕ(x(`))

0
f (s, x(s))ds.

4. Continuous Dependence of the Solution

Firstly, we study the continuous dependence of the solution of problem (1.1)-(1.2) on ai(`), i =
1, 2.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Then the solution of problem (1.1)-(1.2)
depends continuously on ai(`), i = 1, 2,
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Proof. Let (x̃(`), ỹ(`)) be a solution of:
x̃(`) = ã1(`) +

∫ ϕ1(x̃(`))
0 f1(s, ỹ(s))ds,

ỹ(`) = ã2(`) +
∫ ϕ2(ỹ(`))

0 f2(s, x̃(s))ds.

(4.1)

|x(`) − x̃(`)| =

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds

− ã1(`) −

∫ ϕ1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
≤ |a1(`) − ã1(`)|+

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds

+

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
≤ |a1(`) − ã1(`)|+

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ ϕ1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
≤ |a1(`) − ã1(`)|+

∫ ϕ1(x(`))

ϕ1(x̃(`))

∣∣∣∣∣∣ f1(s, y(s))

∣∣∣∣∣∣ds

+

∫ ϕ1(x̃(`))

0

∣∣∣∣∣∣ f1(s, y(s)) − f1(s, ỹ(s))

∣∣∣∣∣∣ds

≤ |a1(`) − ã1(`)|+

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) −ϕ1(x̃(`))

∣∣∣∣∣∣
+ k|y(`) − ỹ(`)| |ϕ1(x̃(`))|

≤ |a1(`) − ã1(`)|+

(
| f1(`, 0)|+ k|y(`)|

)
|x(`) − x̃(`)|

+ k |̃x(`)| |y(`) − ỹ(`)|.

Then,

||x− x̃||C ≤ ||a1 − ã1||C + (d + k r)||x− x̃||C + k r ||y− ỹ||C,

||x− x̃||C ≤
1

1− (d + k r)

(
||a1 − ã1||C + k r ||y− ỹ||C

)
.

Similarly;

||y− ỹ||C ≤
1

1− (d + k r)

(
||a2 − ã2||C + k r ||x− x̃||C

)
.

Then,

||(x, y) − (x̃, ỹ)||E = ||x − x̃||C + ||y − ỹ||C
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≤
1

1− (d + k r)

(
||a1 − ã1||C + k r ||y− ỹ||C

)
+

1
1− (d + k r)

(
||a2 − ã2||C + k r ||x− x̃||C

)
= β

(
||a1 − ã1||C + ||a2 − ã2||C

)
+ η

(
||x − x̃||C + ||y − ỹ||C

)
= β ||(a1, a2) − (̃a1, ã2)||E + η ||(x, y) − (x̃, ỹ)||E,

where

β =
1

1− (d + k r)
and η =

k r
1− (d + k r)

.

Therefore, if ||(a1, a2) − (̃a1, ã2)|| < δ1 ⇒ ||(x, y) − (x̃, ỹ)|| < ε1 =
β

1−ηδ1.

Secondly, we show that the solution of problem (1.1)-(1.2) depends continuously on ϕi(`), i = 1, 2.

Theorem 4.2. Let the assumptions of Theorem 3.1 be satisfied. Then the solution of problem (1.1)-(1.2)
depends continuously on ϕi(`), i = 1, 2,

Proof. Let (x̃(`), ỹ(`)) be a solution of:
x̃(`) = a1(`) +

∫ ϕ̃1(x̃(`))
0 f1(s, ỹ(s))ds,

ỹ(`) = a2(`) +
∫ ϕ̃2(ỹ(`))

0 f2(s, x̃(s))ds.

(4.2)

|x(`) − x̃(`)| =

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds− a1(`) −

∫ ϕ̃1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ̃1(x̃(`))

0
f1(s, y(s))ds

+

∫ ϕ̃1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ̃1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ̃1(x̃(`))

0
f1(s, y(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ ϕ̃1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ̃1(x̃(`))

0
f1(s, ỹ(s))ds

∣∣∣∣∣∣
≤

∫ ϕ1(x(`))

ϕ̃1(x̃(`))

∣∣∣∣∣∣ f1(s, y(s))

∣∣∣∣∣∣ds +
∫ ϕ̃1(x̃(`))

0

∣∣∣∣∣∣ f1(s, y(s)) − f1(s, ỹ(s))

∣∣∣∣∣∣ds

≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) − ϕ̃1(x̃(`))

∣∣∣∣∣∣
+ k|y(`) − ỹ(`)| |ϕ̃1(x̃(`))|

≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) −ϕ1(x̃(`)) + ϕ1(x̃(`)) − ϕ̃1(x̃(`))

∣∣∣∣∣∣
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+ k |̃x(`)| |y(`) − ỹ(`)|

≤ (d + k r)
(
|ϕ1(x(`)) −ϕ1(x̃(`))|+ |(ϕ1 − ϕ̃1)(x̃(`))|

)
+ k r|y(`) − ỹ(`)|

≤ (d + k r)
(
|x(`) − x̃(`)|+ |(ϕ1 − ϕ̃1)(x̃(`))|

)
+ k r |y(`) − ỹ(`)|.

Then,

||x− x̃||C ≤
d + k r

1 − (d + k r)
||ϕ1 − ϕ̃1||C +

k r
1 − (d + k r)

||y− ỹ||C.

Similarly;

||y− ỹ||C ≤
d + k r

1 − (d + k r)
||ϕ2 − ϕ̃2||C +

k r
1 − (d + k r)

||x− x̃||C.

Then,

||(x, y) − (x̃, ỹ)||E = ||x − x̃||C + ||y − ỹ||C

≤
d + k r

1 − (d + k r)
||ϕ1 − ϕ̃1||C +

k r
1 − (d + k r)

||y− ỹ||C

+
d + k r

1 − (d + k r)
||ϕ2 − ϕ̃2||C +

k r
1 − (d + k r)

||x− x̃||C

= ξ

(
||ϕ1 − ϕ̃1||C + ||ϕ2 − ϕ̃2||C

)
+ η

(
||x − x̃||C + ||y − ỹ||C

)
= ξ ||(ϕ1,ϕ2) − (ϕ̃1, ϕ̃2)||E + η ||(x, y) − (x̃, ỹ)||E,

where

ξ =
d + k r

1 − (d + k r)
.

Therefore, if ||(ϕ1,ϕ2) − (ϕ̃1, ϕ̃2)||E < δ2 ⇒ ||(x, y) − (x̃, ỹ)||E < ε2 = ξ
1−ηδ2.

Finally, we show that the solution of problem (1.1)-(1.2) depends continuously on fi(`), i = 1, 2.

Theorem 4.3. Let the assumptions of Theorem 3.1 be satisfied. Then the solution of problem (1.1)-(1.2)
depends continuously on fi(`), i = 1, 2,

Proof. Let (x̃(`), ỹ(`)) be a solution of:
x̃(`) = a1(`) +

∫ ϕ1(x̃(`))
0 f̃1(s, ỹ(s))ds,

ỹ(`) = a2(`) +
∫ ϕ2(ỹ(`))

0 f̃2(s, x̃(s))ds.

(4.3)

|x(`) − x̃(`)| =

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(s, y(s))ds

− a1(`) −

∫ ϕ1(x̃(`))

0
f̃1(s, ỹ(s))ds

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds

+

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f̃1(s, ỹ(s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ ϕ1(x(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f1(s, y(s))ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ ϕ1(x̃(`))

0
f1(s, y(s))ds−

∫ ϕ1(x̃(`))

0
f̃1(s, ỹ(s))ds

∣∣∣∣∣∣
≤

∫ ϕ1(x(`))

ϕ1(x̃(`))

∣∣∣∣∣∣ f1(s, y(s))

∣∣∣∣∣∣ds

+

∫ ϕ1(x̃(`))

0

∣∣∣∣∣∣ f1(s, y(s)) − f̃1(s, ỹ(s))

∣∣∣∣∣∣ds

≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) −ϕ1(x̃(`))

∣∣∣∣∣∣
+

∫ ϕ1(x̃(`))

0

∣∣∣∣∣∣ f1(s, y(s)) − f1(s, ỹ(s)) + f1(s, ỹ(s)) − f̃1(s, ỹ(s))

∣∣∣∣∣∣ds

≤

(
| f1(`, 0)|+ k|y(`)|

)
|x(`) − x̃(`)|

+

∫ ϕ1(x̃(`))

0

(
k|y(s) − ỹ(s)|+ | f1(s, ỹ(s)) − f̃1(s, ỹ(s))|

)
ds

≤ (d + k r)||x− x̃||C + |ϕ1(x̃(`))|
(
k||y− ỹ||C + || f1 − f̃1||C

)
≤ (d + k r)||x− x̃||C + r

(
k||y− ỹ||C + || f1 − f̃1||C

)
.

Then,

||x− x̃||C ≤
r

1 − (d + k r)
|| f1 − f̃1||C +

k r
1 − (d + k r)

||y− ỹ||C.

Similarly;

||y− ỹ||C ≤
r

1 − (d + k r)
|| f2 − f̃2||C +

k r
1 − (d + k r)

||x− x̃||C.

Then,

||(x, y) − (x̃, ỹ)||E = ||x − x̃||C + ||y − ỹ||C

≤
r

1 − (d + k r)
|| f1 − f̃1||C +

k r
1 − (d + k r)

||y− ỹ||C

+
r

1 − (d + k r)
|| f2 − f̃2||C +

k r
1 − (d + k r)

||x− x̃||C

= λ

(
|| f1 − f̃1||C + || f2 − f̃2||C

)
+ η

(
||x − x̃||C + ||y − ỹ||C

)
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= λ ||( f1, f2) − ( f̃1, f̃2)||E + η ||(x, y) − (x̃, ỹ)||E,

where

λ =
r

1 − (d + k r)
.

Therefore, if ||( f1, f2) − ( f̃1, f̃2)||E < δ3 ⇒ ||(x, y) − (x̃, ỹ)||E < ε3 = λ
1−ηδ3.

Corollary 4.1. Let the assumptions of Theorem (3.1) be satisfied, if x(`) = y(`), a1(`) = a2(`),ϕ1 = ϕ2

and f1 = f2 in the Distributed state-dependent integral equation (1.1) with conjugate feedback control (1.2),
then we deduce that the solution of the following equation

x(`) = a(`) +

∫ ϕ(x(`))

0
f (s, x(s))ds.

exists and depends continuously on each of ai(.), fi(., .) and φi(.).

5. Hyers-Ulam Stability

Theorem 5.1. Consider the Distributed state-dependent integral equation

x(`) = a1(`) +

∫ ϕ1(x(`))

0
f1(θ, y(θ))dθ, ` ∈ I (5.1)

with conjugate feedback control

y(`) = a2(`) +

∫ ϕ2(y(`))

0
f2(θ, x(θ))dθ. (5.2)

Let the solution of (5.1) with (5.2) exists, then this solution is Hyers-Ulam stable if ∀ε > 0,∃ δ∗(ε) > 0

such that any solution (xs(`), ys(`)) of (5.1) with (5.2) satisfies∣∣∣∣∣∣xs(`) − a1(`) −

∫ ϕ1(xs(`))

0
f1(θ, ys(θ))dθ

∣∣∣∣∣∣ < δ∗,

∣∣∣∣∣∣ys(`) − a2(`) −

∫ ϕ2(ys(`))

0
f2(θ, xs(θ))dθ

∣∣∣∣∣∣ < δ∗,

then

||(x, y) − (xs, ys)||E < ε.

Theorem 5.2. Let the assumptions of Theorem 3.1 be satisfied. Then the solution of problem (1.1)-(1.2) is
Hyers-Ulam stable.

Proof. Let (xs(`), ys(`)) be a solution of:
xs(`) = a1(`) +

∫ ϕ1(xs(`))

0 f1(θ, ys(θ))dθ,

ys(`) = a2(`) +
∫ ϕ2(ys(`))

0 f2(θ, xs(θ))dθ.

(5.3)



Int. J. Anal. Appl. (2024), 22:229 13

|x(`) − xs(`)| =

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(θ, y(θ))dθ − xs(`)

∣∣∣∣∣∣
=

∣∣∣∣∣∣a1(`) +

∫ ϕ1(x(`))

0
f1(θ, y(θ))dθ −

∫ ϕ1(xs(`))

0
f1(θ, y(θ))dθ

+

∫ ϕ1(xs(`))

0
f1(θ, y(θ))dθ−

∫ ϕ1(xs(`))

0
f1(θ, ys(θ))dθ

+

∫ ϕ1(xs(`))

0
f1(θ, ys(θ))dθ− xs(`)

∣∣∣∣∣∣
≤

∫ ϕ1(x(`))

ϕ1(xs(`))
| f1(θ, y(θ))|dθ+

∫ ϕ1(xs(`))

0

∣∣∣∣∣∣ f1(θ, y(θ)) − f1(θ, ys(θ))

∣∣∣∣∣∣dθ
+

∣∣∣∣∣∣a1(`) +

∫ ϕ1(xs(`))

0
f1(θ, ys(θ))dθ− xs(`)

∣∣∣∣∣∣
≤

(
| f1(`, 0)|+ k|y(`)|

)∣∣∣∣∣∣ϕ1(x(`)) −ϕ1(xs(`))

∣∣∣∣∣∣
+ k |y(`) − ys(`)| |ϕ1(xs(`))| + δ∗

≤ (d + k r)|x(`) − xs(`)|+ k r |y(`) − ys(`)| + δ∗,

||x− xs||C ≤ (d + k r)||x− xs||C + k r ||y− ys||C + δ∗.

Similarly;

||y− ys||C ≤ (d + k r)||y− ys||C + k r ||x− xs||C + δ∗.

Now

||(x, y) − (xs, ys)||E = ||x − xs||C + ||y − ys||C

≤ (d + k r)||x− xs||C + k r ||y− ys||C + δ∗

+ (d + k r)||y− ys||C + k r ||x− xs||C + δ∗

= (d + 2 k r)||x− xs||C + (d + 2 k r)||y− ys||C + 2 δ∗

= α

(
||x − xs||C + ||y − ys||C

)
+ 2 δ∗

= α ||(x, y) − (xs, ys)||E + 2 δ∗,

which implies

||(x, y) − (xs, ys)||E ≤
2 δ∗

1− α
= ε.

Corollary 5.1. Let the assumptions of Theorem (3.1) be satisfied, if x(`) = y(`), a1(`) = a2(`),ϕ1 = ϕ2

and f1 = f2 in the Distributed state-dependent integral equation (1.1) with conjugate feedback control (1.2),
then we deduce that the solution of the following equation

x(`) = a(`) +

∫ ϕ(x(`))

0
f (s, x(s))ds.
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exists and this solution is Hyers-Ulam stable.

6. Some Particular Cases

Letting φi(u) = ηiu, u ∈ C and ηi ∈ (0, 1), i = 1, 2, then we have the Distributed state-dependent

integral equation

x(`) = a1(`) +

∫ η1x(`)

0
f1(s, y(s))ds,

with conjugate feedback control

y(`) = a2(`) +

∫ η2 y(`)

0
f2(s, x(s))ds.

Note that φi(u) = ηiu satisfy condition (iii). Then from Theorem (2.1), we obtain that the solution

of this problem exists, from Theorem (3.1), we get that this solution is unique and from section 4,

we get that this solution depends continuously on each of ai(.), ηi and fi(., .). Also, this solution is

Hyers-Ulam stable.

Now, if

f1(`, y(`)) = f2(`, x(`)) = (1 + 2`)2

(note that each of f1 and f2 satisfies condition (i)) and if x(`) = y(`), a1(`) = a2(`) and η1 = η2.

Then, we obtain the problem

x(`) = a(`) +
∫ ηx(`)

0
(1 + 2s)2ds,

Now, by simple calculations, we get that the problem:

x(`) = a(`) +
∫ ηx(`)

0
(1 + 2s)2ds

= a(`) +
1
2
(1 + 2s)3

3

∣∣∣∣∣∣ηx(`)

0

= a(`) +
1
2

(
[1 + 2η x(`)]3

3
−

1
3

)
has a unique continuous solution which depends continuously on each of a(.) and η. Also, this

solution is Hyers-Ulam stable.
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