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Abstract. It is very well-known that the special functions and integral operators play a vital role in the research of applied

and mathematical sciences. The main purpose of this paper is to introduce a new subclass of analytic functions involving

Miller-Ross functions and obtain coefficient inequalities, distortion theorem, convex linear combination, partial sums,

convolution, and neighborhood results for this class.

1. Introduction

The geometric characteristics of analytical functions are the subject of Geometric Function The-

ory, a significant area of complex analysis. Numerous mathematical disciplines, particularly pure

and practical mathematics, heavily rely on this area of complex analysis. Certain geometric prop-

erties (such as convexity, starlikeness, or univalency) of some classes of analytic functions (in

the unit disk) associated with some researchers have always drawn special functions have been

studied by several researchers in the literature for some special classes of univalent functions.

The distribution of random variables has garnered a lot of attention lately. In statistics and the

concept of probability, especially in relation to distributions, probability density functions are
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fundamental. In real-world scenarios, there are many different types of distributions, such as the

binomial, Poisson, and hypergeometric distributions. In the theory of geometric functions, simple

distribution, along with Pascal, Poisson, logarithmic, binomial, beta negative binomial, has been

partially studied from a theoretical point of view (see [1, 8, 22, 25, 43]) and two parameters of the

Mittag Leffler-type probability distribution (see [9, 20, 39]). Now, let us review some well-known

definitions and findings related to geometric function theory.

LetA indicate the class of all mapping ℵ(h̄) of the type

ℵ(h̄) = h̄ +
∞∑
ι=2

ηιh̄ι, (1.1)

in the open unit disc U = {h̄ ∈ C : |h̄| < 1}. Let S be the subclass of A consisting of univalent

mapping and satisfy the following usual normalization condition ℵ(0) = ℵ′(0) − 1 = 0. We

denote by S the subclass ofA consisting of mappings ℵ(h̄) which are all univalent in U. A function

ℵ ∈ A is a starlike function of the order ξ, 0 ≤ ξ < 1, if it fulfills

<

{
h̄ℵ′(h̄)
ℵ(h̄)

}
> ξ, h̄ ∈ U. (1.2)

We indicate this class with S∗(ξ). A mapping ℵ ∈ A is a convex function of the order ξ, 0 ≤ ξ < 1,

if it fulfills

<

{
1 +

h̄ℵ′′(h̄)
ℵ′(h̄)

}
> ξ, h̄ ∈ U. (1.3)

We indicate this class with K(ξ). Note that S∗(0) = S∗ and K(0) = K are the usual classes of starlike

and convex functions in U respectively. For ℵ ∈ A given by (1.1) and g(h̄) given by

g(h̄) = h̄ +
∞∑
ι=2

bιh̄ι (1.4)

their convolution (or Hadamard product), signified by (ℵ ∗ g), is specified as

(ℵ ∗ g)(h̄) = h̄ +
∞∑
ι=2

ηιbιh̄ι = (g ∗ ℵ)(h̄), (h̄ ∈ U). (1.5)

Note that ℵ ∗ g ∈ A.

Let T indicates the class of functions analytic in U that are of the type

ℵ(h̄) = h̄−
∞∑
ι=2

ηιh̄ι, ηι(≥ 0, h̄ ∈ U) (1.6)

and let T∗(ξ) = T ∩ S∗(ξ), C(ξ) = T ∩ K(ξ). Silverman [34] has examined the class T∗(ξ) and its

associated classes in great detail. These classes include numerous fascinating characteristics.

Miller and Ross proposed the following special function in their monograph (p. 314, [19]), which

is now called the Miller-Ross function, defined as

Eν,c(h̄) = h̄νech̄γ∗(ν, ch̄),
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where γ∗ is the incomplete gamma function. Using the properties of the incomplete gamma

functions, the Miller-Ross function can easily be written as

Eν, c(h̄) = h̄ν
∞∑
ι=0

(ch̄)ι

Γ(ι+ ν+ 1)
; h̄, c, ν ∈ C. (1.7)

In this paper, we shall restrict our attention to the case of real-valued c > 0 and h̄ ∈ U. It is clear

that the Miller-Ross function Eν, c(h̄) does not belong to the familyA. Thus, it is natural to consider

the following normalization of Miller-Ross function [41]:

Eν, c(h̄) = h̄1−νΓ(ν+ 1)Eν, c(h̄)

= h̄ +
∞∑
ι=2

cι−1Γ(ν+ 1)
Γ(ι+ ν)

h̄ι (1.8)

For c, ν ∈ C, we can write the following

Eν, c(1) − 1 =
∞∑
ι=2

cι−1Γ(ν+ 1)
Γ(ι+ ν)

,

E′ν, c(1) − 1 =
∞∑
ι=2

ι cι−1Γ(ν+ 1)
Γ(ι+ ν)

,

E′′ν, c(1) =
∞∑
ι=2

ι(ι− 1)cι−1Γ(ν+ 1)
Γ(ι+ ν)

.

In recent years, a large literature has evolved on the use of distribution series such as Poisson,

Pascal, Borel, etc., in geometric function theory. Many researchers have examined some important

features in the field of geometric function theory, such as coefficient estimates, inclusion relations,

and conditions of being in some known classes, using different probability distributions, see for

example [10-15].

We now recall that a discrete random variable X whose probability mass function is given by

P[X = i] =
e−ζζi

i!
, i = 0, 1, 2 · · · , ζ > 0

is said to have a Poisson distribution with parameter ζ.

Recently, Porwal and Dixit [26] introduced Mittag-Leffler-type Poisson distribution and ob-

tained moments, moment generating function. Bajpai [2] introduced Mittag-Leffler-type Pois-

son distribution series. Lately, Srivastava et al. [40] introduced the Poisson distribution, a two-

parameter Mittag-Leffler-type Poisson distribution. Motivated by results on connections between

various subclasses of analytic univalent functions using special functions and distribution se-

ries [11, 12, 15, 30, 31, 33, 39, 42, 45] we obtain coefficient inequalities, distortion theorem, convex

linear combination, partial sums, convolution, and neighborhood property for the Miller -Ross-

type Poisson distribution series to be in classes. First, we recall the definition of the Miller-Ross-type

distribution.
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The probability mass function of the Miller-Ross-type Poisson distribution is given by

Pν,c(ζ, ι) =
ζν(cζ)ι

Eν,c(ζ)Γ(ι+ ν+ 1)
, ι = 0, 1, 2, · · · , (1.9)

where ν > −1, c > 0 and Eν, c(h̄) is Miller-Ross function given in (1.7).

The Miller-Ross-type Poisson distribution series is defined by

F
ζ
ν,c(h̄) = h̄ +

∞∑
ι=2

ζν(cζ)ι−1

Γ(ι+ ν)Eν,c(ζ)
h̄ι, h̄ ∈ U. (1.10)

(see [18], see also [22]). Furthermore, using the convolution (or Hadamard product), we define

K
ζ
ν,cℵ(h̄) = F

ζ
ν,c(h̄) ∗ ℵ(h̄)

= h̄ +
∞∑
ι=2

ζν(cζ)ι−1

Γ(ι+ ν)Eν,c(ζ)
ηιh̄ι

= h̄ +
∞∑
ι=2

Φν
c (ι, ζ)ηιh̄

ι, (1.11)

where

Φν
c (ι, ζ) =

ζν(cζ)ι−1

Γ(ι+ ν)Eν,c(ζ)
. (1.12)

Inspired by the work of [13, 17, 21], we introduce the new subclass involving Miller -Ross -type

Poisson distribution series K
ζ
ν,cℵ(h̄), as below:

Definition 1.1. For 0 ≤ ℘ < 1, 0 ≤ ` < 1, we say ℵ(h̄) ∈ A is in the class ϕζν,c(℘, `) if it satisfies the
condition

<

 h̄
(
K
ζ
ν,cℵ(h̄)

)′
+ ℘h̄2

(
K
ζ
ν,cℵ(h̄)

)′′
K
ζ
ν,cℵ(h̄)

 > `, (h̄ ∈ U). (1.13)

Also we denote by Tϕζν,c(℘, `) = ϕζν,c(℘, `)∩ T.

2. Coefficient Inequalities

In this section, we obtain a sufficient condition for a function ℵ given by (1.1) to be in ϕζν,c(℘, `).

Theorem 2.1. A function ℵ ∈ A belongs to the class ϕζν,c(℘, `) if
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| ≤ 1− `. (2.1)

Proof. Since 0 ≤ ` < 1 and ℘ ≥ 0, now if we put

%(h̄) =
h̄
(
K
ζ
ν,cℵ(h̄)

)′
+ ℘h̄2

(
K
ζ
ν,cℵ(h̄)

)′′
K
ζ
ν,cℵ(h̄)

, (h̄ ∈ U)

then it is sufficient to prove that |%(h̄) − 1| < 1− `, (h̄ ∈ U).

Indeed if ℵ(h̄) = h̄, (h̄ ∈ U), then we have %(h̄) = h̄, (h̄ ∈ U).

This implies the desired equality (2.1) holds.
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If ℵ(h̄) , h̄ (|h̄| = r < 1), then there exist a coefficient Φν
c (ι, ζ)ηι , 0, for some ι ≥ 2. It follows that

∞∑
ι=2

Φν
c (ι, ζ)|ηι| > 0. Further, note that

∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| > (1− `)

∞∑
ι=2

Φν
c (ι, ζ)|ηι|

⇒

∞∑
ι=2

Φν
c (ι, ζ)|ηι| < 1.

By (2.1), we obtain

|%(h̄) − 1| =

∣∣∣∣∣∣∣∣∣∣∣
∞∑
ι=2

[ι+ ℘ι(ι− 1) − 1]Φν
c (ι, ζ)ηιh̄

ι−1

1 +
∞∑
ι=2

Φν
c (ι, ζ)ηιh̄

ι−1

∣∣∣∣∣∣∣∣∣∣∣
<

∞∑
ι=2

[ι+ ℘ι(ι− 1) − 1]Φν
c (ι, ζ)|ηι|

1−
∞∑
ι=2

Φν
c (ι, ζ)|ηι|

≤

∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| − (1− `)Φν

c (ι, ζ)|ηι|

1−
∞∑
ι=2

Φν
c (ι, ζ)|ηι|

≤

(1− `) − (1− `)
∞∑
ι=2

Φν
c (ι, ζ)|ηι|

1−
∞∑
ι=2

Φν
c (ι, ζ)|ηι|

= 1− `, (h̄ ∈ U).

Hence we obtain

<

 h̄
(
K
ζ
ν,cℵ(h̄)

)′
+ ℘h̄2

(
K
ζ
ν,cℵ(h̄)

)′′
K
ζ
ν,cℵ(h̄)

 = <(%(h̄)) > 1− (1− `) = `, (h̄ ∈ U).

Then ℵ ∈ ϕζν,c(℘, `). This completes the proof. �

In the next theorem, we prove that the condition (2.1) is also necessary for a function ℵ ∈

Tϕζν,c(℘, `).

Theorem 2.2. Let ℵ be given by (1.6). Then the function ℵ ∈ Tϕζν,c(℘, `) if and only if

∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| ≤ 1− `. (2.2)

Proof. In view of Theorem 2.1, we need only to prove that ℵ ∈ Tϕζν,c(℘, `) satisfies the coefficient

inequality (2.1). If ℵ ∈ Tϕζν,c(℘, `) then the function
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%(h̄) =
h̄
(
K
ζ
ν,cℵ(h̄)

)′
+ ℘h̄2

(
K
ζ
ν,cℵ(h̄)

)′′
K
ζ
ν,cℵ(h̄)

, (h̄ ∈ U)

satisfies<(%(h̄)) > `, (h̄ ∈ U). This implies that

K
ζ
ν,cℵ(h̄) = h̄−

∞∑
ι=2

Φν
c (ι, ζ)|ηι|h̄

ι , 0, (h̄ ∈ U \ {0}).

Noting that
K
ζ
ν,cℵ(r)

r is the real continuous function in the open interval (0, 1) with ℵ(0) = 1, we

have
K
ζ
ν,cℵ(r)

r
= 1−

∞∑
ι=2

Φν
c (ι, ζ)|ηι|r

ι−1 > 0, (0 < r < 1). (2.3)

Now

` < %(r) =
1−

∞∑
ι=2

[ι+ ℘ι(ι− 1)]Φν
c (ι, ζ)|ηι|rι−1

1−
∞∑
ι=2

Φν
c (ι, ζ)|ηι|rι−1

and consequently by (2.3), we get
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι|r

ι−1
≤ 1− `.

Letting r→ 1, we get
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| ≤ 1− `.

This proves the converse part. �

Remark 2.1. If a function ℵ of the form (1.6) belongs to the class Tϕζν,c(℘, `) then

|ηι| ≤
1− `

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)

, ι ≥ 2.

The equality holds for the functions

ℵι(h̄) = h̄−
1− `

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)

h̄ι, (h̄ ∈ U, ι ≥ 2). (2.4)

3. Distortion Theorem

In the section, distortion bounds for functions belonging to the class Tϕζν,c(℘, `).

Theorem 3.1. Let ℵ be in the class Tϕζν,c(℘, `) and |h̄| = r < 1. Then

r−
1− `

[2℘− `+ 2]Φν
c (2, ζ)

r2
≤ |ℵ(h̄)| ≤ r +

1− `
[2℘− `+ 2]Φν

c (2, ζ)
r2 (3.1)

and

1−
2(1− `)

[2℘− `+ 2]Φν
c (2, ζ)

r ≤ |ℵ′(h̄)| ≤ 1 +
2(1− `)

[2℘− `+ 2]Φν
c (2, ζ)

r. (3.2)

The result is sharp with the extremal function ℵ2(h̄) is given by (2.4).
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Proof. Since ℵ ∈ Tϕζν,c(℘, `), we apply Theorem 2.2 to obtain

[2℘− `+ 2]Φν
c (2, ζ)

∞∑
ι=2

|ηι| ≤
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι|

≤ 1− `.

Thus |ℵ(h̄)| ≤ |h̄|+ |h̄|2
∞∑
ι=2

|ηι| ≤ r +
1− `

[2℘− `+ 2]Φν
c (2, ζ)

r2.

Also we have, |ℵ(h̄)| ≤ |h̄| − |h̄|2
∞∑
ι=2

|ηι| ≤ r−
1− `

[2℘− `+ 2]Φν
c (2, ζ)

r2,

and (3.1) follows. In similar manner for ℵ′, the inequalities

|ℵ
′(h̄)| ≤ 1 +

∞∑
ι=2

ι|ηι||h̄|ι−1
≤ 1 + |h̄|

∞∑
ι=2

ι|ηι|

and
∞∑
ι=2

ι|ηι| ≤
2(1− `)

[2℘− `+ 2]Φν
c (2, ζ)

are satisfied, which leads to (3.2). This completes the proof. �

4. Radii of Close-to-Convexity and Starlikeness

In this section, the radii of close-to-convex and starlikeness of this class Tϕζν,c(℘, `) will be

obtained.

Theorem 4.1. Let ℵ be given by (1.6) is in Tϕζν,c(℘, `). Then ℵ is close-to-convex of order δ (0 ≤ δ < 1)

in the disc |h̄| < t1, where

t1 = inf
ι≥2

[
(1− δ)[ι+ ι℘(ι− 1) − `]Φν

c (ι, ζ)
ι(1− `)

] 1
ι−1

. (4.1)

The result is sharp with the extremal function ℵ(h̄) is given by (2.4).

Proof. If ℵ ∈ T and ℵ is close-to-convex of order δ then we get

|ℵ
′(h̄) − 1| ≤ 1− δ. (4.2)

For the left hand side of (4.2), we obtain

|ℵ
′(h̄) − 1| ≤

∞∑
ι=2

ιηι|h̄|ι−1 < 1− δ

⇒

∞∑
ι=2

ι
1− δ

ηι|h̄|ι−1
≤ 1.

We know that ℵ(h̄) ∈ Tϕζν,c(℘, `) if and only if
∞∑
ι=2

[ι+ ι℘(ι− 1) − `]Φν
c (ι, ζ)

(1− `)
ηι ≤ 1.
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Thus (4.2) holds true if

ι
1− δ

|h̄|ι−1
≤

[ι+ ι℘(ι− 1) − `]Φν
c (ι, ζ)

(1− `)

or equivalently

|h̄| ≤
[
(1− δ)[ι+ ι℘(ι− 1) − `]Φν

c (ι, ζ)
ι(1− `)

] 1
ι−1

and hence, the proof is complete. �

Theorem 4.2. Let ℵ ∈ Tϕζν,c(℘, `). Then ℵ is starlike of order δ, (0 ≤ δ < 1) in the disc |h̄| < t2, where

t2 = inf
ι≥2

[
(1− δ)[ι+ ι℘(ι− 1) − `]Φν

c (ι, ζ)
(ι− δ)(1− `)

] 1
ι−1

. (4.3)

The result is sharp with the extremal function ℵ(h̄) is given by (2.4).

Proof. We have ℵ ∈ T and ℵ is starlike of order δ, we have∣∣∣∣∣∣ h̄ℵ′(h̄)ℵ(h̄)
− 1

∣∣∣∣∣∣ < 1− δ. (4.4)

For the left hand side of (4.4), we have

∣∣∣∣∣∣ h̄ℵ′(h̄)ℵ(h̄)
− 1

∣∣∣∣∣∣ ≤
∞∑
ι=2

(ι− 1)ηι|h̄|ι−1

1−
∞∑
ι=2
ηι|h̄|ι−1

(1− δ) is bigger than the right-hand side of the left relation if

∞∑
ι=2

ι− δ
1− δ

ηι|h̄|ι−1 < 1.

We know that ℵ ∈ Tϕζν,c(℘, `) if and only if

∞∑
ι=2

[ι+ ι℘(ι− 1) − `]Φν
c (ι, ζ)

(1− `)
ηι ≤ 1.

Thus (4.4) is true if

ι− δ
1− δ

|h̄|ι−1
≤

[ι+ ι℘(ι− 1) − `]Φν
c (ι, ζ)

(1− `)

or equivalently

|h̄| ≤
[
(1− δ)[ι+ ι℘(ι− 1) − `]Φν

c (ι, ζ)
(ι− δ)(1− `)

] 1
ι−1

.

It yields the star likeness of the family. �
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5. Convex Linear Combinations

Theorem 5.1. Let ℵ1(h̄) = h̄ and

ℵι(h̄) = h̄−
1− `

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)

h̄ι, (h̄ ∈ U, ι ≥ 2). (5.1)

Then ℵ ∈ Tϕζν,c(℘, `) if and only if ℵ can be expressed in the form

ℵ(h̄) =
∞∑
ι=1

µιℵι(h̄),µι ≥ 0 (5.2)

and
∞∑
ι=1
µι = 1.

Proof. If a function ℵ is of the form ℵ(h̄) =
∞∑
ι=1
µιℵι(h̄),µι ≥ 0 and

∞∑
ι=1
µι = 1 then

∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι|

=
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)

(1− `)µι
[ι+ ℘ι(ι− 1) − `]Φν

c (ι, ζ)

=
∞∑
ι=2

(1− `)µι = (1− µ1)(1− `)

≤(1− `)

which provides (2.2), hence ℵ ∈ Tϕζν,c(℘, `), by Theorem 2.2.

Conversely, if ℵ is in the class ℵ ∈ Tϕζν,c(℘, `), then we may set

µι =
[ι+ ℘ι(ι− 1) − `]Φν

c (ι, ζ)
1− `

|ηι|, ι ≥ 2,

and µ1 = 1−
∞∑
ι=2
µι.

Then the function ℵ is of the form (5.2), and this completes the proof. �

6. Partial Sums

For various interesting developments concerning partial sums of analytic univalent functions,

the reader may be referred to the works of Brickman et al. [3], Caglar and Orhan [4], Lin and

Owa [18], Deniz and Orhan [6,7], Kazimoglu et al. [16], Shiel-Small [32]. Recently, some researchers

have studied on partial sums of special functions (see [5,16,28,44]). For a function ℵ ∈ A given by

(1.1), Silverman [35] investigated the partial sums ℵ defined by

ℵ1(h̄) = h̄ and ℵ j(h̄) = h̄ +
j∑

ι=2

ηιh̄ι. (6.1)

In [35], Silverman examined sharp lower bounds on the real part of the quotients between the

normalized convex or starlike functions and their sequences of partial sums. Also, Srivastava et
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al. [37], Silvia [36] and Owa et al. [24] have investigated interesting results on the partial sums. In

this section, we consider partial sums of functions in the class ϕζν,c(℘, `) and obtain sharp lower

bounds for the ratios of real part of ℵ to ℵ j and ℵ′ to ℵ′j.

Theorem 6.1. Let be a function ℵ of the form (1.1) belong to the class ϕζν,c(℘, `) and satisfy (2.1). Then

<

(
ℵ(h̄)
ℵ j(h̄)

)
≥

d j+1 − 1 + `

d j+1
, (h̄ ∈ U), (6.2)

where

dι ≥

 1− `, if ι = 2, 3, · · · , j;
d j+1, if ι = j + 1, j + 2, j + 3, · · · .

(6.3)

The result (6.2) is sharp with the function given by

ℵ(h̄) = h̄ +
1− `
d j+1

h̄ j+1. (6.4)

Proof. Define the function ℘(h̄) by

1 + ℘(h̄)
1−℘(h̄)

=
d j+1

1− `

{
ℵ(h̄)
ℵ j(h̄)

−

(
d j+1 − 1 + `

d j+1

)}

=


1 +

j∑
ι=2
ηιh̄ι−1 +

d j+1

1−`

∞∑
ι= j+1

ηιh̄ι−1

1 +
j∑

ι=2
ηιh̄ι−1

 . (6.5)

It suffices to show |℘(h̄)| ≤ 1. Now, from (6.5) we can write

℘(h̄) =

d j+1

1−`

∞∑
ι= j+1

ηιh̄ι−1

2 + 2
j∑

ι=2
ηιh̄ι−1 +

d j+1

1−`

∞∑
ι= j+1

ηιh̄ι−1

⇒ |℘(h̄)| ≤

d j+1

1−`

∞∑
ι= j+1

|ηι|

2− 2
j∑

ι=2
|ηι| −

d j+1

1−`

∞∑
ι= j+1

|ηι|

.

Now |℘(h̄)| ≤ 1 if and only if

2
d j+1

1− `

∞∑
ι= j+1

|ηι| ≤ 2− 2
j∑

ι=2

|ηι|

⇒

j∑
ι=2

|ηι|+
∞∑

ι= j+1

d j+1

1− `
|ηι| ≤ 1.

From the condition (2.1), it is sufficient to show that
j∑

ι=2

|ηι|+
∞∑

ι= j+1

d j+1

1− `
|ηι| ≤

∞∑
ι=2

dι
1− `

|ηι|



Int. J. Anal. Appl. (2025), 23:60 11

which is equivalent to
j∑

ι=2

(
d j − 1 + `

1− `

)
|ηι| −

∞∑
ι= j+1

d j+1

1− `
|ηι| ≥ 0. (6.6)

To see that the function given by (6.4) gives the sharp result, we observe that for h̄ = re
iπ
n ,

ℵ(h̄)
ℵ j(h̄)

= 1 +
1− `
d j+1

h̄ j
→ 1−

1− `
d j+1

=
d j+1 − 1 + `

d j+1
, when r→ 1−.

�

Theorem 6.2. Let be a function ℵ of the form (1.1) belong to the class ϕζν,c(℘, `) and satisfy (2.1). Then

<

(
ℵ j(h̄)

ℵ(h̄)

)
≥

d j+1

d j+1 + 1− `
, (h̄ ∈ U), (6.7)

where d j+1 ≥ 1− ` and

dι ≥

 1− `, if ι = 2, 3, · · · , j;
d j+1, if ι = j + 1, j + 2, j + 3, · · · .

(6.8)

The result (6.7) is sharp with the function given by (6.4).

Proof. We write by

1 + ℘(h̄)
1−℘(h̄)

=
d j+1 + 1− `

1− `

{
ℵ j(h̄)

ℵ(h̄)
−

(
d j+1

d j+1 + 1− `

)}

=


1 +

j∑
ι=2
ηιh̄ι−1

−
d j+1

1−`

∞∑
ι= j+1

ηιh̄ι−1

1 +
∞∑
ι=2
ηιh̄ι−1

 , (6.9)

where

|℘(h̄)| ≤

d j+1+1−`
1−`

∞∑
ι= j+1

|ηι|

2− 2
j∑

ι=2
|ηι| −

d j+1+1−`
1−`

∞∑
ι= j+1

|ηι|

≤ 1.

This last inequality is equivalent to

j∑
ι=2

|ηι|+
∞∑

ι= j+1

d j+1

1− `
|ηι| ≤ 1.

We are making use of (2.1) to get (6.6). Finally, equality holds in (6.7) for the extremal function

ℵ(h̄) given by (6.4).

�

We next turn to ratios involving derivatives.
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Theorem 6.3. Let be a function ℵ of the form (1.1) belong to the class ϕζν,c(℘, `) and satisfy (2.1). Then

<

ℵ′(h̄)ℵ′j(h̄)

 ≥ d j+1 − ( j + 1)(1− `)
d j+1

, (h̄ ∈ U),

<

ℵ′j(h̄)ℵ′(h̄)

 ≥ d j+1

d j+1 − ( j + 1)(1− `)
, (h̄ ∈ U), (6.10)

where d j+1 ≥ ( j + 1)(1− `) and

dι ≥

 ι(1− `), if ι = 2, 3, · · · , j;

ι
d j+1

j+1 , if ι = j + 1, j + 2, j + 3, · · · .
(6.11)

The result is sharp with the function given by (6.4).

Proof. We write by

1 + ℘(h̄)
1−℘(h̄)

=
d j+1

( j + 1)(1− `)

ℵ′(h̄)ℵ′j(h̄)
−

(
d j+1 − ( j + 1)(1− `)

d j+1

) ,

where

℘(h̄) =

d j+1

( j+1)(1−`)

∞∑
ι= j+1

ιηιh̄ι−1

2 + 2
j∑

ι=2
ιηιh̄ι−1 +

d j+1

( j+1)(1−`)

∞∑
ι= j+1

ιηιh̄ι−1

.

Now |℘(h̄)| ≤ 1 if and only if

j∑
ι=2

ι|ηι|+
d j+1

( j + 1)(1− `)

∞∑
ι= j+1

ι|ηι| ≤ 1.

From the condition (2.1), it is sufficient to show that

j∑
ι=2

ι|ηι|+
d j+1

( j + 1)(1− `)

∞∑
ι= j+1

ι|ηι| ≤
∞∑
ι=2

dι
1− `

|ηι|

which is equivalent to

j∑
ι=2

(
dι − (1− `)ι

1− `

)
|ηι|+

∞∑
ι= j+1

( j + 1)dι − ιd j+1

( j + 1)(1− `)
|ηι| ≥ 0.

To prove the result (6.10), define the function ℘(h̄)

1 + ℘(h̄)
1−℘(h̄)

=
( j + 1)(1− `) + d j+1

( j + 1)(1− `)

ℵ
′

j(h̄)

ℵ′(h̄)
−

(
d j+1

d j+1 + ( j + 1)(1− `)

)
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where

℘(h̄) =

−

(
d j+1+1

( j+1)(1−`)

)
∞∑

ι= j+1
ιηιh̄ι−1

2 + 2
j∑

ι=2
ιηιh̄ι−1 +

1−d j+1

( j+1)(1−`)

∞∑
ι= j+1

ιηιh̄ι−1

.

Now |℘(h̄)| ≤ 1 if and only if
j∑

ι=2

ι|ηι|+
∞∑

ι= j+1

d j+1

( j + 1)(1− `)
ι|ηι| ≤ 1. (6.12)

It suffices to show that the left hand side of (6.12) is bounded previously by the condition
∞∑
ι=2

dι
1− `

|ηι|,

which is equivalent to
∞∑
ι=2

(
dι

1− `
− ι

)
|ηι|+

∞∑
ι= j+1

(
dι

1− `
−

d j+1

( j + 1)(1− `)

)
ι|ηι| ≥ 0

�

7. Convolution Properties

In this section, we will prove that the class Tϕζν,c(℘, `) is closed under convolution.

Theorem 7.1. Let g(h̄) of the form

g(h̄) = h̄−
∞∑
ι=2

bιh̄ι

be analytic in U. If ℵ ∈ Tϕζν,c(℘, `) then the function ℵ ∗ g is in the class Tϕζν,c(℘, `). Here the symbol ∗
denoted to the Hadmard product ( or convolution ).

Proof. Since ℵ ∈ Tϕζν,c(℘, `), we have
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι| ≤ 1− `.

By utilizing the last inequality and the fact that

ℵ(h̄) ∗ g(h̄) = h̄−
∞∑
ι=2

ηιbιh̄ι.

We obtain
∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι||bι|

≤

∞∑
ι=2

[ι+ ℘ι(ι− 1) − `]Φν
c (ι, ζ)|ηι|

≤1− `
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and hence, in view of Theorem 2.1, the result follows. �

8. Neighborhood Property

Following [14, 29], we defined the α−neighbourhood of the function ℵ(h̄) ∈ T by

Nα(ℵ) =

g ∈ T : g(h̄) = h̄−
∞∑
ι=2

bιh̄ι and
∞∑
ι=2

ι|ηι − bι| ≤ α

 , α ≥ 0. (8.1)

Definition 8.1. A functionℵ ∈ A is said to in the class Tϕζν,c(℘, `) if there exists a function h ∈ Tϕζν,c(℘, `)

such that ∣∣∣∣∣∣ℵ(h̄)h(h̄)
− 1

∣∣∣∣∣∣ < 1− γ, (h̄ ∈ U, 0 ≤ γ < 1). (8.2)

Theorem 8.1. If h ∈ Tϕζν,c(℘, `) and

γ = 1−
α(2℘− `+ 2)Φν

c (2, ζ)
2(2℘− `+ 2)Φν

c (2, ζ) − (1 + `)

then Nα(h) ⊆ Tφδ,γ
c (℘, `).

Proof. Let ℵ ∈ Nα(h). We then find from that
∞∑
ι=2

ι|ηι − bι| ≤ α,

which is easily implies the coefficient inequality
∞∑
ι=2

|ηι − bι| ≤
α
ι

, (n ∈ N).

Since h ∈ Tϕζν,c(℘, `), we have from equation (2.1) that

∞∑
ι=2

|ηι| ≤
1− `

(2℘− `+ 2)Φν
c (2, ζ)

and

∣∣∣∣∣∣ℵ(h̄)h(h̄)
− 1

∣∣∣∣∣∣ <
∞∑
ι=2
ι|ηι − bι|

1−
∞∑
ι=2

bι

≤
α
2

(2℘− `+ 2)Φν
c (2, ζ)

(2℘− `+ 2)Φν
c (2, ζ) − (1 + `)

= 1− γ.

This completes the proof of the theorem. �
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[17] S. Kazımoğlu, Partial Sums of The Miller-Ross Function, Turk. J. Sci. 6 (2021), 167-173.

[18] L. Jian-Lin, S. Owa, On Partial Sums of the Libera Integral Operator, J. Math. Anal. Appl. 213 (1997), 444–454.

https://doi.org/10.1006/jmaa.1997.5549.

[19] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.

[20] G. Murugusundaramoorthy, S.M. El-Deeb, Second Hankel Determinant for a Class of Analytic Functions of the

Mittag-Leffler-Type Borel Distribution Related With Legendre Polynomials, TWMS J. Appl. Eng. Math. 12 (2022),

1247-1258.

https://doi.org/10.1090/S0002-9947-1973-0338337-5
https://doi.org/10.1090/S0002-9947-1973-0338337-5
https://doi.org/10.7153/mia-18-92
https://doi.org/10.1007/s10587-010-0064-9
https://doi.org/10.1007/s10587-010-0064-9
https://doi.org/10.1007/s13369-011-0103-3
https://doi.org/10.5666/KMJ.2019.59.2.301
https://doi.org/10.22436/jmcs.024.03.05
https://doi.org/10.22436/jmcs.024.03.05
https://doi.org/10.1016/j.aml.2007.08.002
https://doi.org/10.2478/ausm-2023-0007
https://doi.org/10.3390/math11183989
https://doi.org/10.3390/math11183989
https://doi.org/10.1090/S0002-9939-1957-0086879-9
https://doi.org/10.1090/S0002-9939-1957-0086879-9
https://doi.org/10.1080/27690911.2022.2088743
https://doi.org/10.1080/27690911.2022.2088743
https://doi.org/10.1006/jmaa.1997.5549


16 Int. J. Anal. Appl. (2025), 23:60

[21] G. Murugusundaramoorthy, H.Ö. Güney, D. Breaz, Starlike Functions of the Miller–Ross-Type Poisson Distribution

in the Janowski Domain, Mathematics 12 (2024), 795. https://doi.org/10.3390/math12060795.

[22] W. Nazeer, Q. Mehmood, S.M. Kang, A. Ul Haq, An Application of Binomial Distribution Series on Certain Analytic

Functions, J. Comput. Anal. Appl. 26 (2019), 11-17.

[23] H. Orhan, N. Yagmur, Partial Sums of Generalized Bessel Functions, J. Math. Inequal. 4 (2014), 863–877. https:

//doi.org/10.7153/jmi-08-65.

[24] S. Owa, H.M. Srivastava, N. Saito, Partial Sums of Certain Classes of Analytic Functions, Int. J. Comput. Math. 81

(2004), 1239–1256. https://doi.org/10.1080/00207160412331284042.

[25] S. Porwal, M. Kumar, A Unified Study on Starlike and Convex Functions Associated with Poisson Distribution

Series, Afr. Mat. 27 (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z.

[26] S. Porwal, K.K. Dixit, On Mittag-Leffler Type Poisson Distribution, Afr. Mat. 28 (2017), 29–34. https://doi.org/10.

1007/s13370-016-0427-y.

[27] V. Ravichandran, Geometric Properties of Partial Sums of Univalent Functions, Math. Newslett. 22 (2012), 208-221.

[28] M.S. Ur Rehman, Q.Z. Ahmad, H.M. Srivastava, B. Khan, N. Khan, Partial Sums of Generalized q-Mittag-Leffler

Functions, AIMS Math. 5 (2020), 408–420. https://doi.org/10.3934/math.2020028.

[29] S. Ruscheweyh, Neighborhoods of Univalent Functions, Proc. Amer. Math. Soc. 81 (1981), 521–521. https://doi.org/

10.1090/S0002-9939-1981-0601721-6.
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