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Abstract. Interior point methods have seen significant advancements in recent decades for solving linear, semi-definite

and quadratic programming. Among these methods, the logarithmic barrier methods based on approximate functions

have polynomial convergence and are known for their favorable numerical performance. In this work, a new minorant

function for the barrier method is proposed for solving convex quadratic problems with inequality constraints. The

proposed minorant function allows to compute the steplength easily and quickly, unlike the line search method, which is

computationally intensive and time-consuming. Mathematical results concerning the convergence of the algorithm are

established. The numerical comparisons with the inexact Wolfe line search technique show that the proposed method

is promising and effective.

1. Introduction

Consider the following quadratic problemmin q(x) = 1
2 xtQx + ctx

Ax ≥ b, x ∈ Rn.
(P)

The convex quadratic programming problems are encountered in various fields, including

social, economics, public planning and manufacturing [11,12,16,17]. Researchers have developed

numerous algorithms that utilize interior point techniques to tackle this class of problems. We

classify these methods into three basic classes: affine methods, potential reduction methods, and

central trajectory methods. Karmarkar [13] proposed an efficient polynomial algorithm for linear

programming. Vaidya and Tse [14] introduced an interior point algorithm based on Karmarkar’s
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projective transformation. Chikhaoui et al. [6] proposed an algorithm that solves a quadratic

function in its canonical form. On the other hand, the primal-dual path-following methods have

become the most common among interior point methods; see for example the work of Achache [1],

where he proposed a primal-dual path-following method for convex quadratic programming.

Boudjellal et al. [3] have also introduced a primal-dual interior point algorithm based on kernel

functions.

Alongside and unrelated to earlier works, different logarithmic barrier interior point methods

using approximate functions (majorant and minorant ones) have been considered. They are pri-

marily introduced by Crouzeix and Merikhi [7] for solving a semidefinite programming problem.

Later, Menniche and Benterki proposed a barrier method for linear programming based on ma-

jorant functions. Inspired by previous works, Chaghoub and Benterki [5] introduced a penalty

for convex quadratic programming. On the other hand, Leulmi et al. [8, 9] have suggested a bar-

rier method using a new minorant function for semidefinite programming, by providing a new

minorant function for linear programming.

Based on the previous discussion, our focus in this paper is to minimize convex quadratic

problems. We aim to elaborate an efficient minorant function for the logarithmic barrier method.

Contrary to the line search method, the proposed function helps to compute the step length easily

and without consuming a lot of time.

We have organized the remainder of this paper as follows: We present the problem and its

associated perturbed problem in Section 2, providing the necessary theoretical results. Next,

in Section 3 we introduce the new approximate function for solving the perturbed problem, as

well as the algorithm description. The final section presents numerical results and draws some

conclusions.

2. The statement of the problem and its theoretical study

2.1. The perturbed associated problem. Before defining the perturbed unconstrained problem

associated to (P), we first require the following mild assumptions:

1. Positive semidefinitness (PSD): Q is a Rn×n symmetric and positive semidefinite matrix.

2. Interior point condition (IPC): There exists x0 ∈ Rn such that Ax0 > b.

3. The full rank condition (FR): A is a (m× n) full rank matrix (rank(A) = m < n) .

4. c ∈ Rn, b ∈ Rp, the set of optimal solutions of (P) is nonempty and bounded.

We define the perturbed unconstrained problem associated to (P) as follows:

min
x∈Rn

qη(x), (Pη)

where the barrier function qη : Rn
→ (−∞,+∞] is

qη(x) =

q(x) − η
∑m

i=1 ln < ei, Ax− b > if Ax− b > 0

+∞ otherwise,
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where < x, y > is the scalar product of x, y ∈ Rn, (e1, e2, ..., em) is the canonical basis in Rm and η is

a strictly positive barrier scalar.

2.2. Existence and uniqueness of solution. To prove that (Pη) has a unique optimal solution, it is

sufficient to show that the recession cone of qη is reduced to zero. We need to use the following

lemma provided in [10].

Lemma 2.1. Assume that Assumption 4 hold, if
(
qη

)
∞
(d) ≤ 0 and Ad > 0 then d = 0.

Consider the cone of recession Cqη of qη that is defined as follows

Cqη = {d ∈ Rn : (q)∞(d) ≤ 0, d ≥ 0}, (2.1)

amounts to zero, i.e.,

(q)∞(d) ≤ 0⇒ d = 0

where (q)∞(d) is the asymptotic function of qη, which is defined by(
qη

)
∞
(d) = lim

α→+∞

qη (x0 + αd) − qη (x0)

α
≤ 0,

Thus, we can infer that

{d ∈ Rn : (qη)∞(d) ≤ 0} = {0},

hence Cqη = {0}. This means that the strictly convex problem (Pη) admits a unique optimal solution

x∗η for each η.

2.3. The convergence of the perturbed problem. The solution of the problem (P) reduces to the

solution of the series of problems (Pη). The sequence of the solutions xη of (Pη) should converge to

the solution of (P) when η tends to 0. The next lemma addresses this issue.

Lemma 2.2. (see [5]) Let η > 0. If xη is an optimal solution of the problem (Pη) such that lim
η→0

xη = x∗, then

x∗ is an optimal solution of the problem (P).

3. The perturbed problem and the corresponding algorithm

We interest now by finding the solution of perturbed problem (Pη).

3.1. The Newton descent direction. The necessary and sufficient optimality conditions of the

convex problem (Pη) assure that xη is an optimal solution of (Pη) if and only if it is a solution of the

following nonlinear system:

∇qη(xη) = 0.

To address this system, we propose a logarithmic interior point method based on Newton’s

approach. This method involves generating a sequence of interior points (xη)k = xk, which

converges to the optimal solution of (Pη). Newton’s iteration is given by xk+1 = xk + dk, where dk

represents the descent direction obtained by solving the following linear system.

∇
2qη(xη)dk = −∇qη(xη). (3.1)
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Unfortunately, this strategy does not ensure that each iterate xk+1 produced by the algorithm

is feasible, meaning we cannot guarantee that A(xk + dk) > b. To overcome this drawback, we

incorporate a step length αk at each iteration, which assures the feasibility of the new point

xk+1 = xk + αkdk.

3.2. Computation of the step-length. There are two main techniques to determine the step-length

αk:

(1) Line search methods: such as Fibonacci, Armijo, Goldstein or Wolfe methods. These

techniques are time-consuming and very sensitive. They aim to minimize the following

unidimensional functions

φ(α) = min
α>0

qη(xη + αd).

(2) Minorant function: This technique was originally proposed by Leulmi et al. [8] for positive

semidefinite programming problems; it relies on approximating the function

G(α) =
1
η
(qη(xη + αd) − qη(xη)), (3.2)

by another function whose minimum is easily computed. This function permits to deter-

mine the step-length at each iteration quickly with a smaller number of instructions, in

contrast to line search techniques.

Now, let α̂ = min
i∈I−
{
−1
yi
}, with yi =

<ei,Ad>
<ei,Ax−b> , I− = {i : yi < 0} and i = 1, . . . , m. In the following

result we establish that for α ∈ [0, α̂[, the function function G can be written in the following way

G(α) =
1
η

(1
2
α2dtQd− αdtQd

)
+ α

 m∑
i=1

yi − ||y||2
− m∑

i=1

ln(1 + αyi),

where and
∥∥∥y

∥∥∥ denotes the Euclidean norm of y ∈ Rn .

Proposition 3.1. For all α ∈ [0, α̂[, the function G given in equation (3.2) can be written as

G(α) =
1
η

(1
2
α2dTQd− αdTQd

)
−

m∑
i=1

ln(1 + αyi) + α

 m∑
i=1

yi − ‖y‖2
 , (3.3)

where α̂ = min
i∈I−
{
−1
yi
}, with yi =

<ei,Ad>
<ei,Ax−b> , I− = {i : yi < 0} and i = 1, . . . , m.

Proof. From Equation (3.2), we have

G(α) =
1
η
(qη(x + αd) − qη(x))

=
1
η

cT(x + αd) +
1

2η
(x + αd)TQ(x + αd) −

1
2η

xTQx−
1
η

cTx−
m∑

i=1

ln
(
1 + α

< ei, Ad >
< ei, Ax− b >

)

=
1

2η
α2dTQd +

1
2η
αxTQd +

1
2η
αdTQx +

1
η
αcTd−

m∑
i=1

ln
(
1 + α

< ei, Ad >
< ei, Ax− b >

)
,
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therefore, since Q is symmetric, it results that

G(α) =
1

2η
α2dTQd +

1
η
αdTQx +

1
η
αcTd−

m∑
i=1

ln
(
1 + α

< ei, Ad >
< ei, Ax− b >

)
.

On the other hand, from Assumption (4), and since

∇qη(x) = Qx− η
m∑

i=1

ATei

< ei, Ax− b >
+ c,

and

∇
2qη(x) = Q + η

m∑
i=1

ATei(ATei)
T

(< ei, Ax− b >)2 ,

then, from relation (3.1) we obtain

dT
∇

2qη(x)d = −dT
∇qη(x).

Therefore,

dTQx + dTc = −dTQd− η
m∑

i=1

< ei, Ad >2

< ei, Ax− b >2 + ηdT
m∑

i=1

ATei

< ei, Ax− b >

which implies that,

G(α) =
1
η

1
2
α2dTQd− αdTQd− αη

m∑
i=1

< ei, Ad >2

< ei, Ax− b >2 + αηdT
m∑

i=1

ATei
< ei, Ax− b >

−

m∑
i=1

ln
(
1 + α

< ei, Ad >
< ei, Ax− b >

)
=

1
η

(1
2
α2dTQd− αdTQd

)
+ α

 m∑
i=1

yi − ‖y‖2
− m∑

i=1

ln(1 + αyi).

and the proof is complete. �

3.3. The new minorant function. Before providing our new minorant function , which is the main

point of the paper, let’s talk about the following useful inequalities, which are related to a statistical

series {y1, y2, . . . , yn} of n real numbers. Wolkowicz et al. [15] proved that

ȳ− σy
√

n− 1 ≤ min
i

yi ≤ ȳ−
σy
√

n− 1
, (3.4)

ȳ +
σy
√

n− 1
≤ max

i
yi ≤ ȳ + σy

√

n− 1.

where ȳ and σy are reactively the mean and standard deviation

ȳ =
1
n

n∑
i=1

yi, σ2
y =

1
n

n∑
i=1

y2
i − ȳ2 =

1
n

n∑
i=1

(yi − ȳ)2.

Also, Crouzeix and Merikhi [7] proposed following useful inequalities related to the maximum

and the minimum of a statistical series with yi > 0 for i = 1, . . . , n

n ln
(
ȳ− σz

√

n− 1
)
≤ A ≤

n∑
i=1

ln(yi) ≤ B ≤ n ln(ȳ), (3.5)
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where

A = (n− 1) ln
(
ȳ +

σy
√

n− 1

)
+ ln

(
ȳ− σy

√

n− 1
)

and

B = ln
(
ȳ + σy

√

n− 1
)
+ (n− 1) ln

(
ȳ−

σy
√

n− 1

)
,

Now, in order to compute the step-length αk, we have proposed a simpler minorant function ,

noted G̃, which is defined as

G̃(α) = (nȳ− ‖y‖2)α−
1
η
α̂dtQd− τ ln(1 + φα), ∀α > 0, 0 < τ < 1.

where φ =
‖y‖2

(n−1)β+γ , β = ȳ− σy
√

n−1
and γ = ȳ + σy

√
n− 1.

Lemma 3.1. Consider the function G defined in (3.3); then for all α > 0, the proposed minorant function
G̃ is strictly convex and we have:

G̃(α) ≤ G(α).

Proof. Let’s define the following function

P(α) =α

 m∑
i=1

yi − ||y||2
− m∑

i=1

ln(1 + αyi) − (nȳ− ‖y‖2)α+ τ ln(1 + φα)

= −
m∑

i=1

ln(1 + αyi) + τ ln(1 + φα)

For proving G̃(α) ≤ G(α) it is sufficient to show that P(α) ≥ 0.

We have P′(0) = P(0) = 0 where

P′(α) = −
m∑

i=1

yi

1 + αyi
+ τ

φ

1 + αφ
,

and

P′′(α) =
m∑

i=1

y2
i

(1 + αyi)2 −
‖y‖2

(1 + αφ)2 .

Since yi ≤ ‖y‖, nȳ ≤ ‖y‖ and φ ≥ yi it results that

1
(1 + αyi)2 ≥

1
(1 + αφ)2 .

Hence, for all α > 0, P′′(α) ≥ 0. Furthermore, Since

1
2η
α2dtQd ≥ 0 and −

1
η
αdtQd ≥ −

1
η
α̂dtQd,∀α ∈]0, α̂[,

then,

α

 m∑
i=1

yi − ||y||2
− m∑

i=1

ln(1 + αyi) ≥ (nȳ− ‖y‖2)α− τ ln(1 + φα),
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therefore,

1
2η
α2dtQd + α

 m∑
i=1

yi − ||y||2
− m∑

i=1

ln(1 + αyi) −
1
η
αdtQd︸                                                                      ︷︷                                                                      ︸

G(α)

≥ (nȳ− ‖y‖2)α− τ ln(1 + φα) −
1
η
α̂dtQd︸                                            ︷︷                                            ︸

G̃(α)

.

and the proof is complete. �

Not that, the minimum of the convex function G̃ is obtained by solving the equation G̃′(α) = 0

on ]0, α̂[, where α̂ = sup{α : 1 + αyi > 0, for i = 1, ..., m} and yi = <ei,Ad>
<ei,Ax−b> , i ∈ {1, ..., m}. By

straightforward calculations, the optimal step-length is

α∗ =
τ

nȳ− ‖y‖2
−

1
φ

. (3.6)

where φ =
‖y‖2

(n−1)β+γ and 0 < τ < 1.

The following Lemma shows that the generated interior points {xk}k∈N decrease iteratively the

value of the function qη.

Theorem 3.1. The function qη decreases substantially from iteration k to iteration k + 1. In other words,
if xk and xk+1 represent feasible solutions obtained at iterations k and k + 1, respectively, then

qη(xk+1) < qη(xk).

Proof. According to Taylor’s development, we have

qη(xk+1) − qη(xk) = ∇qη(xk)αkdk + o (‖αkdk‖) .

Furthermore, since

∇
2qη(xη)dk = −∇qη(xη),

it results that,

qη(xk+1) − qη(xk) ' −αk∇
2qη(xk)dk. (3.7)

In the other hand, by convexity of qη, we have

∇
2qη(xk)dk ≥ 0.

then,

−αk∇
2qη(xk)dk ≤ 0. (3.8)

From (3.7) and (3.8), we obtain

qη(xk+1) − qη(xk) < 0.

which completes the proof. �
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3.4. The proposed algorithm. The main step of the algorithm to obtain an optimal solution x̄ of

the problem (P) are described in Algorithm 1 below.

Algorithm 1: The proposed algorithm
Input: Choose the parameters η > 0, 0 < τ < 1, 0 < σ < 1 and a parameter ε to stop the

algorithm.
// Initialization

1 - Select a feasible point x0 of the quadratic problem (P) and set k = 0.
2 while

∥∥∥∇qη(xk)
∥∥∥ > ε do

3 – Compute the the descent direction dk by solving the following linear system

∇
2qη(xη)dk = −∇qη(xη).

4 – Determine optimal step-length αk by setting
5

αk =
τ

nȳ− ‖y‖2
−

1
φ

.

6 – Set xk+1 = xk + αkdk.
7 – Put η = ση, and set k = k + 1.

Output: x̄ = xk is the prescribed solution

4. Numerical experiments

To evaluate our algorithm’s efficiency based on our minorant function, we conducted a compara-

tive numerical analysis on different test problems taken from the literature [1,2,4] and implemented

in MATLAB R2013a on I5, 8350 (3.6 GHz) with 8 Go RAM between our function and Wolfe line

search method. For this purpose, we consider the following quadratic problem:min q(x) = 1
2 xtQx + ctx

Ax ≥ b, x ∈ Rn

where q (x) = 1
2 xtQx + ctx. The test problems are described below with different dimensions n,

with accuracy ε = 10−5. The obtained numerical results are recorded in Tables 1 - 5, where "iter"

denotes the number of iterations necessary to obtain an optimal solution, "CPU(s)" is the calculation

time to reach the solution in seconds (s), "nMF" denotes the strategy of new minorant function

introduced in this paper, and "AGls" for the classical Armijo-Goldstein line search technique.

Problem 4.1. Consider the following quadratic problem with n = 2m, where the matrix Q is defined by:

Q[i, j] =


2 j− 1 if i > j
2i− 1 if i < j
(i + 1) i− 1 if i = j, i, j = 1, .., n.

A[i, j] =

 1 if i = j or j = m + i, i = 1, .., m and j = 1, .., n
0 otherwise.

c[i] = −1, c[m + i] = 0 and b[i] = 2, ∀i = 1, .., m.
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The obtained results are reported in Table 1 below.

dim(m× n) nMF AGls

iter CPU(s) iter CPU(s)

200× 400 7 4.15129 26 39.25833

300× 600 11 50.03129 35 156.00981

600× 1200 20 71.66481 48 333.23551

1000× 2000 29 111.21982 51 651.91698

1500× 3000 38 275.17251 78 2657.10689
Table 1. Numerical results for Problem 4.1.

Problem 4.2. Consider the following quadratic problem with n = 2m, where the matrix Q is defined by:

Q[i, j] =
{

1
j+i for i, j = 1, .., n.

A[i, j] =

 1 if i = j or j = m + i, i = 1, .., m and j = 1, .., n
0 otherwise.

c[ j] = 2 j and b[i] = i2, ∀i = 1, .., m.

The obtained results are reported in Table 2 below.

dim(m× n) nMF AGls

iter CPU(s) iter CPU(s)

200× 400 7 4.122233 16 12.65894

300× 600 8 12.022361 27 99.96582

600× 1200 26 41.205912 55 213.00235

1000× 2000 32 155.524377 68 1999.02589

1500× 3000 51 312.338133 124 5002.021583
Table 2. Numerical results for problem 4.2.

Problem 4.3. Consider the following quadratic problem with n = 2m, where the matrix Q is defined by:

Q[i, j] =


Q[1, 1] = 1

Q[i, i] = i2 + 1

Q[i, i− 1] = Q[i− 1, i] = i, i = 2, .., n.

A[i, j] =

 1 if i = j or j = i + m, i = 1, .., m and j = 1, .., n
0 otherwise.

c[ j] = j and b[i] =
i + 1

2
, ∀i = 1, .., m.
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The obtained results are reported in Table 3 below.

dim(m× n) nMF AGls

iter CPU(s) iter CPU(s)

200× 400 18 7.77882 38 30.12365

300× 600 26 51.18824 45 100.26581

600× 1200 31 61.23586 66 332.98765

1000× 2000 45 101.54756 70 2541.98756

1500× 3000 77 910.54142 101 5002.16528
Table 3. Numerical results for Problem 4.3.

Problem 4.4. Consider the following quadratic problem with n = m+ 2, where the matrix Q is defined by:

Q[i, j] =



2 if i = j = 1 or i = j = m

4 if i = j and i , {1, m}

2 if i = j− 1 or i = j + 1

0 otherwise,

A[i, j] =



1 if i = j

2 if i = j− 1

3 if i = j− 2

0 otherwise.

bi = 1 and ci = 0, ∀i, j = 1, .., n.

The obtained results are reported in Table 4 below.

dim(n) nMF AGls

iter CPU(s) iter CPU(s)

200 5 0.0131 18 0.3244

400 3 0.0565 17 1.4199

600 3 0.6544 17 2.9025

800 3 0.9240 17 5.9867

1000 3 1.6548 17 10.6652

1500 3 1.8892 17 15.0438
Table 4. Numerical results for Problem 4.4.
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Problem 4.5. Consider the following quadratic problem with n = 2m, where the matrix Q is defined by:

Q[i, j] =


1 if i = j = 1 or i = j = n

1 if i = 2, ..., n

4 if i = 2, ..., n− 1

A[i, j] =

0 if i , j or i + 1 , j

1 if i = j or i = j + m,

bi = 4 and ci =
i + 1

2
.∀i, j = 1, .., n.

The obtained results are reported in Table 5 below.

dim(m× n) nMF AGls

iter CPU(s) iter CPU(s)

200× 400 6 1.9958 18 12.2549

300× 600 8 2.0565 21 123.9912

600× 1200 19 41.0584 53 495.9028

1000× 2000 27 99.9878 67 1990.3652

1500× 3000 42 206.6985 132 2995.5691
Table 5. Numerical results for Problem 4.5.

From the numerical results, we can see clearly that, the number of iterations and the computing

time are considerably reduced using the proposed approximate approach in comparison with the

line search method. These outcomes demonstrate that the approximate approach outperform line

search method.

5. Conclusion

This paper introduces a new logarithmic barrier method for solving convex quadratic minimiza-

tion under inequality constraints. In the proposed method, we have suggested a new minorant

function that aims to provide a step-length faster and easier than traditional line search methods.

Mathematical results concerning the convergence of the algorithm are established. The perfor-

mance of the algorithm is examined on five test problems with different dimensions. Moreover,

a comparison with the Wolfe line search technique is carried out, and the numerical results indi-

cate the new minorant function speeds up the algorithm and outperforms the Wolfe line search

technique in terms of efficiency.
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