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Abstract. This article proves a new common fixed point theorems in bipolar orthogonal metric space in the context of

the Meir-Keeler contraction type. We have given some suitable examples based on our obtain theorems. Finally, we

provide an application to the integral equation and an application to the production-consumption equilibrium problem.

1. Introduction

The fixed point theorems have significant applications in the mathematics field. The most

important and essential contribution to fixed point theory was provided by Banach in 1922 [1].

This concept is known as the Banach contraction principle. The majority of the authors in the fixed

point theory generalized it. Using the Banach contraction theorem Mutlu et al. [2] generalized a

metric space, also known as a bipolar metric space. Gunaseelan et al. [3] proved a unique fixed

point theorem in fuzzy bipolar metric space. Srinuvasa et al. [4] proved a common fixed point

theorems in bipolar metric space. Karapinar and Cvetković [5] have proposed bipolar metric space
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and proved a fixed point theorems. Soni [6] has established a common fixed point theorems in

bipolar metric space. Ahmad et al. [7] have proved a fixed point theorem in graphical bipolar

b-metric space. Murthy et al. [8] have proposed a common fixed point theorems in bipolar metric

space. Meir and Keeler [9] have proposed a fixed point theorems by using a weakly contraction

in complete metric spaces.

Sezen [10] has proved a fixed point theorems in orthogonal fuzzy bipolar metric space. Authors

[11] investigated new common fixed point theorems in the context of bipolar fuzzy b-metric space.

Javed et al. [12] have generalized orthogonal fuzzy metric space and proved a fixed point theorems.

Gnanaprakasam et al. [13] have proved a fixed point theorems in orthogonal b-metric space.

Janardhanan et al. [14] have proved a common fixed point theorem in orthogonal neutrosophic

2-metric space. Mani et al. [15] have proved orthogonal coupled fixed point theorems. Mani et

al. [16] proved a common FPT in orthogonal Branciari metric spaces. Touail and Moutawakila [17]

have proposed orthogonal complete metric space and proved a fixed point theorems. Murthy et

al. [18] have proved a common fixed point theorems in bipolar metric space using Meir-Keeler

contraction type. Kishore et al. [19] have proved common fixed point theorem in bipolar metric

space. Nazama et al. [21] has proved fixed point theorem on orthogonal interpolative contraction.

Mustafa Mudhesh et al. [22] has proved fixed point theorem in multi valued mappings. Hussain et

al. [23] has proved fixed point theorem on interpolative convex contraction. Sharma et al. [24] has

proposed orthogonal F-contraction mappings. Sharma et al. [25] has proved fixed point theorem

on orthogonal F-metric space. Chandok et al. [26] has given fixed point theorem on orthogonal

(τ, F) contraction mappings. Sharma et al. [27] has proved fixed point theorem on F-metric space.

Okeke et al. [28] has proved common fixed point theorem on modular metric space. Okeke et

al. [29] has proved fixed point theorem in Meir-Keeler contraction in modular extended b-metric

space. Thirthar et al. [30] has investigated dynamical behavior of a fractional-order epidemic

model in two fear effect function. Muthuvel et al. [31] has presented ψ-Caputo fractional delay

control system. Nisar [32] has given numerical approach to solve the fractional equation.

The article’s motivation, from [18], is to extend this work to bipolar orthogonal metric space and

prove a new common fixed point theorems.

2. Bipolar O- Metric Spaces

This part recalls some basic definitions as follows:

Definition 2.1. [2] Let Q and F be two non-empty sets and ℘ : Q×F → [0,+∞) be a function. Let
(Q,F ,℘) is known to be as bipolar metric space and ℘ is said to be a bipolar metric on (Q,F ) then the
conditions as follows:

(i) ℘(χ,ϕ) = 0 iff χ = ϕ where (χ,ϕ) ∈ Q×F ,
(ii) If χ,ϕ ∈ Q∩F then ℘(χ,ϕ) = ℘(ϕ,χ),

(iii) ℘(χ1,ϕ2) ≤ ℘(χ1,ϕ1) + ℘(χ2,ϕ1) + ℘(χ2,ϕ2) for all χ1,χ2 ∈ Q and ϕ1,ϕ2 ∈ F .

Now we define the notion of bipolar O-metric space:
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Definition 2.2. Let Q and F be two non-empty sets and ℘ : Q × F → [0,+∞) be a function. Let
(Q,F ,℘,⊥) is said to be a bipolar O-metric space and ℘ is said to be a bipolar metric on (Q,F ) and define
a binary relation ⊥ on (Q,F ) then the conditions as follows:

(i) ℘(χ,ϕ) = 0 iff χ = ϕ where (χ,ϕ) ∈ Q×F , such that χ ⊥ ϕ,
(ii) If χ,ϕ ∈ Q∩F then ℘(χ,ϕ) = ℘(ϕ,χ), such that χ ⊥ ϕ,

(iii) ℘(χ1,ϕ2) ≤ ℘(χ1,ϕ1) + ℘(χ2,ϕ1) + ℘(χ2,ϕ2) for all χ1,χ2 ∈ Q and ϕ1,ϕ2 ∈ F , such that
χ1 ⊥ ϕ1, χ2 ⊥ ϕ1 and χ2 ⊥ ϕ2 .

Definition 2.3. [2] Let (Q,F ,℘,⊥) is said to be bipolar O-metric space. Elements of Q,F and Q∩F
are said to be left, right and central points respectively. The sequences Q and F are said to be left and right
sequences respectively.

A sequence {ηℵ} is called convergent at point t iff {ηℵ} is called left sequence, at right point η and
lim
ℵ→+∞

℘(ηℵ, η) = 0 (or) {ηℵ} is called right sequence, at left point η and lim
ℵ→+∞

℘(η, ηℵ) = 0.

A sequence {(χℵ,ϕℵ)} in Q× F is said to be a bisequence on (Q,F ). And the sequence is denoted by
(χℵ,ϕℵ). Both sequences {χℵ} and {ϕℵ} are converges, then the bisequence (χℵ,ϕℵ) is called convergent.
Both sequences {χℵ} and {ϕℵ} are converges at a point υ ∈ Q∩F then (χℵ,ϕℵ) is said to be biconvergent.

The bisequence (χℵ,ϕℵ) is called a Cauchy bisequence, if lim
ℵ,π→+∞

℘(χℵ,ϕπ) = 0. In every convergent

Cauchy bisequence is called a biconvergent.
If every Cauchy bisequence is convergent, then it is biconvergent, in bipolar metric space is complete.

Every complete bipolar metric space is a complete bipolar O-metric space and converse need

not be a true.

Example 2.1. Let Q = [0, 1
5 ] ∪ {

3ℵ
5 : ℵ ∈ N} and F = [0, 1

5 ] ∪ {
3
10 (2ℵ+ 1) : ℵ ∈ N} and the distance

℘ : Q×F → R+ with Euclidean metric such that % ⊥ ϕ for all % ∈ Q and ϕ ∈ F ,

% ⊥ ϕ⇔

% ≤ ϕ ≤
1
5

(or) % = 0,ϕ = 0
.

Then (Q,F ,⊥) is an O-set.
Clearly, Q and F with Euclidean metric are not complete bipolar metric space, but it is complete bipolar
O-metric space. For this, {%k} and {ϕk} are an arbitrary Cauchy⊥-bisequence inQ and F . Then there exists
a bisubsequence {%kℵ} of {%k} and {ϕkℵ} of {ϕk} implies %kℵ = 0,ϕkℵ = 0, ∀ ℵ ≥ 1 or there exists a monotone
bisubsequence {%kℵ} of {%k} and {ϕkℵ} of {ϕk} for which %kℵ ≤

1
5 and ϕkℵ ≤

1
5 , ∀ ℵ ≥ 1. Then {%kℵ} and {ϕkℵ}

biconverges to a point % ∈ [0, 1
5 ] ⊆ Q and ϕ ∈ [0, 1

5 ] ⊆ F . On the other hand, we know that every Cauchy
bisequence with a biconvergent bisubsequence is biconvergent. Then {%k} and {ϕk}is biconvergent.

Definition 2.4. [2] Let Q1,F1,Q2 and F2 be four sets. A function Λ : Q1 ∪ F1 → Q2 ∪ F2 is said to
be a covariant map if Λ(Q1) ⊆ Q2 and Λ(F1) ⊆ F2 and is denoted as Λ : (Q1,F1) ⇒ (Q2,F2). In
particular, if (Q1,F1,℘1,⊥) and (Q2,F2,℘2,⊥) are two bipolar O-metric space then we use the notaion
Λ : (Q1,F1,℘1,⊥)⇒ (Q2,F2,℘2,⊥) for covariant map Λ.
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Definition 2.5. Consider (Q1,F1,℘1,⊥) and (Q2,F2,℘2,⊥) to be two bipolar O-metric spaces. An
operator Λ : (Q1,F1) ⇒ (Q2,F2) is said to be ⊥-continuous at a point χ0 ∈ Q1, at given ε > 0, we can
find κ > 0 such that ϕ ∈ F1 and ℘1(χ0,ϕ) < κ implies that ℘2(Λ(χ0),Λ(ϕ)) < ε. It is ⊥-continuous at a
point ϕ0 ∈ F1 if for any given ε > 0, there exists κ > 0 such that χ ∈ Q1 and ℘1(χ,ϕ0) < κ implies that
℘2(Λ(χ),Λ(ϕ0)) < ε. If Λ is ⊥-continuous at each point χ ∈ Q1 ∪F1, then it is said to be ⊥-continuous.

A covariant mapΛ : (Q1,F1)⇒ (Q2,F2) is continuous if and only if {ηℵ} converges to η on (Q1,F1,℘1)

implies {Λ(ηℵ)} converges to Λ(η) on (Q2,F2,℘2).

Definition 2.6. [20] Let Υ be non-empty set and ⊥⊆ Υ ×Υ be a binary relation such that

∃%0 ∈ Υ : (∀% ∈ Υ, % ⊥ %0) (or) (∀% ∈ Υ, %0 ⊥ %),

then it is called an orthogonal set (briefly O-set). We denote this O-set by (Υ,⊥).

Definition 2.7. [20] Let (Υ,⊥) be an O-set. A sequence {%ℵ} is called an orthogonal sequence (briefly,
O-sequence) if

(∀ℵ ∈N, %ℵ ⊥ %ℵ+1) (or) (∀ℵ ∈N, %ℵ+1 ⊥ %ℵ).

Definition 2.8. [20] Let (Υ,⊥) be an O-set. A map ℘ : Υ × Υ → Υ is known to be ⊥-preserving if
℘(%,ϕ) ⊥ ℘(ϕ, %) whenever % ⊥ ϕ and ϕ ⊥ %.

Definition 2.9. Let (Q,F ,℘,⊥) be a bipolar O-metric space and let Θ,Γ : (Q,F ) ⇒ (Q,F ) be two
covariant maps then (Θ,Γ) is called ⊥-compatible iff ℘(ΓΘχℵ,ΘΓϕℵ) → 0 and ℘(ΘΓχℵ,ΓΘϕℵ) → 0,
whenever (χℵ,ϕℵ) is a sequence inQ×F such that limℵ→+∞Θχℵ = limℵ→+∞ Γχℵ = limℵ→+∞Θϕℵ =

limℵ→+∞ Γϕℵ = ρ for some ρ ∈ Q∩F .

Definition 2.10. The Θ and Γ is said to be ⊥-weakly compatible, if Θ and Γ are its coincidence points .

Definition 2.11. Let (Q,F ,℘,⊥) be a bipolar O-metric space and let F ,Θ,G,Γ : (Q,F ) ⇒ (Q,F ) be
four covariant maps then (F ,Θ,G,Γ) are called ⊥-compatible iff ℘(ΓF χℵ,F Γϕℵ) and ℘(GΘχℵ,ΘGϕℵ)

converges to zero, then the sequence (χℵ,ϕℵ) in Q×F such that

lim
ℵ→+∞

F χℵ = lim
ℵ→∞

Θχℵ = lim
ℵ→∞

Gϕℵ = lim
ℵ→∞

Γϕℵ = ρ,

for some ρ ∈ Q∩F .

3. Main Results

Let us begin with some propositions as follows:

Proposition 3.1. Consider (Q,F ,℘,⊥) to be a bipolar O-metric space(bipolar O−MS), and Λ,Ω,Θ,Γ :

(Q,F ,℘)⇒ (Q,F ,℘) be four covariant maps satisfies the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν (3.1)

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ, (3.2)
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then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and (3.3)

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ forall % ∈ Q,ϕ ∈ F . (3.4)

Proof. Let Θ% , Γϕ then ℘(Θ%,Γϕ) = ν for some ν > 0 and from condition (4.4) we have

℘(Λ%,Ωϕ) < ν and so (4.4) holds. From (4.4) and (4.4) we get (4.2). �

Remark 3.1. If we take Q = F , then we get the following result:

Corollary 3.1. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Proposition 3.2. Consider (Q,F ,℘,⊥) to be a bipolar O−MS, and Θ,Γ : (Q,F ,℘,⊥)⇒ (Q,F ,℘,⊥)

be two covariant maps satisfying the condition:

℘(Γ%,Γϕ) ≤ ℘(Θ%,Θϕ) for all, % ⊥ σ, % ∈ Q, σ ∈ F . (3.5)

If Θ be an ⊥-continuous function, then Γ is also ⊥-continuous function.

Proof. Assume a sequence {χℵ} converges to a right point ϕ ∈ F , then ℘(Θχℵ,Θϕ) tending to

zero as Θ is an ⊥-continuous, and from equation (3.5) ℘(Γχℵ,Γϕ) tending to zero, that is {Γχℵ}

converges to Γϕ. Likewise, we find that if right sequence {ϕℵ} converges to left point χ ∈ Υ, then

{Γϕℵ} converges to Γχ. Thus Γ is also ⊥-continuous. �

Remark 3.2. If we take Q = F , then we get the following result:

Corollary 3.2. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and
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℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Proposition 3.3. Let (Q,F ,℘,⊥) be a bipolar O −MS and let Θ,Γ : (Q,F ,℘,⊥) ⇒ (Q,F ,℘,⊥) be
two covariant maps which are ⊥-compatible. If ρ is a coincidence point of Θ and Γ (i.e., Γρ = Θρ) then
ΓΘρ = ΘΓρ. Then ⊥-compatible map is ⊥-weakly compatible.

Proof. Taking χℵ = ϕℵ = ρ, from the Definition 2.9 gives this clearly proved. �

Remark 3.3. If we take Q = F , then we get the following result:

Corollary 3.3. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Proposition 3.4. Let (Q,F ,℘,⊥) be a bipolar O−MS and let Λ,Ω,Θ,Γ : (Q,F ,℘,⊥)⇒ (Q,F ,℘,⊥)

be four covariant maps such that (Λ,Θ,Ω,Γ) be an ⊥-compatible. If ρ is a fixed point, then ΓΛρ = ΛΓρ

and ΩΘρ = ΘΩρ.

Remark 3.4. If we take Q = F , then we get the following result:

Corollary 3.4. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Below lemma is usefull for our findings in main theorems.
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Lemma 3.1. Consider (Q,F ,℘,⊥) to be a complete bipolarO−MS, andQ×F , (ωℵ,θℵ) is a bisequence
satisfies the condition as follows:
Given ν > 0 we can find κ > 0 and ωℵ ⊥ θℵ such that

ν ≤ ℘(ωℵ,θπ) < ν+ κ implies ℘(ωℵ+1,θπ+1) < ν, (3.6)

and ωℵ = θπ implies ωℵ+1 = θπ+1, (3.7)

then a sequence {ωℵ,θℵ} is Cauchy ⊥-bisequence.

Proof. Let αℵ = ℘(ωℵ,θℵ) and βℵ = ℘(ωℵ,θℵ+1) then {αℵ} and {βℵ} both are bounded below

sequences. Thus,

αℵ → ν+ forall ν ≥ 0. (3.8)

If ν > 0, then ν we can find κ > 0 such that (3.6) satisfied.

Form equation (3.8) there exists, ℵ0 ∈N such that ℵ ≥ ℵ0

ν ≤ αℵ < ν+ κ

ν ≤ ℘(ωℵ,θℵ) < ν+ κ.

This implies from (3.6) that

℘(ωℵ+1,θℵ+1) < ν

αℵ+1 < ν,

which is contradiction of equation (3.8). Hence, ν = 0 and

αℵ → 0+ as ℵ → +∞. (3.9)

Likewise

βℵ → 0+ as ℵ → +∞. (3.10)

To find (ωℵ,θℵ) be a Cauchy. Assume additionally, there exists ν > 0 such that

lim sup
ℵ,π→+∞

℘(ωℵ,θπ) > 2ν. (3.11)

For any ν we can find κ > 0 from equation (3.6) satified.

Let κ
′

= min(κ, ν). As we have,

ν ≤ ℘(ωℵ,θπ) < ν+ κ
′

implies ℘(ωℵ+1,θπ+1) < ν. (3.12)

From equations (3.9), (3.10) and (3.11) there exists π,ℵ,M such that,

π,ℵ >M,αM = ℘(ωM,θM) < κ
′

6 and βM = ℘(ωM,θM+1) <
κ
′

6 (3.13)

℘(ωπ,θℵ) > 2ν ≥ ν+ κ
′

. (3.14)
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Now, we considar two cases

If ℵ > π, then for σ ∈ [π,ℵ] ∩N, we have by (B3)

℘(ωπ,θσ) ≤ ℘(ωπ,θσ+1) + ℘(ωσ,θσ+1) + ℘(ωσ,θσ)

℘(ωπ,θσ) −℘(ωπ,θσ+1) ≤ ℘(ωσ,θσ+1) + ℘(ωσ,θσ) = βσ + ασ.

Using (3.13) and (3.14), the above inequality implies

℘(ωπ,θσ) −℘(ωπ,θσ+1) <
κ
′

3
.

Similarly, we can prove that

℘(ωπ,θσ+1) −℘(ωπ,θσ) <
κ
′

3
.

So that, we obtain ∣∣∣℘(ωπ,θσ) −℘(ωπ,θσ+1)
∣∣∣ < κ

′

3
. (3.15)

This implies, since ℘(ωπ,θπ) < ν, and ℘(ωπ,θℵ) > ν+ κ
′

, that there exists σ ∈ [π,ℵ]∩N such that

ν+
2κ
′

3
≤ ℘(ωπ,θσ) < ν+ κ

′

. (3.16)

This implies by (3.12) that

℘(ωπ+1,θσ+1) < ν.

Now,

℘(ωπ,θσ) ≤ ℘(ωπ,θπ+1) + ℘(ωπ+1,θπ+1) + ℘(ωπ+1,θσ+1) + ℘(ωσ,θσ+1)

+ ℘(ωσ,θσ)

<
κ
′

6
+
κ
′

6
+ ν+

κ
′

6
+
κ
′

6
= ν+

2κ
′

3
,

which is contradiction of equation (3.16). This is the contradiction if ℵ ≤ π. Hence, (ωℵ,θℵ) is

Cauchy. �

Remark 3.5. If we take Q = F , then we get the following result:

Corollary 3.5. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Next, we prove our first result as follows:
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Theorem 3.1. Consider (Q,F ,℘,⊥) to be a complete bipolar O −MS, and Θ,Γ : (Q,F ,℘,⊥) ⇒

(Q,F ,℘,⊥) be two covariant maps satisfies the conditions as follows:

(i) Θ and Γ are ⊥-compatible mappings.
(ii) Θ and Γ are ⊥-continuous and ⊥-preserving.

(iii) Γ(Q∪F ) ⊆ Θ(Q∪F ).

(iv) For any given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θχ,Θϕ) < ν+ κ implies ℘(Γχ,Γϕ) < ν (3.17)

and Θχ = Θϕ implies Γχ = Γϕ, (3.18)

where χ ∈ Q, ϕ ∈ F , and χ ⊥ ϕ.

Then, the mappings Θ and Γ haveUCFP.

Proof. Let χ0 ∈ Q, ϕ0 ∈ F and choose χ1 ∈ Q and ϕ1 ∈ F such that Γχ0 = Θχ1 = ω1 and

Γϕ0 = Θϕ1 = θ1. Since Γ(Q∪F ) ⊆ Θ(Q∪F ).

χ0 ⊥ χ1 ϕ0 ⊥ ϕ1

Γχ0 ⊥ Γχ1 Γϕ0 ⊥ Γϕ1

Θχ1 ⊥ Θχ2 Θϕ1 ⊥ Θϕ2

Θ−1Θχ1 ⊥ Θ
−1Θχ2 Θ−1Θϕ1 ⊥ Θ

−1Θϕ2

χ1 ⊥ χ2 ϕ1 ⊥ ϕ2

...
...

χℵ−1 ⊥ χℵ ϕℵ−1 ⊥ ϕℵ.

In general, we can choose (χℵ,ϕℵ) ∈ Q ×F such that Γχℵ−1 = Θχℵ = ωℵ and Γϕℵ−1 = Θϕℵ =

θℵ for all ℵ ∈N.

Now, if Θχℵ = ωℵ = θπ = Θϕπ for some ℵ,π ∈ N, then by condition that ωℵ+1 = Γχℵ =

Γχπ = θπ+1 and if ν ≤ ℘(ωℵ,θπ) = ℘(Θχℵ,Θϕπ) < ν+ κ, which implies from equation (3.17) that

℘(ωℵ+1,θπ+1) < ν. By Lemma 3.1, (αℵ, βℵ) is a Cauchy⊥-bisequence, and (Q,F ,℘,⊥) is complete

(ωℵ,θℵ) converges and biconverges to ρ ∈ Q∩F . Thus,

lim
ℵ→+∞

Θχℵ = lim
ℵ→+∞

Γχℵ = lim
ℵ→+∞

Θϕℵ = lim
ℵ→+∞

Γϕℵ = ρ.

Since Θ and Γ are ⊥-compatible, hence

℘(ΓΘχℵ,ΘΓϕℵ)→ 0 and ℘(ΘΓχℵ,ΓΘϕℵ)→ 0.

From Proposition 3.2, both the functions Θ and Γ are ⊥-continuous , we obtain

Γχℵ → ρ implies ΘΓχℵ → Θρ and

Θϕℵ → ρ implies ΓΘϕℵ → Γρ.



10 Int. J. Anal. Appl. (2025), 23:52

By ⊥-compatibility of Θ and Γ, we have

℘(Θρ,Γρ) = lim
ℵ→∞

℘(ΘΓχℵ,ΓΘϕℵ) = 0

and this implies Θρ = Γρ,

this implies ΓΘρ = ΘΓρ.

Let Θρ = Γρ = ω, then Θ and Γis a CFP of ω.

Let Θω , ω, then

℘(Γω,ω) = ℘(ΓΘρ,Γρ) < ℘(ΘΘρ,Θρ)

= ℘(Θω,ω) = ℘(ΘΓρ,Θρ)

= ℘(ΓΘρ,Θρ) = ℘(Γω,ω),

which is a contradiction. So Θω = ω,

i.e. ΘΘρ = ΘΓρ = Θρ = Γρ = ΓΘρ implies Γω = ω.

Then, Θ and Γ is a CFP of ω.

Uniqueness: Consider that ω and θ be another CFP of Θ and Γ.

ω0 ⊥ ω(or) ω0 ⊥ θ.

Since Γ and Θ are ⊥-preserving,

(Γω0 ⊥ Γω and Θω0 ⊥ Θω),

(Γω0 ⊥ Γθ and Θω0 ⊥ Θθ).

If Θω , Θθ, then

℘(Γω,Γθ) < ℘(Θω,Θθ)

⇒ ℘(ω,θ) < ℘(ω,θ).

This contradicts. So Θω = Θθ, which implies ω = θ. �

The following corollary results from using Θ as an identity mapping in the above theorem.

Corollary 3.6. Let (Q,F ,℘,⊥) be a complete bipolar O−MS and let Γ : (Q,F ,℘,⊥) ⇒ (Q,F ,℘,⊥)

be a covariant map satisfies the condition as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(χ,ϕ) < ν+ κ implies ℘(Γχ,Γϕ) < ν,

then the map Γ has a Unique fixed point.

Note that if we apply Q = F to the above corollary, we obtain Meir and Keeler [9].

Our next outcome, we does not shows the ⊥-continuity of Θ and instead of ⊥-compatible maps

we use weakly compatible maps.
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Theorem 3.2. Let (Q,F ,℘,⊥) be a bipolar O−MS and let Θ,Γ : (Q,F ,℘,⊥) ⇒ (Q,F ,℘,⊥) be two
covariant maps satisfies the conditions as follows:

(i) Θ and Γ are ⊥-weakly compatible maps,
(ii) Θ(Q∪F ) is ⊥-complete,

(iii) Θ and Γ are ⊥-continuous and ⊥-preserving,
(iv) Θ is injective,
(v) Γ(Q∪F ) ⊆ Θ(Q∪F ),

(vi) For any given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θχ,Θϕ) < ν+ κ implies ℘(Γχ,Γϕ) < ν (3.19)

and Θχ = Θϕ implies Γχ = Γϕ, (3.20)

where χ ∈ Q and ϕ ∈ F . Then, the functions Θ and Γ haveUCFP.

Proof. The proof continues from theorem (3.1),

χ0 ⊥ χ1 ϕ0 ⊥ ϕ1

Γχ0 ⊥ Γχ1 Γϕ0 ⊥ Γϕ1

Θχ1 ⊥ Θχ2 Θϕ1 ⊥ Θϕ2

Θ−1Θχ1 ⊥ Θ
−1Θχ2 Θ−1Θϕ1 ⊥ Θ

−1Θϕ2

χ1 ⊥ χ2 ϕ1 ⊥ ϕ2

...
...

χℵ−1 ⊥ χℵ ϕℵ−1 ⊥ ϕℵ.

Then, from theorem (3.1) the O-bisequence (ωℵ,θℵ) is a Cauchy O-bisequence and hence bicon-

verges to a point η ∈ Θ(Q) ∩ Θ(F ) = Θ(Q ∩ F ). Hence, ρ = Θω for some ω ∈ Q ∩ F . So

lim
ℵ→+∞

Θχℵ = lim
ℵ→+∞

Γχℵ = lim
ℵ→+∞

Θϕℵ = lim
ℵ→+∞

Γϕℵ = ρ = Θω. (3.21)

Now, by using Proposition 3.1, we have

lim
ℵ→+∞

℘(Γχℵ,Γω) ≤ lim
ℵ→+∞

℘(Θχℵ,Θω) = 0.

So,

lim
ℵ→+∞

Γχℵ = Γω. (3.22)

By (3.21) and (3.22), we have

Θω = Γω = ρ, (3.23)

implies ΘΓω = ΓΘω (by ⊥−weakly compatibility of Θ and Γ). (3.24)
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Again from (3.23) we have ΘΓω = Θρ and ΓΘω = Γρ. So Θρ = Γρ. Thus ω and ρ are two fixed

points of Θ and Γ. Next we prove that ρ = ω. We take contradiction. Then Θρ , Θω and we get

℘(Γρ,Γω) < ℘(Θρ,Θω)

℘(Γρ,Γω) < ℘(Γρ,Γω),

which is contradiction. So ρ = ω and hence Θω = Γω = ω.

Thus, Θ and Γ is a CFP of ω. Likewise, theUCFP can be proved from Theorem (3.1). �

Remark 3.6. If we take Q = F , then we get the following result:

Corollary 3.7. Consider (Q,℘,⊥) to be a O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps satisfies
the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

Now, we will see the CFP for four mappings.

Theorem 3.3. Let (Q,F ,℘,⊥) be a complete bipolar O −MS and let Θ,Γ,Λ,Ω : (Q,F ,℘,⊥) ⇒

(Q,F ,℘,⊥) be four covariant maps satisfies the conditions as follows:

(i) The map (Λ,Θ,Ω,Γ) is ⊥-compatible,
(ii) Θ,Γ,Λ,Ω are ⊥-continuous and ⊥-preserving,

(iii) Λ(Q∪F ) ⊆ Θ(Q∪F ) and Ω(Q∪F ) ⊆ Γ(Q∪F ),
(iv) For any given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θχ,Γϕ) < ν+ κ implies ℘(Λχ,Ωϕ) < ν (3.25)

and Θχ = Γϕ implies Λχ = Ωϕ, (3.26)

where χ ∈ Q and ϕ ∈ F . Then the functions Θ,Γ,Λ and Ω haveUCFP.

Proof. Let χ0 ∈ Q, ϕ0 ∈ F and choose χ1 ∈ Q and ϕ1 ∈ F such that Λχ0 = Θχ1 = ω0 and

Ωϕ0 = Γϕ1 = θ0. This can be done since Λ(Q∪F ) ⊆ Θ(Q∪F ) and Ω(Q∪F ) ⊆ Γ(Q∪F ).

χ0 ⊥ χ1 ϕ0 ⊥ ϕ1

Λχ0 ⊥ Λχ1 Ωϕ0 ⊥ Ωϕ1

Θχ1 ⊥ Θχ2 Γϕ1 ⊥ Γϕ2

Θ−1Θχ1 ⊥ Θ
−1Θχ2 Γ−1Γϕ1 ⊥ Γ

−1Γϕ2
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χ1 ⊥ χ2 ϕ1 ⊥ ϕ2

...
...

χℵ−1 ⊥ χℵ ϕℵ−1 ⊥ ϕℵ.

In general, we can choose (χℵ,ϕℵ) ∈ Q×F such that Λχℵ = Θχℵ+1 = ωℵ and Ωϕℵ = Γϕℵ+1 =

θℵ for all ℵ ∈N∪ {0}.

Let ν > 0 and ν ≤ ℘(ωℵ,θπ) = ℘(Θχℵ+1,Γϕπ+1) ≤ ν+ κ. Then by condition (iv) of the theorem

we have, ℘(ωℵ+1,θπ+1) = ℘(Λχℵ+1,Ωϕπ+1) < ν and if ℘(ωℵ,θπ) = ℘(Θ%ℵ+1,Γϕπ+1) = 0, then

again by condition (iv) of the theorem, we have ℘(ωℵ+1,θπ+1) = ℘(Λ%ℵ+1,Ωϕπ+1) = 0.

Using Lemma 3.1, the sequence (ωℵ,θℵ) is a Cauchy O-bisequence. Since (Q,F ,℘) is com-

plete, hence (ωℵ,θℵ) biconverges to some point ρ ∈ Q ∩ F . So Λχℵ,Θχℵ,Ωϕℵ and Γϕℵ con-

verge to ρ. Since the quadruple (Λ,Θ,Ω,Γ) is ⊥-compatible, we have ℘(ΓΛχℵ,ΛΓϕℵ) → 0, and

℘(ΩΘχℵ,ΘΩϕℵ) → 0. As all the four mapping Λ,Ω,Θ and Γ are ⊥-continuous, which im-

plies ℘(Γρ,Λρ) = 0 and ℘(Ωρ,Θρ) = 0. Thus, Γρ = Λρ and Ωρ = Θρ. Let Θρ , Γρ then

℘(Λρ,Ωρ) < ℘(Θρ,Γρ) = ℘(Ωρ,Λρ) = ℘(Λρ,Ωρ). This is a contradiction. So,

Γρ = Θρ = F ρ = Qρ = ω (say).

By ⊥-compatibility, this implies ΓΛρ = ΛΓρ and ΩΘρ = ΘΩρ that is, Γω = Λω and Ωω = Θω. If

Θω , Γω then ℘(Λ,Ωω) < ℘(Θω,Γω) = ℘(Ωω,Λω) = ℘(Λω,Ωω), which is contradiction. So

Θω = Γω = Λω = Ωω.

Now, let Θω , ω, that is ΘΓρ , Γρ then ℘(Λω,ω) = ℘(ΛΓρ,Ωρ) < ℘(ΘΓρ,Γρ) = ℘(Θω,ω) =

℘(Ωω,ω) = ℘(Λω,ω), which is contradiction. So, Θω = ω = Γω = Λω = Ωω. Thus, Λ,Ω,Θ and

Γ is a CFP of ω.

Uniqueness: Consider that ω and θ be two fixed points of Λ,Ω,Θ and Γ, we have

ω0 ⊥ ω (or) ω0 ⊥ θ.

Since Γ and Θ are ⊥-preserving,

(Γω0 ⊥ Γω and Θω0 ⊥ Θω)

(Γω0 ⊥ Γθ and Θω0 ⊥ Θθ).

If Θω , Γθ such that with ω , θ. Then ℘(Λω,Ωθ) < ℘(Θω,Γθ). This implies ℘(ω,θ) < ℘(ω,θ), a

contradiction. So Θω = Γθ, that is ω = θ. �

Remark 3.7. In above theorem, taking Θ = Γ and Λ = Ω, Theorem 3.3 follows as a corollary.

Example 3.1. Let Q = [0, 1
5 ] ∪ {

3ℵ
5 : ℵ ∈ N} and F = [0, 1

5 ] ∪ {
3
10 (2ℵ+ 1) : ℵ ∈ N} and the distance

℘ : Q×F → R+ is defined by ℘(χ,ϕ) =
∣∣∣χ−ϕ∣∣∣ such that χ ⊥ ϕ for all χ ∈ Q and ϕ ∈ F ,

χ⊥ϕ ⇐⇒ χ,ϕ ≥ 0.
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Then (Q,F ,℘,⊥) is a complete bipolarO−MS. Assume that Γ,Θ : (Q,F ,℘,⊥)⇒ (Q,F ,℘,⊥) defined
by: Γχ = 3χ

7 , Θχ = 3χ
5 , for all χ ∈ [0, 1

5 ], and Γ( 3ℵ
5 ) = 3ℵ

10(ℵ+1) , Θ( 3ℵ
5 ) = 3ℵ

5 , Γ( 3
10 (2ℵ+ 1)) =

0, Θ( 3
10 (2ℵ+ 1)) = 3

10 (2ℵ+ 1) for all ℵ ∈N. Additionally, we can see that

Γ(Q∪F ) = [0,
1
10

] ∪ {
3ℵ

10(ℵ+ 1)
: ℵ ∈N},

and

Θ(Q∪F ) = [0,
3
10

] ∪ {
3ℵ
5

: ℵ ∈N} ∪ {
3
10

(2ℵ+ 1) : ℵ ∈N}.

So, Γ(Q∪F ) ⊆ Θ(Q∪F ), Θ and Γ are ⊥-continuous functions and ⊥-preserving.

Next we prove the ⊥-compatibility of Θ and Γ.
Let (χℵ,ϕℵ) be a bisequence in Q × F such that limℵ→+∞Θχℵ = limℵ→+∞ Γχℵ = limℵ→+∞Θϕℵ =

limℵ→+∞ Γϕℵ = ρ for some ρ ∈ Q∩F = [0, 1
5 ].

Without loss of generality, we can assume that χℵ,ϕℵ ∈ [0, 1
5 ].

So, Θχℵ =
3χℵ

5 and Γχℵ =
3χℵ

7 . Both Θχℵ and Γχℵ biconverge to ρ, so ρ = 0.
Now, limℵ→+∞ ℘(ΓΘχℵ,ΘΓϕℵ) = limℵ→+∞ ℘(Γρ,Θρ) = 0. Similarly, we have, limℵ→+∞ ℘(ΘΓχℵ,ΘΓϕℵ) =

0. Thus Θ and Γ are compatible.

Next, to show that Θ and Γ satisfies the condition (iv) of Theorem 3.1.
Given ν > 0. Then the maximum value of κ is defined by

κ =


2ν
5 , if ν ∈ (0, 1

5 ] ∪ [
3

10 , 1
2 ] ∪ [

3
5 ,∞];

3
10 − ν, if ν ∈ ( 1

5 , 3
10 );

3
5 − ν, if ν ∈ ( 1

2 , 3
5 ).

Let us verify the above condition for ν ∈ (0, 1
5 ]. For this ν, we take κ = 2ν

5 .
Let ν ≤ ℘(Θχ,Θϕ) < ν+ κ. This implies ν ≤ ℘(Θχ,Θϕ) < 7ν

5 .
This is possible only if χ,ϕ ∈ [0, 1

5 ] so that 3
5

∣∣∣χ−ϕ∣∣∣ < 7ν
5 .

It gives 3
7

∣∣∣χ−ϕ∣∣∣ < ν and hence ℘(Γχ,Γϕ) < ν. Similarly, other value of ν can be verified easily. All the
axioms of Theorem 3.1 are verified and zero is theUCFP of Θ and Γ.

Example 3.2. Let (Q,F ,℘,⊥) be bipolar O−MS. And Q = [0, 1
5 ] ∪ {

3ℵ
5 : ℵ ∈ N} and F = [0, 1

5 ] ∪

{
3

10 (2ℵ+ 1) : ℵ ∈N}. and the distance ℘ : Q×F → R+ is defined by ℘(χ,ϕ) =
∣∣∣χ−ϕ∣∣∣ such that χ ⊥ ϕ

for all χ ∈ Q and ϕ ∈ F ,

χ⊥ϕ ⇐⇒ χ,ϕ ≥ 0.

Let us assume covariant maps Λ,Ω,Θ and Γ : (Q,F ,℘,⊥) ⇒ (Q,F ,℘,⊥) defined by Γχ = χ
3 , Θχ =

3χ
5 , Λχ = 3χ

7 and Ωχ = 5χ
21 for all χ ∈ [0, 1

5 ] and

Γ(
3χ
5
) = Ω(

3χ
5
) =

3χ
10(χ+ 1)

,Γ(
3χ
5
) = Θ(

3χ
5
) =

3χ
5

,

Λ(
3

10
(2χ+ 1)) = 0 = Ω(

3
10

(2χ+ 1)),
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Γ(
3
10

(2χ+ 1)) = Θ(
3

10
(2χ+ 1)) =

3
10

(2χ+ 1) for all ℵ ∈N.

Clearly, Λ,Ω,Θ and Γ are self-mapping with Λ(Q∪F ) ⊆ Θ(Q∪F ) and Ω(Q∪F ) ⊆ Γ(Q∪F ) and
Λ,Ω,Θ, Γ are ⊥-continuous functions and ⊥-preserving.

Next we prove the ⊥-compatibility of Λ,Ω,Θ and Γ
Let (χℵ,ϕℵ) be a bisequence in Q×F such that limℵ→+∞Λχℵ = limℵ→+∞Ωχℵ = limℵ→+∞Θχℵ =

limℵ→+∞ Γχℵ = limℵ→+∞Θϕℵ = limℵ→+∞ Γϕℵ = ρ for some ρ ∈ Q∩F = [0, 1
5 ].

Without loss of generality, we can assume that χℵ,ϕℵ ∈ [0, 1
5 ].

So, Γχℵ = χℵ
3 , Θχℵ = χℵ

5 , Λχℵ = χℵ
500 and Ωχℵ. Then Γχℵ, Θχℵ, Λχℵ and Ωχℵ biconverge to ρ, so

ρ = 0.
Now, limℵ→+∞ ℘(ΓΛχℵ,ΛΓϕℵ) = limℵ→+∞ ℘(Γρ,Λρ) = 0. Similarly, we have, limℵ→+∞ ℘(ΘΩχℵ,ΩΘϕℵ) =

limℵ→+∞ ℘(Θρ,Ωρ) = 0. Thus Λ,Ω,Θ and Γ are ⊥-compatible.

Next, to show that Λ,Ω,Θ and Γ satisfies the condition (iv) of Theorem 3.3. Given ν > 0. Then the
maximum value of κ is defined by

κ =


2ν
5 , if ν ∈ (0, 1

5 ] ∪ [
3

10 , 1
2 ] ∪ [

3
5 ,∞];

3
10 − ν, if ν ∈ ( 1

5 , 3
10 );

3
5 − ν, if ν ∈ ( 1

2 , 3
5 ).

Let us verify the above condition for ν ∈ (0, 1
5 ]. For this ν, we take κ = 2ν

5 . Let ν ≤ ℘(Θχ,Γϕ) < ν+ κ.
This implies ν ≤ ℘(Θχ,Γϕ) < 7ν

5 . This is possible only if χ,ϕ ∈ [0, 1
5 ] so that

∣∣∣3χ
5 −

ϕ
3

∣∣∣ < 7ν
5 . It gives∣∣∣∣3χ

7 −
5ϕ
21

∣∣∣∣ < ν and hence ℘(Λχ,Ωϕ) < ν. Similarly, other value of ν can be verified easily. All the axioms
of Theorem 3.3 are verified and zero is theUCFP of Λ,Ω,Θ and Γ.

4. Applications

4.1. Solution of Integral Equation. As an application of Corollary 3.6, we examine the existence

and uniqueness solution of an integral equation in this section.

Theorem 4.1. Assume that the integral equation

χ(%) = h(%) +

∫
£1∪£2

G(%,φ,χ(φ))dφ, % ∈ £1 ∪ £2,

where £1 ∪ £2 is a Lebesgue measurable set. Let us assume

(T1) G : (£2
1 ∪ £2

2) × [0,∞)→ [0,∞) and h ∈ L∞(£1)∪ L∞(£2),
(T2) A continuous function exists, θ : £2

1 ∪ £2
2 → [0,∞) such that

|G(%,φ,χ(φ)) −G(%,φ,ϕ(φ)| ≤
1
3
|θ(%,φ)|(|χ(φ) −ϕ(φ)|,

for %,φ ∈ £2
1 ∪ £2

2,
(T3) ‖

∫
£1∪£2

θ(%,φ)dφ‖∞ ≤ 1, i.e sup%∈£1∪£2

∫
£1∪£2

|θ(%,φ)|dφ ≤ 1.

Then, the integral equation has a unique solution in L∞(£1)∪L
∞(£2).
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Proof. Let two normed linear spaces be Q = L∞(£1) and F = L∞(£2) , where £1, £2 are Lebesgue

measurable sets and m(£1 ∪ £2) < ∞.

Consider ℘ : Q × F → R+ to be defined by ℘(χ,ϕ) = ‖χ − ϕ‖∞ for all (χ,ϕ) ∈ Q × F . Define

a binary relation ⊥ on Q × F by χ ⊥ ϕ iff χ ⊥ ϕ ≥ 0. Then (Q,F ,℘,⊥) be a complete bipolar

O-metric space. Let the covariant mapping be Γ : L∞(£1)∪L
∞(£2)→ L∞(£1)∪L

∞(£2) by

Γ(χ(%)) = h(%) +

∫
£1∪£2

G(%,φ,χ(φ))dφ, % ∈ £1 ∪ £2.

For any given ν > 0 we can find κ = ν
3 > 0 such that

ν ≤ ℘(χ,ϕ) < ν+
ν
3
=

4
3
ν.

Now, we have

|Γχ(%) − Γϕ(%)|

=

∣∣∣∣∣∣h(%) +
∫

£1∪£2

G(%,φ,χ(φ))dφ−
(
h(%) +

∫
£1∪£2

G(%,φ,ϕ(φ))dφ
)∣∣∣∣∣∣

≤

∫
£1∪£2

∣∣∣∣∣∣G(%,φ,χ(φ))dφ−G(%,φ,ϕ(φ))dφ

∣∣∣∣∣∣
≤

1
3
(|χ(φ) −ϕ(φ)|)

∫
£1∪£2

|θ(%,φ)|dφ.

Taking supremum on both sides,

℘(Γχ,Γϕ) ≤
1
3
(‖χ−ϕ‖∞) sup

%∈£1∪£2

∫
£1∪£2

|θ(%,φ)|dφ

≤
1
3
‖χ−ϕ‖∞

≤
1
3
℘(χ,ϕ)

<
1
3
(

4
3
ν)

< ν.

From Corollary 3.6, all the hypothesis are fulfilled and satisfied. Hence the integral equation has

a unique solution in Q×F .

�

Remark 4.1. If we take Q = F , then we get the following result:

Corollary 4.1. Consider (Q,℘,⊥) to be a complete O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps
satisfies the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,
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then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

4.2. Production-Consumption Equilibrium. For production %χ and consumption %ϕ, daily

price patterns, and prices show a significant influence on markets, regardless of whether prices

are rising or falling. As a result, χ(φ) is interesting to the economist at this time. Assume that

%χ = o1 + p1χ(φ) + q1
dχ(φ)

dφ
+ r1

d2χ(φ)

dφ2 ,

%ϕ = o2 + p2χ(φ) + q2
dχ(φ)

dφ
+ r2

d2χ(φ)

dφ2 ,

initially χ(0) = 0, dχ
dφ (0) = 0, where o1, o2, p1, p2, q1, q2, r1 and r2 are constants. A state of dynamic

economic equilibrium occurs when market forces are in balance, meaning that the current gap

between production and consumption stabilities, that is, %χ = %ϕ.Thus,

o1 + p1χ(φ) + q1
dχ(φ)

dφ
+ r1

d2χ(φ)

dφ2 = o2 + p2χ(φ) + q2
dχ(φ)

dφ
+ r2

d2χ(φ)

dφ2 ,

(o1 − o2) + (p1 − p2)χ(φ) + (q1 − q2)
dχ(φ)

dφ
+ (r1 − r2)

d2χ(φ)

dφ2 = 0,

r
d2χ(φ)

dφ2 + q
dχ(φ)

dφ
+ pχ(φ) = −o,

d2χ(φ)

dφ2 +
q

r

dχ(φ)
dφ

+
p

r
χ(φ) =

−o

r
,

where o = o1 − o2, p = p1 − p2, q = q1 − q2, r = r1 − r2. Our initial problem is now represented as

χ
′′

(φ) +
q

r
χ
′

(φ) +
p

r
χ(φ) =

−o

r
, with χ(0) = 0 and χ

′

(0) = 0. (4.1)

Studying the production and consumption duration time T yields the following problem (4.1) as

follows:

χ(φ) =

∫ T

0
G(φ, %)K(%,φ,χ(φ))dφ, (4.2)

where the Green function G(φ, %) is given as follows:

G(φ, %) =

pe
p

2q (% −φ), 0 ≤ % ≤ φ ≤ T

qe
p

2q (% −φ), 0 ≤ φ ≤ % ≤ T
,

andK : [0, T] ×Q×F → R is a continuous function.

Now, let us assume an operator Γ : Q×F → R+ be described as

Γχ(φ) =

∫ T

0
G(φ, %)K(%,φ,χ(φ))dφ. (4.3)
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At this moment, a fixed point of Γ is the solution to the dynamic market equilibrium issue, which

is represented by (4.1). Equation (4.1) controls the current price χ(φ). Let represents the family of

real continuous functions of C[0,Γ] on [0, T], and assume Q×F = C[0, T].
Next, let us define a distance function ℘ : Q×F → R+ as ℘(χ,ϕ) = ‖χ−ϕ‖∞,χ,ϕ ∈ Q×F and

φ ∈ [0, T]. Then (Q,F ,℘,⊥) is a complete bipolar O−MS.

Theorem 4.2. Let us assume the map Γ : Q×F → R is a complete bipolar O-metric space (Q,F ,℘,⊥),
such that

(1) there exist φ ∈ [0, T] and χ,ϕ ∈ Q × F such that |K(%,φ,χ(φ)) −K(%,φ,ϕ(φ))| ≤ |χ(φ) −

ϕ(φ)|,
(2) a continuous function G : Q×F → R such that

sup
φ∈[0,T]

∫ T

0
G(φ, %)dφ ≤

1
3

.

Then, there exists a unique solution to the dynamic market equilibrium problem (4.1).

Proof. For any given ν > 0, we can find κ > 0 such that

ν ≤ ℘(χ,ϕ) < ν+
ν
3
=

4
3
ν.

Then, one has

|Γχ(φ) − Γϕ(φ)| =

∣∣∣∣∣∣
∫ T

0
G(φ, %)K(%,φ,χ(φ))dφ−

∫ T

0
G(φ, %)K(%,φ,ϕ(φ))dφ

∣∣∣∣∣∣
≤

∫ T

0

∣∣∣∣∣∣G(φ, %)K(%,φ,χ(φ))dφ−G(φ, %)K(%,φ,ϕ(φ))dφ

∣∣∣∣∣∣
≤

∫ T

0

∣∣∣∣∣∣G(φ, %)(K(%,φ,χ(φ)) −K(%,φ,ϕ(φ)))dφ

∣∣∣∣∣∣
≤

∫ T

0
G(φ, %)|(K(%,φ,χ(φ)) −K(%,φ,ϕ(φ)))|dφ

≤

∫ T

0
G(φ, %)|χ(φ) −ϕ(φ)|dφ.

Taking supremum on both sides, we have

℘(Γχ,Γϕ) ≤
1
3
℘(χ,ϕ)

<
1
3
(

4
3
ν)

< ν.

Thus, the mapping Γ has aUFP. From Corollary 3.6, the equation (4.1) has a unique solution. �

Remark 4.2. If we take Q = F , then we get the following result:
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Corollary 4.2. Consider (Q,℘,⊥) to be a complete O-metric space, and Λ,Ω,Θ,Γ : Q → Q be four maps
satisfies the axioms as follows:
Given ν > 0 we can find κ > 0 such that

ν ≤ ℘(Θ%,Γϕ) < ν+ κ implies ℘(Λ%,Ωϕ) < ν

and Θ% = Γϕ implies Λ% = Ωϕ; % ⊥ ϕ,

then

℘(Λ%,Ωϕ) < ℘(Θ%,Γϕ), if Θ% , Γϕ, % ⊥ ϕ and

℘(Λ%,Ωϕ) ≤ ℘(Θ%,Γϕ), % ⊥ ϕ for all %,ϕ ∈ Q.

5. Conclusion

Throughout this article, we have introduced some new CFP theorems by using the Meir-

Keeler contraction type in the concept of bipolar orthogonal metric spaces. Based on our outcomes

we have given some examples to strengthen our results. Also, we have given strong applications to

an integral equation and economic problem. It is an interseting open problem to prove from [28]

generalized modular metric space to generalized O-modular bipolar metric space.
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Common Fixed Point Theorems on Orthogonal Branciari Metric Spaces with an Application, Symmetry 14 (2022),

2420. https://doi.org/10.3390/sym14112420.

[17] Y. Touail, D. El Moutawakil, Fixed Point Theorems on Orthogonal Complete Metric Spaces with an Application,

Int. J. Nonlinear Anal. Appl. 12 (2021), 1801-1809. https://doi.org/10.22075/ijnaa.2021.23033.2464.

[18] P.P. Murthy, C.P. Dhuri, S. Kumar, R. Ramaswamy, M.A.S. Alaskar, S. Radenovi’c, Common Fixed Point for

Meir–Keeler Type Contraction in Bipolar Metric Space, Fractal Fract. 6 (2022), 649. https://doi.org/10.3390/

fractalfract6110649.

[19] G.N.V. Kishore, R.P. Agarwal, B. Srinuvasa Rao, R.V.N. Srinivasa Rao, Caristi Type Cyclic Contraction and Common

Fixed Point Theorems in Bipolar Metric Spaces with Applications, Fixed Point Theory Appl. 2018 (2018), 21.

https://doi.org/10.1186/s13663-018-0646-z.

[20] M.E. Gordji, M. Rameani, M. de la Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point

Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.

[21] M. Nazam, H. Aydi, A. Hussain, Existence Theorems for (Ψ, Φ)-Orthogonal Interpolative Contractions and an Ap-

plication to Fractional Differential Equations, Optimization 72 (2023), 1899–1929. https://doi.org/10.1080/02331934.

2022.2043858.

[22] M. Mudhesh, A. Hussain, M. Arshad, H. Alsulami, A Contemporary Approach of Integral Khan-Type Multivalued

Contractions with Generalized Dynamic Process and an Application, Mathematics 11 (2023), 4318. https://doi.org/

10.3390/math11204318.

[23] A. Hussain, Fractional Differential Boundary Value Equation Utilizing the Convex Interpolation for Symmetry of

Variables, Symmetry 15 (2023), 1189. https://doi.org/10.3390/sym15061189.

[24] R.K. Sharma, S. Chandok, Multivalued Problems, Orthogonal Mappings, and Fractional Integro-Differential Equa-

tion, J. Math. 2020 (2020), 6615478. https://doi.org/10.1155/2020/6615478.

[25] R. K. Sharma, S. Chandok, Existence, Stability and Well-Posedness of Fixed Point Problem With Application to

Integral Equation, U.P.B. Sci. Bull., Ser. A 83 (2021), 59–68.

https://doi.org/10.3390/sym15061227
https://doi.org/10.56947/gjom.v12i2.741
https://doi.org/10.1016/0022-247X(69)90031-6
https://doi.org/10.1016/0022-247X(69)90031-6
https://doi.org/10.1002/num.22701
https://doi.org/10.1371/journal.pone.0305316
https://doi.org/10.1371/journal.pone.0305316
https://doi.org/10.1155/2022/5863328
https://doi.org/10.3390/math11030677
https://doi.org/10.1186/s13660-023-03024-x
https://doi.org/10.1155/2022/5044181
https://doi.org/10.3390/sym14112420
https://doi.org/10.22075/ijnaa.2021.23033.2464
https://doi.org/10.3390/fractalfract6110649
https://doi.org/10.3390/fractalfract6110649
https://doi.org/10.1186/s13663-018-0646-z
https://doi.org/10.24193/fpt-ro.2017.2.45
https://doi.org/10.1080/02331934.2022.2043858
https://doi.org/10.1080/02331934.2022.2043858
https://doi.org/10.3390/math11204318
https://doi.org/10.3390/math11204318
https://doi.org/10.3390/sym15061189
https://doi.org/10.1155/2020/6615478


Int. J. Anal. Appl. (2025), 23:52 21
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