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Abstract. The conjugate gradient (CG) methods are considered as one of the most popular methods for solving linear

and non-linear unconstrained optimization problems, especially the problems of large-scale, that is because they are

characterized by low memory requirements and strong local and global convergence properties. The method of

Hestenes-Stiefel (HS) usually gives good numerical results in the practical computation. However, theoretically, its

convergence properties are uncertain. To address the convergence failure of HS method, many choices for its update

parameter have been proposed such as the choice of Gilbert and Nocedal in 1992, of Hager and Zhang in 2005, and of

Yousif et al. in 2022. In this paper, motivated by these updated parameters, we propose another updated parameter

for HS, and hence another CG method which inherits all the convergence properties of Gilbert and Nocedal, Hager and

Zhang, and of Yousif et al. and has better numerical results. To show the efficiency and robustness of the new modified

method in practice, a numerical experiment was done.

1. Introduction

Conjugate Gradient (CG) methods are iterative techniques used for solving unconstrained op-

timization problems in various fields, including science, engineering, and economics. The history

of CG methods can be traced back to the contributions of Cornelius Lanczos and Magnus Hestenes

at the Institute for Numerical Analysis, along with the independent work of Eduard Stiefel at the

Swiss Federal Institute of Technology (ETH) Zürich.

CG methods are designed to solve optimization problems of the form:
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min
x∈Rn

f (x) (P)

where f : Rn
→ R is a continuously differentiable function, bounded from below.

These methods use the iterative formula:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . (1.1)

where αk is a positive real number called the step length, and dk represents the search direction at

the k-th iteration.

The search direction dk is computed using the following rule:

dk =

−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1,
(1.2)

where βk is the update parameter, and gk is the gradient vector of f (x) at the point xk.

Different formulas for βk determine different CG methods. Some well-known choices for βk are

listed in the following table:

Table 1. The classical CG update parameters

Formula Name Reference

βHS
k =

gT
k yk

dT
k−1 yk

Hestenes-Stiefel (HS) Hestenes-Stiefel (1952) [10]

βFR
k =

‖gk‖
2

‖gk−1‖
2 Fletcher-Reeves (FR) Fletcher-Reeves (1964) [21]

βPRP
k =

gT
k yk

‖gk−1‖
2 Polak-Ribiere-Polyak (PRP) Polak-Ribière-Polyak (1969) [1, 3]

βCD
k =

‖gk‖
2

−dT
k−1 gk−1

Conjugate Descent (CD) Fletcher (1987) [20]

βLS
k =

gT
k yk

−dT
k−1 gk−1

Liu-Storey (LS) Liu-Storey (1991) [23]

βDY
k =

‖gk‖
2

dT
k−1 yk

Dai-Yuan (DY) Dai-Yuan (1999) [24]

In Table 1, ‖.‖ denotes the vector norm and yk = gk − gk−1. For more formulas for the parameter

βk, see [4, 7, 12–16, 25–28].

The step length αk is chosen to obtain the exact minimum or approximate minimum of the

sub-problem:

min
α≥0

f (xk + αdk).

Since α ≥ 0, the direction should satisfy the following descent condition:

gT
k dk < 0, ∀k ≥ 0,

which is called the sufficient descent condition if there exists a constant c > 0 such that:

gT
k dk ≤ −C‖gk‖

2, ∀k ≥ 0 and a constant C > 0. (1.3)
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The step length αk is computed using exact or inexact methods called line searches. In exact line

search, αk is obtained in the direction dk by the rule:

f (xk + αkdk) = min
α≥0

f (xk + αdk). (1.4)

Since it is difficult in practice to compute αk using formula (1.4), inexact line searches are

introduced to compute approximate values for αk. The Wolfe and strong Wolfe line searches are

examples of inexact line searches and are often used in practice. In Wolfe line search [18, 19], αk

satisfies the following two conditions:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk, (1.5)

g(xk + αkdk)
Tdk ≥ σgT

k dk,

whereas, in the strong Wolfe line search, αk is chosen to satisfy condition (1.5) and:

|g(xk + αkdk)
Tdk| ≤ −σgT

k dk, (1.6)

where 0 < δ < σ < 1.

The efficiency of CG methods is measured by two things: their global convergence, that is:

lim inf
k→∞

‖gk‖ = 0,

and their numerical results in practice. Both measurements depend essentially on the well-chosen

step length line search and the search direction dk.

Under the exact line search, if the objective function f is a strongly convex quadratic, then all the

methods with their parameters in Table 1 are equivalent. However, their performance differs for

non-quadratic functions. Due to the jamming phenomenon, where small steps are taken without

making significant progress, the performance of methods with ‖gk‖
2 in the numerator which are

FR, CD, and DY in Table are less than the performance of methods with gT
k yk in the numerator. This

is because the PRP, HS, and LS methods, which share the common numerator, possess a built-in

restart feature that addresses the jamming problem: when xk − xk−1 → 0, yk = gk − gk−1 in the

numerator tends to zero, prompting a restart with the steepest descent direction.

Considerable efforts have been made to prove the sufficient descent property and the global

convergence of conjugate gradient methods or to modify them for better performance. Zoutendijk

[5] proved the global convergence of the FR method under the exact line search, which was

extended later by Al-Baali [8] under the strong Wolfe line search. As mentioned earlier, the PRP

and HS methods show good numerical results compared to FR, CD, and DY, but their convergence

properties are poor. Polak and Ribière [3] established the global convergence of the PRP method

with the exact line search, and thus of HS, since βPRP
k = βHS

k with the exact line search. However,

Powell [9] later reported that for some non-convex problems, PRP does not converge globally.

Moreover, their global convergence under the strong Wolfe line search has not been established.

Several efforts have been made to prove the global convergence of the original HS method

via inexact line searches or to propose modified versions with better convergence properties.
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Powell [9] suggested restricting the parameter βPRP
k to be non-negative. Based on this suggestion,

Gilbert and Nocedal [6] proposed the PRP+ method. Similarly, the HS+ method can be defined

by the conjugate gradient (CG) update parameter:

βHS+
k = max(0, βHS

k ), (1.7)

which is globally convergent under the Wolfe line search provided the sufficient descent condition

is satisfied.

In addition to the built-in restart feature of the HS and HS+ methods, the conjugacy condition:

dT
k yk = 0,

is always satisfied, independently of the line search.

To address the poor convergence properties of the HS method, an interesting modified method,

called CG-DESCENT, was proposed by Hager and Zhang [22] in 2005. The update parameter of

CG-DESCENT is given by:

βN
k =

(yk − 2dk−1
‖yk‖

2

dT
k−1 yk

)T gk

dT
k−1yk

.

In addition to the good numerical results, the CG-DESCENT method possesses the sufficient

descent property, independently of the line search.

Most recently, Yousif et al. [17] proposed a modified version of HS by restricting the parameter

βHS
k to lie within an interval depending on a parameter µ, where µ is a real number greater than 2.

The modified version is called OHS, and its parameter is given by:

βOHS
k =

β
HS
k , if − µ ‖gk‖

2

‖dk−1‖
2 ≤ β

HS
k ≤ µ

‖gk‖
2

‖dk−1‖
2 ,

0, otherwise.
(1.8)

They proved the global convergence and the sufficient descent property of the OHS method under

the strong Wolfe line search.

In this paper, motivated by the good performance of the HS method in practice and the conver-

gence properties of the HS+ and OHS methods, we propose a new modified parameter for HS and,

hence, a new modified algorithm in Section 2. In Section 3, the proof of the global convergence

was established. To demonstrate the efficiency and robustness of the new modified algorithm, a

numerical experiment is conducted in Section 4.

2. A Modified Formula and Algorithm

As mentioned in the Introduction section, to establish the global convergence of the HS method,

the modified HS+ parameter is proposed by setting the negative values of the HS parameter to zero,

as shown in formula (1.7). Additionally, the modified OHS parameter is proposed by restricting

the values of the HS parameter to a certain interval that includes both positive and negative values

of the HS parameter, as given in formula (1.8).
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Motivated by the above, we propose another new modified parameter of HS by combining the

negative values of OHS with the values of the HS+ parameter to obtain the following:

βOOHS
k =

β
HS
k , if βHS

k ≥ −µ
‖gk‖

2

‖dk−1‖
2 ,

0, otherwise.
(2.1)

where µ > 2 is a real number. With this new parameter, we derive a new modified method,

called OOHS, which is defined in Algorithm 1 below.

Algorithm 1: The OOHS algorithm
Input: Choose the parameters δ and σ such that 0 < δ < σ < 1. Choose a scalar ε > 0

sufficiently small to stop the algorithm.

// Initialization

1 - Set k = 0 and select a starting point x0 ∈ Rn.

2 - Set g0 = ∇ f (x0) and d0 = −g0.

// Main loop

3 while ‖gk‖ ≥ ε do
4 - Compute the steplegth αk that meets conditions (1.5) and (1.6).

5 - Evaluate dk using (1.2).

6 - Set xk+1 = xk + αkdk and evaluate gk+1 and βOOHS
k .

7 - Compute the search direction dk+1 = −gk+1 + βOOHS
k dk.

8 - Set k = k + 1.

Note that, from (2.1), when µ→∞, then βOOHS
k → βHS

k . Therefore, for a sufficiently large value of

µ, the OOHS method provides good approximations to the HS method. Similar to the HS method,

we expect it to yield good numerical results in practical computations. The question now is: what

about its convergence?

3. Convergence Analysis

One of the most important issues when studying a CG method is its convergence properties,

so we devote this section to the analysis of the convergence of OOHS algorithm. Firstly, we note

that, since the OOHS parameter combines both the parameters of HS+ and OHS, it is clear that the

OOHS method inherits the two attractive features of both methods, that are, self-restart feature

and the conjugacy condition, independent of line search. Now, throughout this section, we assume

that

(i)- gk , 0, for all k ≥ 0,

(ii)- The level set, Ω = {x ∈ Rn : f (x) ≤ f (x0)} is bounded, where x0 is the starting point.

(iii)- In some neighbourhood N of Ω, the objective function is continuously differentiable, and

its gradient is Lipschitz continuous, namely, there exists a constant l > 0 such that

‖g(x) − g(y)‖ ≤ l‖x− y‖, ∀x, y ∈ N.
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Note that assumptions (ii) and (iii) imply that there exists a positive constant γ̄ such that

‖g(x)‖ ≤ γ̄, for all x ∈ N.

Assumptions (ii) and (iii) above on the objective function and the Zoutendijk condition [5] are

usually used to analyze the global convergence of conjugate gradient methods.

Lemma 3.1. Suppose that assumptions (ii) and (iii) hold. Consider any CG method of the form (1.1)-(1.3),
where the step length αk is computed by the Wolfe line search. Then, the following condition, known as the
Zoutendijk condition, is satisfied:

∞∑
k=0

(gT
k dk)

2

‖dk‖
2 < ∞.

For good convergence results, we need to require that βk be small when the step length is small.

This property is called Property∗ and is defined by Gilbert and Nocedal [6].

Property∗: Consider a method of the form (1.1) and (1.2), and suppose that for all k ≥ 0,

0 < γ ≤ ‖gk‖ ≤ γ̄,

where γ and γ̄ are two positive constants. Then the method has Property∗ if there exist two

constants b > 1 and λ > 0 such that for all k:

|βk| ≤ b,

and

‖xk − xk−1‖ ≤ λ =⇒ |βk| ≤
1
2b

.

Theorem 3.1. The OOHS method possesses Property (*).

Proof. The proof follows straightforwardly from the fact that HS has Property (*) and OOHS is a

restriction of HS. �

Now, based on Theorem 3.1, we show the global convergence of the OOHS algorithm, which

essentially depends on the following two results:

Result 1. In [17], Yousif et al. have proven that if a CG method with a parameter βk satisfying the condition

|βk| ≤ µ
‖gk‖

2

‖dk−1‖
2 , for k ≥ 1 and a real number µ ≥ 1,

is applied under the strong Wolfe line search with 0 < σ < 1
4µ for solving an unconstrained optimization

problem, then:

(a) ‖gk‖

‖dk‖
< 2, for all k ≥ 0,

(b) the sufficient descent condition is satisfied,
(c) under assumptions (ii) and (iii) , the method is globally convergent.
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Result 2. In [6], Gilbert and Nocedal have proven that any CG method under Wolfe line search, so under
the strong Wolfe line search with 0 < σ < 1

4µ , satisfies the following:

(a) βk ≥ 0, for all k,
(b) the sufficient descent condition holds,
(c) Property∗ holds,
(d) assumptions (ii) and (iii) hold,

then it is globally convergent.

Theorem 3.2. Suppose that assumptions (ii) and (iii) hold. Then the OOHS algorithm is globally convergent
when it is applied under the strong Wolfe line search with 0 < σ < 1

4µ .

Proof. By rewriting βOOHS
k as follows:

βOOHS
k =


βHS

k , if − µ ‖gk‖
2

‖dk−1‖
2 ≤ β

HS
k < µ

‖gk‖
2

‖dk−1‖
2 ,

βHS
k , if βHS

k ≥ µ
‖gk‖

2

‖dk−1‖
2 ,

0, otherwise.

We can now consider the following two cases:

- Case I: −µ ‖gk‖
2

‖dk−1‖
2 ≤ β

OOHS
k < µ

‖gk‖
2

‖dk−1‖
2 . The proof follows straightforwardly from Result 1.

- Case II: βOOHS
k ≥ µ

‖gk‖
2

‖dk−1‖
2 . Since OOHS satisfies Property (*), the proof follows straightforwardly

from Result 2.

4. Numerical Experiment

In this section, we compare the OOHS method with the HS, HS+, CG-DESCENT, and OHS

methods. In the comparison:

• Most of the test problems are from [11].

• To show robustness, test problems are implemented under low, medium, and high dimen-

sions, namely, 2, 3, 4, 10, 50, 100, 500, 1000, 5000, and 10000. Also, for each dimension, two

different initial points are used: one is the initial point suggested by Andrei [11], and the

other point is chosen arbitrarily.

• All methods are applied under the strong Wolfe line search with the parameters δ = 10−4

and σ = 10−1.

• For all methods, the termination condition is set to ‖gk‖ ≤ 10−6.

• The parameter µ is set to 10.

The numerical results are presented in Tables 2 and 3 where:

Dim: the dimension of the test problem,

NI: the number of iterations,

CPU: the time required by the computer to solve a test problem,

NF: the number of function evaluations,

NG: the number of gradient evaluations,
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FAIL: indicates the method failed to solve the test problem.

Table 2. Numerical results

Problem number Test Problem Dim initial vector HS HS+ CG-DESCENT OHS OOHS

NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG

1 THREE-HUMP 2 (2,2) 30/0.09/931/135 11/0.05/313/84 15/0.06/290/107 30/0.09/931/135 30/0.09/931/135

(5,5) 26/0.07/774/120 10/0.03/234/80 Fail Fail 24/0.06/668/294

2 GENERALIZED 2 (0,0) 16/0.02/111/53 16/0.02/114/57 16/0.02/109/53 18/0.02/112/62 16/0.02/114/57

(10,10) 49/0.07/582/210 30/0.04/287/117 37/0.06/413/157 50/0.06/432/195 30/0.04/287/117

3 SIX-HUMP 2 (1.1) 5/0.01/22/14 5/0.01/22/14 8/0.02/31/20 5/0.01/22/14 5/0.01/22/14

(10,10) 9/0.02/53/24 10/0.03/62/31 8/0.02/53/20 12/0.03/77/35 9/0.03/53/24

4 TRECANNI 2 (1,1) 5/0.01/19/13 5/0.01/20/13 5/0.01/20/13 5/0.01/19/13 5/0.01/19/13

(10,10) 5/0.01/23/15 8/0.02/35/21 7/0.2/32/18 9/0.02/38/23 8/0.02/35/21

5 ZETTLE 2 (1,1) 10/0.02/40/30 10/ 0.02/42/31 10/0.02/40/30 10/0.02/45/35 10/0.02/40/30

(10,10) 11/0.02/45/30 10/0.02/44/29 10/0.03/47/34 10/0.02/46/32 10/0.02/44/29

6 BOOTH 2 (1,1) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4

(10,10) 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4 2/0.01/6/4

7 LEON 2 (0,0) 16/0.03/111/53 16/0.03/114/57 16/0.03/109/53 18/0.04/112/62 16/0.03/114/57

(10,10) 49/0.07/582/210 30/0.05/287/117 37/0.06/413/157 50/0.07/432/195 30/0.05/287/117

8 DIXON PRICE 3 (1,1,1) 10/0.01/40/27 10/ 0.01/40/27 13/0.02/49/33 10/ 0.01/40/27 10/ 0.01/40/27

(10,10,10) 24/0.03/100/60 23/0.03/111/62 50/0.04/200/120 21/0.02/105/58 21/0.02/105/58

9 CUBE 3 (-1.2,1.-1,2) 391.0.21/1589/908 278/0.16/1222/664 449/.28/1897/1053 78/0.07/465/257 278/0.16/1222/664

(0,0,0) 474/0.28/1953/1117 1946/.97/6896/4412 1336/.71/4771/2990 82/0.07/474/270 1946/0.97/6896/4412

10 NONDIA 3 (-1,-1,-1) 557/0.27/1981/1261 557/0.27/1981/1261 389/0.24/1264/802 49/0.17/264/135 557/0.27/1981/1261

(10,10,10) 374/0.23/1661/905 895/0.50/3426/2025 139/0.11/724/353 103/0.09/547/308 895/0.50/3426/2025

11 EXTENDED WOOD 4 (0,0,0,0) 123/0.07/481/282 123/0.07/481/282 120/0.06/466/274 51/0.04/225/128 123/0.07/481/282

(5,5,5,5) 167/0.10/736/401 125/0.08/567/306 240/0.14/975/561 74/0.06/397/200 70/0.05/383/187

12 LIARWHD 4 (0,0,0,0) 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2 1/0.01/3/2

(0,5,0,5) FAIL 21/0.05/383/86 92/0.31/2760/462 26/0.09/744/239 21/0.05/434/94

13 COLVILLE 4 (0,0,0,0) 123/0.06/481/282 123/0.06/481/282 120/0.06/466/274 51/0.03/225/128 123/0.06/481/282

(10,10,10,10) 91/0.06/537/245 182/0.10/847/451 191/0.10/728/430 73/0.05/408/202 177/0.09/848/440

14 EXTENDED POWELL 4 (1,1,1,1) 70/0.04/279/172 1303/.49/3957/2635 256/0.11/835/557 56/0.03/259/178 35/0.03/173/105

(10,10,10,10) 1290/.48/3964/2623 1290/.48/3964/2623 301/0.12/988/643 59/0.04/314/212 1290/0.48/3964/2623

15 ENGVAL1 4 (2,2,2,2) 23/0.02/79/52 24/0.02/84/56 21/0.02/77/51 23/0.02/79/52 23/0.02/79/52

(10,10,10,10) 22/0.02/85/53 18/0.02/74/46 21/0.02/84/52 22/0.02/85/53 22/0.02/85/53

16 BIGGSB1 10 (0,0,. . . ) 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12

(10,10,. . . ) 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12 5/0.01/17/12

17 GENERALIZED TRIDIAGONAL 2 10 (1,1,. . . ) 12/0.02/40/28 12/0.02/40/28 12/0.02/41/29 12/0.02/40/28 12/0.02/40/28

(10,10,. . . ) 35/0.03/133/91 40/0.04/145/98 38/0.04/136/100 37/0.03/132/93 35/0.03/133/91

18 GENERALIZED TRIDIAGONAL 1 10 (2,2,. . . ) 23/0.02/76/50 23/0.02/76/50 23/0.02/76/50 23/0.02/76/50 23/0.02/76/50

(10,10,. . . ) 27/0.03/112/68 27/0.03/112/68 27/0.03/111/67 27/0.03/112/68 27/0.03/112/68

19 NONSCOMP 10 (3,3,. . . ) 2123/0.85/7282/4821 2123/.85/7282/4821 3056/1.31/9959/6624 FAIL 2123/0.85/7282/4821

(10,10,. . . ) 3247/1.23/10496/7198 3247/1.23/10496/7198 FAIL FAIL 3247/1.23/10496/7198

20 SUM SQUARE 10 (-1,-1,. . . ) 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20

(10,10,. . . ) 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20 10/0.01/30/20

21 POWER 50 (1,1,. . . ) 65/0.04/195/130 65/0.04/195/130 66/0.05/198/132 1478/.84/4434/2965 65/0.04/195/130

(10,10,. . . ) 67/0.05/201/134 67/0.05/201/134 67/0.05/201/134 1781/1.0/5343/3562 67/0.05/201/134

22 HAGER 50 (1,1,. . . ) 19/0.02/59/40 19/0.02/59/40 19/0.02/59/40 19/0.02/59/40 19/0.02/59/40

(5,5,. . . ) 21/0.02/76/49 21/0.02/76/49 21/0.02/76/49 21/0.02/76/49 21/0.02/76/49

23 EDENSCH 50 (0,0,. . . ) 23/0.02/80/52 274/0.21/1319/664 AIL 24/0.03/90/52 23/0.02/80/52

(10,10,. . . ) 25/0.03/107/64 27/0.03/109/64 FAIL 27/0.03/125/67 25/0.03/107/64

24 RAYDAN1 50 (1,1,. . . ) 47/0.03/144/137 47/0.03/144/137 47/0.03/144/138 47/0.03/144/137 47/0.03/144/137

(5,5,. . . ) 90/0.06/342/278 90/0.06/342/278 91/0.07/361/276 135/0.09/522/400 90/0.06/342/278

25 ARWHEAD 50 (1,1,. . . ) 5/0.02/23/13 5/0.02/23/13 5/0.02/22/12 5/0.02/23/13 5/0.02/23/13

(10,10,. . . ) 9/0.03/61/25 9/0.03/61/25 10/0.03/68/28 10/0.03/68/28 9/0.03/61/25
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Table 3. Numerical results
Problem number Test Problem Dim initial vector HS HS+ CG-DESCENT OHS OOHS

NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG NI/CPU/NF/NG

26 FLETCHER 50 (0,0,. . . ) 359/ 0.39/1832/867 359/ 0.39/1832/867 366/ 0.42/1859/886 1861/ 1.53/6380/3942 359/ 0.39/1832/867

(10,10,. . . ) 329/0.28/1220/747 323/0.28/1211/741 345/0.32/1300/800 1846/1.42/5811/3806 323/0.28/1211/741

27 GENERALIZED

ROSENBROCK

100 (-1.2,1,. . . ) 855/1.13/4845/2239 852/ 1.11/4793/2225 834/1.13/4713/2170 2748/2.88/11673/6561 55/1.13/4845/2239

(5,5,. . . ) 863/1.15/4919/2262 853/1.13/4881/2228 846/1.16/4847/2222 3017/3.10/12521/7131 863/1.15/4919/2262

28 HIMMELH 100 (0,0,. . . ) 5/0.02/15/10 6/0.02/22/12 5/0.02/15/10 6/0.02/25/13 6/0.02/29/12

(0.5,0.5,. . . ) 5/0.02/15/10 5/0.02/15/10 5/0.02/15/10 5/0.02/15/10 5/0.02/15/10

29 GENERALIZED

QUARTIC

100 (1,1,. . . ) 10/0.04/149/73 7/0,03/114/62 9/0.05/225/74 9/ 0.04/175/97 7/0.03/114/62

(2,2,. . . ) 8/0.02/63/40 6/0.02/56/35 10/0.04/200/53 5/0.02/18/13 6/0.02/56/36

30 EXTENDED

MARATOS

100 (1.1,0.1,. . . ) FAIL 38/0.07/309/117 30/0.05/209/100 49/0.07/312/154 35/0.06/265/118

(2,2,. . . ) 15/0.03/108/49 15/0.02/82/45 13/0.02/86/41 23/0.04/138/72 15/0.02/82/45

31 EXTENDED

PENALTY

500 (1,2,3,. . . ) FAIL 119/0.30/497/276 FAIL 26/0.09/146/68 119/0.30/497/276

(2,2,. . . ) 20/0.09/145/67 20/0.09/150/70 FAIL 10/0.05/79/28 23/0.11/178/74

32 TRIDIA 500 (1,1,. . . ) 239/0.45/717/478 239/0.45/717/478 240/0.48/720/480 FAIL 239/0.45/717/478

(10,10,. . . ) 251/0.52/753/502 251/0.49/753/502 252/0.51/756/504 FAIL 251/0.49/753/502

33 QF2 500 (0.5,0.5,. . . ) 253/0.54/897/563 253/0.54/897/563 254/0.56/900/565 207/0.47/767/479 253/0.54/897/563

(10,10,. . . ) 225/0.53/885/515 225/0.53/885/515 252/0.60/976/577 225/0.53/885/515 225/0.53/885/515

34 QP2 500 (1,1,. . . ) 39/0.31/469/136 39/ 0.30/456/132 38/0.32/482/124 57/0.40/613/190 39/0.30/460/131

(10,10,. . . ) FAIL 40/0.31/457/130 41/0.34/516/137 57/0.40/610/188 39/0.30/451/130

35 QF1 500 (1,1,. . . ) 131/0.25/393/262 131/0.25/393/262 131/0.25/393/262 131/0.25/393/262 131/0.25/393/262

(10,10,. . . ) 140/0.27/420/280 140/0.27/420/280 140/0.27/420/280 140/0.27/420/280 140/0.27/420/280

36 QP1 1000 (0,5,. . . ) 12/0.10/100/37 13/0.09/86/38 FAIL 12/0.10/106/31 13/0.09/86/38

(3,3,. . . ) 14/0.12/123/45 9/0.06/57/21 FAIL 9/0.06/50/21 9/0.06/57/21

37 PERTURBED

QUADRATIC

1000 (0,5,. . . ) 187/0.61/561/374 187/0.61/561/374 187/0.61/561/374 523/1.71/1569/1046 187/0.61/561/374

(10,10,. . . ) 203/0.67/609/406 203/0.67/609/406 203/0.67/609/406 629/2.12/1887/1258 203/0.67/609/406

38 DIXON3DQ 1000 (-1,-1,. . . ) 500/1.35/1508/1009 500/1.35/1508/1009 500/1.35/1508/1009 FAIL 500/1.35/1508/1009

(10,10,. . . ) 500/1.35/1508/1009 500/1.35/1508/1009 500/1.35/1508/1009 FAIL 500/1.35/1508/1009

39 DQDRTIC 1000 (3,3,. . . ) 13/0.04/39/26 13/0.04/39/26 13/0.04/39/26 10/0.03/30/20 13/0.04/39/26

(10,10,. . . ) 18/0.06/54/36 16/0.06/48/32 13/0.05/39/26 11/0.04/33/22 18/0.06/54/36

40 EXTENDED

DENSCHNF

1000 (2,2,. . . ) 14/0.43/447/266 16/0.51/544/308 27/0.71/745/318 11/0.32/330/221 11/0.32/330/221

(10,10,. . . ) FAIL 20/0.34/343/118 27/0.62/645/189 20/0.50/520/238 20/0.50/520/238

41 FREUDENSTEIN

& ROTH

5000 (0.5,-2,. . . ) FAIL 7/0.15/35/18 FAIL 7/0.15/35/18 7/0.15/35/18

(5,5,. . . ) 10/0.21/52/25 8/0.21/48/22 FAIL FAIL 8/0.21/48/22

42 EXTENDED

TRIDIAGONAL1

5000 (2,2,. . . ) 14/0.42/71/60 14/0.42/71/60 14/0.44/75/62 12/0.37/61/51 14/0.42/71/60

(10,10,. . . ) 7/ 0.24/42/35 17/0.45/75/59 11/0.39/69/59 8/0.27/47/38 7/0.24/42/35

43 DIAGONAL 4 5000 (1,1,. . . ) 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5

(10,10,. . . ) 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5 2/0.03/6/5

44 EXTENDED

DENSCHNB

5000 (1,1,. . . ) 5/0.08/19/14 5/0.08/19/14 5/0.08/19/14 5/0.08/19/14 5/0.08/19/14

(10,10,. . . ) 8/0.14/34/21 10/0.17/45/29 9/0.16/41/27 9/0.15/37/23 8/0.14/34/21

45 EXTENDED

ROSENBROCK

5000 (-1.2,1,. . . ) 19/0.42/120/58 20/0.43/123/69 18/0.42/121/60 28/0.59/168/90 22/ 0.49/141/71

(10,10,. . . ) 23/0.59/176/70 31/0.74/220/102 22/0.58/172/71 33/0.75/219/102 32/0.75/222/104

46 EXTENDED

HIMMELBLAU

10000 (1,1,. . . ) 7/0.23/29/17 8/0.25/32/19 7/0.23/30/18 8/0.25/32/19 8/0.25/32/19

(10,10,. . . ) 7/ 0.24/32/17 8/0.26/34/18 6/0.22/28/15 8/0.27/35/19 8/0.27/35/19

47 STRAIT 10000 (0,0,. . . ) 18/0.62/90/51 18/0.62/90/51 13/0.50/73/40 15/0.55/80/44 18/0.62/90/51

(5,5,. . . ) 20/0.85/129/59 20/1.00/156/63 19/0.93/144/64 19/1.16/184/74 21/1.20/190/78

48 SHALLOW 10000 (0,0,. . . ) 7/0.20/27/21 7/ 0.21/28/21 7/0.20/27/21 8/0.23/31/24 7/ 0.19/27/20

(10,10,. . . ) 13/0.46/63/42 13/0.45/64/40 13/0.46/66/39 12/0.43/62/39 11/0.38/53/34

49 EXTENDED

BEALE

10000 (1,0.8, . . . ) 10/0.70/48/31 10/0.73/49/32 11/0.73/48/29 13/0.84/58/37 10/0.72/49/32

(3,3,. . . ) 11/0.78/53/29 11/0.81/56/34 11/ 0.81/57/30 13/0.94/66/40 12/0.83/58/34

50 EXTENDED

WHITE &

HOLST

10000 (-1.2,1,. . . ) 15/1.18/113/47 14/1.16/112/49 15/1.18/104/45 15/1.02/95/50 14/1.16/112/49

(10,10,. . . ) 50/5.89/580/212 31/3.05/293/125 38/4.27/416/159 51/4.55/435/197 30/3.02/293/125



10 Int. J. Anal. Appl. (2025), 23:10

To show the method of the best performance, we used the technique that was introduced by

Dolan and More [2]. The results are in Figures 1-4.

In this performance profile:

• tp,m is the result (may be NI, CPU, NF, or NG in our experiment) when a method m is

applied to solve problem p.

• t = tp,m

min{tp,m:m∈M} .

• Pm(t) is the probability that a method m has a performance ratio t.

Therefore, based on this performance profile, the left side shows the best performance (having

minimum NI, CPU time, NF, and NG), meaning that the highest curve corresponds to the best

method. Also, the right side measures the percentage of the total number of test problems that are

successfully solved by the corresponding method.

Figure 1. The performance in terms of NI

Figure 2. The performance in terms of CPU
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Figure 3. The performance in terms of NF

Figure 4. The performance in terms of NF

The left side of Figures 1-4 show that although in some cases OOHS seem to be similar to HS+

method but it has the minimum number of NI, CPU, NF, and NG. Also, the right side of all figures

show that the OOHS method solve the entire given test problems. Therefore, we can conclude that

OOHS has the best performance.

5. Conclusion

In this paper, motivated by HS+ and OHS parameters, a new conjugate gradient update param-

eter of HS was proposed, hence, another modified method of HS. The new method inherits the

convergence properties of HS+ and OHS methods. To show the efficiency and robustness of the

modified method in practical computation, it was compared under the strong Wolfe line search

with HS, HS+, CG-DESCENT, and OHS methods. The comparison was based on four items; the

number of iterations, CPU time, the number of function and number of gradient evaluations. It

was reported that the new modified method performs better than the others.
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