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Abstract. The purpose of this article is to provide bifurcation diagrams and observe chaotic behaviour in the real

dynamics of two-parameter family of function Φ(x) = x + (1 − λx) ln(ax) : x > 0,λ > 0, a > 0. We consider here

parameter a is a positive and continuous real parameter while λ is positive but a discrete real parameter. The dynamical

properties of this nonlinear system family analyze numerically as well as graphically by using fixed point iterative

method. Bifurcation diagrams for the real dynamics of the function are plotted by varying the values of the parameter

which are fractals in nature. Also, we show that chaos exists in the dynamics of the function by looking at period-

doubling in the bifurcation diagram. Further, chaotic behaviour studies by simulation of the positive Lyapunov

exponents which observe by varying the parameters similar to the bifurcation diagrams.

1. Introduction

A major focus of modern research is on studying dynamical systems. Dynamical systems

are important in engineering and scientific systems. In the last few decades, the development

and advancement in technology as well as mathematical theory allow us to understand and

try more complex approaches for intricate nonlinear systems [35]. In the theory of dynamical

systems (kind of iterative methods), in particular, chaos theory help us to understand the long-

term qualitative behaviour of the system. Chaos theory has many applications in daily life as

well as in many scientific disciplines extensively. We can see its application in various types of

fields such as modelling [10, 30], optimization [20], stock market [11], photovoltaic plant [1] and

so on. Population dynamics is studied in [17]. A detailed study of chaos in fuzzy dynamical

systems is provided in [19]. The dynamic behaviour of a discrete memristor at different positions
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can also be understood using chaotic attractor phase diagram, bifurcation diagrams, system state

analysis etc [22]. Similarly, a discrete memristive Rulkov (m-Rulkov) neuron model has also

been studied by looking at its bifurcation in [14]. Applicability of chaos can also be seen in the

uncertainty quantification of epidemic SIR models [9]. Chaos has also been used to study particle

motion in high energy physics [36]. Chaotic systems have also been applied to study digital image

encyrption by using its properties like ergodicity, pseudo randomness and sensitivity to initial

conditions, especially now with the use of two-dimensional Hénon-Sine map (2D-HSM) [34]. This

map has better properties like ergodicity and randomness than the existing maps and so is ideal

for use.

The fractal dynamics is a unique and systems-based approach of looking at and thinking about

systems and organizations. When talking about fractals, they can be full of paradoxes, they are

at many times a source of creativity, beauty, and surprise, while we use them at the same time as

a powerful tool for simulation, analyzing and communicating complex ideas. These often lead

to objects that are so complex that their dimension is not an integer while only start as a simple

geometrical object. We can see fractals in the study of Banach, Hilbert, or Euclidean spaces [2] . We

can also find its application in a variety of things like regional logistics [3], variation principles [33],

ECG classification [32]. Fractals also have applications in nature [16] and even fields like digital

imaging [31]. Some advances on fractals can be seen in recent surveys [6, 7] which provide

interesting and in depth knowledge on the subject.

Another important definition to know about is of iteration. When we talk about iteration, we

mean the repetition of a process in order to generate a sequence of outcomes. One single repetition

of the process is considered a single iteration and we then use the outcome of each iteration as

the starting point of the next iteration. One of our goals is to describe periodic points, which are

the states of the system that repeat after several time steps. We study the dynamics to use it to

understand long-term behaviour using the initial behaviour of trajectories. For a given initial value

x0, compute iterations as x1 = f (x0), x2 = f (x1), x3 = f (x2), . . . . The sequence x0, x1, x2, x3, . . .

defines the trajectory. Points which come back to the same value after a finite number of iterations of

function are called periodic points and a periodic point with period equal to one is known as a fixed

point. For a periodic point x f of period m, the orbit x f , x1 = f (x f ), x2 = f 2(x f ), . . . , xm−1 = f m−1(x f )

is called a cycle or a periodic cycle.

Our focus here is on the chaotic behaviour which is characterized in dynamical systems by the

sensitive dependence on initial conditions. Chaos is defined by the sensitive dependence on the

initial conditions of the system [13]. By studying chaos, we can observe that simple systems can

exhibit complex and unpredictable behaviour [12, 13]. By looking at chaos in dynamical systems,

we can try and make an attempt to understand and show the relationships between order and

disorder in the system or the simplicity and complexity of the system [18]. The chaotic behaviour

in the Newton’s iteration of one the iterative methods associated with Kepler’s equation studied
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in [29] is an example. The importance of real dynamics of the functions is also seen mathematically

which leads to some important results in the complex plane [8, 28].

We can quantify and understand chaos in dynamical systems in many ways, like it can be

quantified by computing Lyapunov exponents or period-doubling in bifurcation diagrams [5, 26].

For a trajectory {xi}, i = 0, 1, 2, . . . starting from x0, the formula for Lyapunov exponent (LE) is

given by

L = lim
N→∞

1
N

N−1∑
i=0

ln | f ′(xi)|. (1.1)

The 2-parameter logarithmic function, that we consider here, is Φ(x) = x + (1−λx) ln(ax) : x >
0,λ > 0, a > 0. We have to look at bifurcation diagrams which design to show convergence or

periodicity or unpredictability that are nothing but the eventual behaviour of iterates. It shows the

values approached or visited asymptotically in the system as a function of a bifurcation parameter

in the system. We can observe period-doubling in the bifurcation diagram to see the route to

chaotic behaviour of the system. In addition, a positive value of Lyapunov exponent shows us

that chaotic behaviour presents in dynamical system. A very detailed study on chaotic behaviour

and bifurcations about the same family of function using different parameter conditions is given

in [27]. The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate

of separation of infinitesimally close trajectories [23]. We can look at the chaotic behaviour in

dislocation dynamics by calculating the positive Lyapunov exponent in [4]. Other than bifurcation

diagrams and Lyapunov exponents, one can look at time series graphs to see the chaotic behaviour

in dynamical systems. We have to look at time series graphs to observe the periodicity at different

values of the parameters. For transcendental functions depending on two parameters, we can

see both bifurcation and chaotic behaviour in real dynamics in [15]. Moreover, for two-parameter

family of some special type of generating functions, a detailed study of the bifurcation as well as

chaos in real dynamics can be seen in [25]. Recently, bifurcation diagrams in the real dynamics

of entire transcendental function have been explored in [24]. Cobweb diagram shows observable

chaos, detail about it is in [21].

In this paper, we have to look bifurcation diagrams which are fractals in nature as well as

observe the chaotic behaviour in the real dynamics of 2-parameter family of functions Φ(x) =

x + (1 − λx) ln(ax) : x > 0,λ > 0, a > 0 which is one of the nonlinear systems. In Section 2, we

generate and discuss bifurcation diagrams of Φ(x) for different parameter values of λ > 0 and

a > 0. To understand the orbits in the dynamics of function Φ(x), the time series graphs are plotted

in Section 3. By computing positive Lyapunov exponents in Section 4, we quantify the chaos in the

real dynamics of Φ(x). In Section 5, we provide a short discussion about generation of graphical

objects. At the end, the conclusion is given in Section 6.
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2. Bifurcation and Periodic Points

A bifurcation diagram is very useful in understanding the dynamical behaviour of a system.

Basically, a bifurcation diagram is a visual summary of the succession of period-doubling produced

as a parameter increases/decreases. Bifurcation diagrams are fractals in nature and with them, we

can graphically observe the periodicity of the orbits. Whenever period-doubling happens in the

real dynamics of functions, we observe it as a route to chaos in dynamical systems. Bifurcation

diagrams give many interesting information and are the integral part of nonlinear systems.

In our family of nonlinear functions with two parameters Φ(x) = x+ (1−λx) ln(ax) : x > 0,λ >

0, a > 0; the parameter a is a continuous positive real parameter and λ is a discrete positive real

parameter. The dynamics of our two-parameter family of functions changes when both values of

parameters cross through certain values. We can see these changes in the bifurcation diagrams

which obtain by iteration of Φ(x). For computation of the bifurcation points, we solve the equations

associated to fixed points and neutral fixed point condition. So, we solve the following equations

Φm(x) = x and |(Φm)′(x)| = 1. The periodic points of Φ(x) are zeros of Φm(x) = x, i.e.,

Φm−1(x) + (1− λΦm−1(x)) ln(aΦm−1(x)) = x.

When parameter a increases beyond certain value, then the function Φ(x) exhibits periodic points of

period more than or equal to 2. We provide here graphical analysis since the analytical computation

of these periodic points of Φ(x) is significantly very difficult.

For achieving our purpose, we have considered parameter a as continuous and parameter λ

as fix constant. What this means is that, for a particular graph, a varies between an arbitrary

range and the values required are calculated for different values of a through that range while

the parameter λ is kept constant. i.e a is the horizontal axis while the values are plotted against

it on the vertical axis, while the value of λ is constant throughout a graph. We have chosen a as

continuous and λ as constant and not vice a versa. Below we will look at graphs for different sets

of values of a and λ.

Firstly, we look at the case of the continuous parameter a varying from 0.1 to 1. We observe

that, in Figure 1, when the parameter λ (discrete parameter) is changed from 2.1 to 2.5 and then to

2.8 subsequently, then the point at which period-doubling begins also changes for a. For the small

value of λ, the period doubling happens at a much smaller value of a, and here it does not happen

at all when λ = 2.1 in our range of a. When the value of λ= 2.5, then period doubling happens at a

greater value of a and only happens once in our range of a. Then, when we increase the value to λ

= 2.8, then the point of a at which period doubling happens for the first time is the largest and we

can see the period-doubling happening many times in this case showing us the presence of chaos.

Next, we see the case when a varies from 1.0 to 2.0. Here also when the parameter λ is greater,

then the first period-doubling occurs for the first time for greater values of a and when the value

of λ is smaller, then period-doubling happens for the first time for smaller values of a. In Figure 2,

we observe that as λ is increased from 3 to 3.8, then the first period-doubling happens at higher
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(a) λ=2.1 (b) λ=2.5

(c) λ=2.8

Figure 1. Bifurcation diagrams for 0.1 ≤ a ≤ 1 and different parameter value of (a)

λ = 2.1, λ = 2.5 and λ = 2.8

values of the variable a. In Figure 2(a) for λ=3, we observe only one period doubling which also

occurs at a low value of a in range of 1.0 to 2.0. Then, in Figure 2(b), λ=3.5 we can see more than

one period doubling scenario and the value of a for which the periodicity changes from 1 to 2 is

relatively larger here compared to Figure 2(a). Finally, in Figure 2(c) for λ=3.8, we get multiple

period doubling instances starting with a high value of a on the horizontal axis for the first split

and eventually chaos is observed in our range. This indicates that, as the value of λ increases, we

can see period doubling and chaotic behaviour for relatively larger values of a in range from 1.0 to

2.0

Lastly, we consider the case when a varies from 1.5 to 2.5. In this case , we can see that when the

discrete parameter λ is greater, then the first period-doubling occurs for the first time for greater

values of a and when λ is smaller, then the first period-doubling happens for smaller values of a.

In Figure 3, as the value of λ increases from 3.8 to 4.3, the first period-doubling happens for larger

values of the parameter a. In Figure 3(a) when λ=3.8 we can observe only one period doubling

instance in our range of a. Figure 3(b) when λ=4 we can see multiple period doubling instances
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(a) λ=3 (b) λ=3.5

(c) λ=3.8

Figure 2. Bifurcation diagrams for 1 ≤ a ≤ 2 and different parameter value of (a)

λ = 3, λ = 3.5 and λ = 3.8

and also the first time when the diagram splits into 2, the value of a is higher comparatively to

the value of a in Figure 3(a). Finally, in Figure 3(c) where λ=4.3, periodicity changes from 1 to 2 at

higher value of a and we see multiple period doubling instances starting with a high value of a on

the horizontal axis for the first split and eventually chaos is observed in our range.

Thus, we can see a pattern that in the above figures as the value of parameter λ is increased,

then the values of a for which the period doubling happens for the first time also increases and

subsequently, we observe the period-doubling happen multiple times for the same interval of a
when the value of the parameter λ is larger.

The presence of periodic points of periods more than or equal to 2 visualized by bifurcation

diagrams leads to the route to chaos in our dynamical systems which can be quantified by Lyapunov

exponents and we provide simulation of it later in the paper.

3. Time Series Graphs

Time series graphs are very useful for us in understanding the dynamics of any function. We can

explore the dynamics of our function by observing time series graphs. We can apply it to observe
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(a) λ=3.8 (b) λ=4

(c) λ=4.3

Figure 3. Bifurcation diagrams for 1.5 ≤ a ≤ 2.5 and different parameter value of

(a) λ = 3.8, λ = 4 and λ = 4.3

periodicity and period-doubling which are essential for understanding chaos. As we vary our

parameters a and λ, the trajectories in the time series graph become stable or unstable. Depending

on the value of our parameters, period-doubling can be initiated. This shows us the the existence

of chaos in the dynamics of our family of functions. Because of the period-doubling, it is possible

to look at graphs with periods 2, 4, 8, 16, 32, and so on.

We can see simulation of the time series graphs of period 32 in Figure 4. Because of the values

of our parameters a and λ, we can observe a periodicity of 32 which happens due to the period-

doubling. This indicates the presence of chaos in the dynamics of our family of functions. We can

compare the periodicity of these time series graphs to the bifurcation diagrams for same parameter

values from the above section.

By varying the parameters, then the periodicity of the time series graph changes as can be seen

in Figure 5 with time series graphs of periodicity of 8. In Figure 5(a), a=1.276 and λ=3.8 (both

are constant here obviously), the periodicity of 8 is observed, this can also be understood from

the bifurcation diagram in Figure 2(c) that period doubling has caused a periodicity of 8 for these



8 Int. J. Anal. Appl. (2025), 23:13

(a) x0=0.5, a=0.005, λ=2.5 (b) x0=0.5, a=0.9784, λ=3.5

(c) x0=0.5, a=0.2980, λ=2.8

Figure 4. Time series graphs for different parameter values of a and λ

parameter values. Then, in Figure 5(b) a=0.3 and λ=2.8 periodicity is 8 again, we can understand

this from Figure 1(c) that period doubling has caused a periodicity of 8 for these parameter values.

Hence, the periodicity depends on initial value as well as the parametric values both.

(a) x0=0.5, a=1.276, λ=3.8 (b) x0=0.5, a=0.3, λ=2.8

Figure 5. Time series graphs for different parameter values of a and λ

Similarly, when we change the parameters the periodicity changes again in Figure 6. This shows

us that period doubling occurs in the dynamics of our family of function depending upon param-

eter values and depending upon these parameter values the periodicity can be easily changed.

Thus, we can observe the presence of chaos in the dynamics of our family of function.
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(a) x0=0.5, a=1.5, λ=3.5 (b) x0=0.5, a=1.8, λ=3.8

Figure 6. Time series graphs for different parameter values of a and λ

4. Lyapunov Exponents

A way to quantify chaos in the dynamics of the functions is to compute Lyapunov exponents.

It characterizes the rate of separation of infinitesimally close trajectories. The Lyapunov exponent

at a point measures the average loss of information during successive iterations of points near

that point. In this section, we quantify chaos in the real dynamics of Φ(x) by calculating positive

Lyapunov exponents. These are computed using Formula (1.1) and the graph is then plotted

against the changing parameter values. Using Lyapunov exponent Formula (1.1), we can write it

in our function as:

L = lim
N→∞

1
N

N−1∑
i=0

ln |1 + 1/xi − λ(1 + ln(axi))|. (4.1)

The parameter values that have been used are similar to the ones used in the bifurcation diagrams

for better understanding. We can see in Figure 7 the values of Lyapunov exponent are positive

using (4.1) for the same parameter values, the bifurcation diagram has a dark region, and negative

in other places. Actually, what happens that the Lyapunov exponent takes a positive value when

period-doubling happens. We can easily observe in figures that when period-doubling happens

in bifurcation diagrams for some values of the parameter, the Lyapunov exponent has a positive

value for the same values of the parameter. Also, when period-doubling is not happening, then

the Lyapunov exponent is negative. Thus, it is clear visualization of the existence of chaos by

looking at the positive Lyapunov exponent.

Corresponding to the bifurcation diagrams for the same values of parameter, we can see that

in Figure 8 and Figure 9; that in the region of positive values for the Lyapunov exponent, the

bifurcation diagram has a dark region, where period-doubling is happening and the Lyapunov

exponent has negative values elsewhere. Hence, we can observe the presence of chaos in the

dynamics of the family of functions. In Figure 8(a), λ=3.8, we can compare this to the bifurcation
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diagram with same parameters in Figure 2(c) and observe that at the points of period doubling in

the bifurcation diagram, the LE has a positive value and the LE is negative otherwise. Similarly,

for λ=3.5 we can look at the bifurcation diagram in Figure 2(b) and observe the same phenomenon.

In Figure 9(a) for λ=4.3, we can compare this to the bifurcation diagram with same parameters in

Figure 3(c) and observe that at the points of period doubling in the bifurcation diagram, the LE has

a positive value and the LE is negative otherwise. Similarly, for λ=4 we can look at the bifurcation

diagram in Figure 3(b) and observe the same phenomenon.

(a) λ=2.8 (b) λ=2.6

Figure 7. Lyapunov exponents for 0.1 ≤ a ≤ 1 and different parameter value of (a)

λ = 2.8 and λ = 2.6

(a) λ=3.8 (b) λ=3.5

Figure 8. Lyapunov exponents for 1 ≤ a ≤ 2 and different parameter value of (a)

λ = 3.8 and λ = 3.5
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(a) λ=4.3 (b) λ=4

Figure 9. Lyapunov exponents for 1.5 ≤ a ≤ 2.5 and different parameter value of

(a) λ = 4.3 and λ = 4

5. Discussion

Python programming language is used here for the generation of all graphs and images. For the

generation of bifurcation diagrams, two parameters are used where one is kept constant (λ) and

the other is continuously varied (a) between certain values. The initial value of the variable x = 0.5

is taken. A value N = 500 is taken to indicate how many number of times the value of xn changes

using the given function. Then, using our function and the values declared for our continuous

parameter a and discrete parameter λ and initial value x = 0.5, we plot the bifurcation diagram.

As the function repeats itself N(500) a number of times and the value of the continuous parameter

a is changed in an interval on the horizontal axis, graph is obtained against the changing value of

the parameter a. This process is repeated multiple times by different sets of the values of a and λ.

For the generation of time series graphs, similarly as the above we have defined both parameters

a and λ but gave them both a constant value in this case. Then, similarly to the bifurcation diagram,

an initial value is given to x. The value N = 500 is taken. As the value of N went from 0 to 500,

xn is calculated using the equation at each time interval. In this case, the value of xn is plotted

mapping the family of functions against the values of N (representing the time interval) instead

of the parameter a. The values of a and λ are changed to obtain time series graphs of different

periods.

Finally, in Lyapunov exponents, a fixed value is given to the parameter λ and a continuous

value is given to a along the horizontal axis. Initial value is assigned to x. Then, N = 500 is used

depending on the number of times which we want to iterate. Using the initial value assigned to

x and using parameters a and λ, the value of Lyapunov exponent is calculated by the formula

given in Equation (4.1) and it is plotted against the continuous parameter a which varies along

the horizontal axis with the value assigned. Values of range of a and constant λ are changed

accordingly to obtain different Lyapunov exponent graphs.
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6. Conclusion

In this research work, we have observed the real dynamics of two-parameter family of functions

and its chaotic behaviour. We have seen chaos in the real dynamics of the function Φ(x) =

x + (1 − λx) ln(ax) : x > 0,λ > 0, a > 0 by plotting and understanding bifurcation diagrams

(fractals in nature). Then, we have looked at time series graphs and saw period-doubling and

periodic cycles which are indicators of chaotic behaviour. Lastly, we have computed the positive

Lyapunov exponents graphs corresponding to the values of the parameters in the bifurcation

diagram and observed the chaotic nature. As a result of this work, the possibility of future work

is to look further in this direction and extend our discussion to more than 2-parameters functions

and family of functions having dimension 2 or greater.
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