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Abstract. This study assesses the performance of extended generalized extreme value (GEV) distribution based on

Kumaraswamy generalized extreme value (KumGEV) distribution using the maximum likelihood estimates on extreme

rainfall data obtained from a weather station in Phitsanulok province, a total of 408 months during January 1987

to December 2021. The findings indicate that the KumGEV distribution provides a better fit than the traditional

GEV distribution, with estimated parameters µ = 41.4966 (SE = 0.6015), σ = 8.9467 (SE = 0.0797), ξ = −0.0502

(SE = 0.0308), a = 0.0310 (SE = 0.0060), and b = 0.2738 (SE = 0.0155). Additionally, the analysis of return levels

derived from both GEV and KumGEV distributions shows an upward trend over return periods of 10, 20, 50, and 100

years, highlighting significant changes in rainfall patterns over time.

1. Introduction

The natural disasters due to extreme rainfall have been nowadays occurring more frequently

with greater strength, causing increasingly prominent and destructive impact on landscape. These

severe weather occurrences inflict substantial damage on agriculture and ecosystems, wreak havoc

on infrastructure, and disrupt daily human activities, often resulting in injuries and loss of lives.

The assessment of climate risks is increasingly concerned with understanding the variability and

intensity of such extreme events, as well as emphasizing their critical impact on our environment

and society. One of the fundamental approaches to avoid human and material damage is to acquire

a thorough understanding of climate change mechanisms. This involves conducting an in-depth
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study of the spatial and temporal distribution of climatic variables such as rainfall and temperature.

Such knowledge enables forecasting disaster occurrences and promptly implementing appropriate

measures to mitigate negative consequences and reduce the impact of unforeseen events [4, 9, 12–

19].

Extreme value analysis (EVA) is a statistical method focused on predicting rare and high impact

events of specific data sets or assessing the risk of such events, including excessive rainfall, floods,

extreme weather conditions, or severe storms. This technique is widely utilized across various

fields, such as engineering, communications, finance, risk management, insurance, economics,

material sciences, hydrology, and meteorology. EVA employs historicaldata to estimate the pa-

rameters of extreme value (EV) distributions, often called limiting distributions for the largest or

smallest of independent, identically distributed variables. Numerous studies have demonstrated

its practical application, highlighting its effectiveness in real-world data analysis [1, 2, 7, 10, 11].

Two primary parametric methods are commonly used to model the extremes of a random

process: the block-maxima approach and the threshold exceedance approach. The block-maxima

method divides observations into continuous, non-overlapping segments with equally sized blocks

and identifies the highest value in each block. The maxima from these blocks are modeled using

a Generalized Extreme Value (GEV) distribution. In contrast, the threshold exceedance method

involves selecting observations that exceed a pre-defined threshold, focusing on data points that are

either smaller or larger than the threshold. Parameter estimation is not just a technical procedure

in analyzing probability distributions but a crucial aspect that can significantly impact the results

and conclusions of our analyses. This is evident from the extensive literature on the subject,

which underscores the importance of accurate parameter estimation. The GEV distribution, a

combination of the Gumbel, Fréchet, and Weibull distributions (types I, II, and III extreme value

distributions), is a basis model due to its flexible, continuous shape parameters. This research

emphasizes on the GEV distribution as a baseline to explore new classes of distributions that

might provide a more accurate representation of extreme event data. The development of GEV

distribution often requires more flexibility to model extreme values across various domains. In

2017, Eljabri et al. [8] introduced an enhanced version called the Kumaraswamy GEV (KumGEV)

distribution. They explored its mathematical properties in more detail, the maximum likelihood

method for parameter estimation and the observed information matrix. The benefit of this new

model is demonstrated through its application to real-world data.

This study aims to compare the GEV distribution with the KumGEV distribution. The KumGEV

distribution’s return level was also calculated using the Delta method to account for variability

in dataset. Next, we apply both GEV and KumGEV distributions to fit the rainfall data, obtained

from the weather station 378201-Phitsanulok in Phitsanulok province, Thailand, from 1987 to 2021,

followed by a goodness-of-fit test. Finally, a conclusion is drawn in the last section.
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2. Extreme Value Theory

In this section, we will present the generalized extreme value (GEV) and the Kumaraswamy

Generalized extreme value (KumGEV) distribution, which includes the cumulative distribution

function, probability density function, quantile function, and return level.

A random variable X follows the GEV distribution, G(x;µ, σ, ξ) if its cumulative distribution

function (CDF) is given by

G(x;µ, σ, ξ) =

exp{−[1 + ξ(x− µ)/σ]−1/ξ
}, ξ , 0,

exp{− exp[−(x− µ)/σ]}, ξ→ 0,
(2.1)

which is defined in the set {x : 1 + ξ(x − µ)/σ > 0}, where µ ∈ R is a location parameter, σ > 0

is a scale parameter and ξ ∈ R is a shape parameter. The condition for a distribution possessing

any of the extreme value distributions is given as follows: ξ = 0 for Gumbel distribution, ξ > 0

for Fréchet distribution and ξ < 0 for Weibull distribution. The corresponding probability density

function (PDF) of GEV distribution, g(x;µ, σ, ξ), is then obtained as

g(x;µ, σ, ξ) =

σ
−1[1 + ξ(x− µ)/σ]−(1/ξ)−1 exp{−[1 + ξ(x− µ)/σ]−1/ξ

}, ξ , 0,

σ−1 exp[−(x− µ)/σ] exp{− exp[−(x− µ)/σ]}, ξ→ 0.
(2.2)

Plots of the GEV distribution probability density function for specific values of parameters are

displayed in Figure 1.

Figure 1. Generalized extreme value distributions for Fréchet: ξ = 1/2 (blue),

Gumbel: ξ = 0 (red) and Weibull: ξ = −1/2 (green).
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The estimates of extreme quantiles zG
u of the GEV distribution, known as return level, are then

obtained by inverting G(x;µ, σ, ξ),

zG
u =


µ+

σ
ξ

{
[− log(u)−ξ − 1]

}
, ξ , 0,

µ− σ log[− log(u)], ξ→ 0,
(2.3)

where u ∈ [0, 1], u = 1− T−1, and T is the number of recurrent times.

2.1. The Kumaraswamy Generalized Extreme Value Distribution. In the framework of the Ku-

maraswamy generalized extreme value (KumGEV) distribution presented by Eljabri et al. [8] in

2017, the integration of the GEV distribution in (2.1) with the concepts developed by Cordeiro [5]

leads to the definition of the Kumaraswamy-G (Kw-G) family. Specifically, the Kw-G Cumulative

Distribution Function (CDF) family is characterized as follows. If G(x) represents the CDF of a

random variable X, then the CDF of the Kw-G family is derived from this baseline function.

Ha,b(x) = 1− [1−Ga(x)]b, (2.4)

where a > 0 and b >0 are two additional shape parameters to the exponentiated G distribu-

tion, which has skewed characteristics with a heavy tail. The probability density function (PDF)

corresponding to (2.4) is

ha,b(x) = abg(x)Ga−1(x)[1−Ga(x)]b−1, (2.5)

where g(x) = dG(x)/dx.

The cumulative distribution function and probability density function of the KumGEV distri-

bution are then given by

F(x) = 1− {1− exp (−ax)b
}, (2.6)

and

f (x) = σ−1abx1+ξ exp (−ax){1− exp (−ax)b−1
}, (2.7)

respectively, where a and b are positive shape parameters. Equation (2.6) and (2.7) can be reduced

to some sub-models for specific values of a and b. Plots of the KumGEV probability density

function for specific values of parameters are displayed in Figure 2.

Special cases of the KumGEV: Let X follow the KumGEV distribution with parameters (µ, σ, ξ, a, b).
The baseline GEV distribution is obtained as a special case when a = 1 and b = 1.

If X is a random variable with probability density function (2.7),

we write X ∼ KumGEV(µ, σ, ξ, a, b). The KumGEV quantile function is obtained by inverting (2.6)

x = Q(x) = F−1(z) = µ+
σ
ξ

{[
−

1
a

log{1− (1− z)1/b
}

]−ξ}
. (2.8)

Thus, one can generate KumGEV variates from (2.8) by X = Q(Z), where Z is a uniform variate

on the unit interval (0, 1).
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Figure 2. Plots of the KumGEV probability density function as µ = 0.5, σ = 0.3,

and ξ = 0.5.

2.2. The return level of KumGEV distribution. Next, we propose the KumGEV concept to in-

clude the return level RT analysis, which predicts the data return period, as described below.

A return level, also known as a recurrence interval, is a statistical measure used to estimate

the likelihood of an event exceeding a specific value, such as maximum level of rainfall or river

discharge, to recur over a long period, This measure makes use of historical data and is often

derived in risk analysis. More specifically, the return period is the inverse of the probability of

exceeding a certain level in any given year which reflects the expected waiting time or the average

number of years between occurrences of such an event.

Assuming that the event components are independently distributed, the probability that an

exceeding event will occur for the first time t in years is p(1 − p)t−1, t = 1, 2, ..., which is the

geometric probability mass function whose mean is equal to T = 1/p, when the yearly exceedance

probability p = P(X ≥ RT) is assumed to remain constant throughout the future years of interest.

The survival probability can estimate the probability of exceeding RT, 1− F(RT), the return period

then being equal to 1/P(X ≥ RT). Thus, for a given return period T, the corresponding return

level can be obtained as follows:

RT = F−1(1− 1/T), (2.9)

which yields

RT = µ+
σ
ξ

{[
−

1
a

log{1− (1− t)1/b
}

]−ξ}
, (2.10)

where t = 1− T−1.
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The confidence interval of the return level for KumGEV distribution is performed using the

Delta method as Var(RT) ≈ 5Rt
TV 5RT, where V is a covariance matrix of (µ, σ, ξ, a, b)t and

5Rt
T = [

∂RT

∂µ
,
∂RT

∂σ
,
∂RT

∂ξ
,
∂RT

∂a
,
∂RT

∂b
],

where

∂RT

∂µ
=1,

∂RT

∂σ
=

1
ξ
((−a−1 log(1− [1− t]

1
b ))−ξ − 1),

∂RT

∂ξ
= − σξ−1(−a−1 log(1− [1− t]

1
b ))−ξ log(−a−1 log(1− [1− t]

1
b ))

− σξ−2(−a−1 log(1− [1− t]
1
b ))−ξ + σξ−2,

∂RT

∂a
= − σa−1(−a log(1− [1− t]

1
b ))−ξ,

∂RT

∂b
=σab−2(−a log(1− [1− t]

1
b ))−ξ−1[1− t]

1
b (1− [1− t]

1
b )−1 log[1− t].

3. Data and ResearchMethodology

This study applies the GEV distributions and KumGEV distributions to the highest monthly

rainfall data in Phitsanulok province, Thailand, from 1987 to 2021. Data are collected by weather

station 378201-Phitsanulok with the courtesy of the Thailand Meteorological Department [6],

covering an area of 10,815.8 square kilometers (6,759,909 rai) or 6.4% of the northern area accounting

for 2.1% of the country’s total area. The rainy season starts around May and ends around October,

with an average rainfall of 1,375 millimeters per year. The temperature varies in the range of 19°C to

37°C and very rarely below 15°C or above 39°C. A total of 368 observations, the maximum rainfall is

167.10 mm with a mean of 38.81 mm and a standard deviation of 29.30 mm. For parameter estimation

in GEV and KumGEV distributions, we utilize the maximum likelihood method accompanying

the Newton-Raphson procedure.

In testing the unit root test of data using the Augmented Dickey-Fuller (ADF) test, it is a test

to consider the extreme values under a stationary or nonstationary extreme because if the data is

not constant, it will cause problems in spurious regression to avoid data with unstable means and

variances at different times using the unit root test by ADF test. The results of the data stability

test are shown in Table 1.

Table 1 shows the statistical description of the data. The p-value of the Augmented Dickey-Fuller

(ADF) test is 0.01, which is the stationarity of rainfall data.

3.1. Goodness-of-fit tests. Next, we use formal goodness-of-fit tests to determine which distri-

bution fits the data best. We will employ the Cramér-von Mises (W∗) and Anderson-Darling (A∗)
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Table 1. Summary statistics of the monthly highest rainfall data in Phitsanulok

province from 1987 - 2021

N Maximum Mean Standard Coefficient ADF

deviation of skewness test

368 167.1 38.8133 29.3043 0.8584 −13.828(0.01)

statistics, as described by Chen and Balakrishnan ( [3]). We considered the W∗ and A∗ statistics to

test the validity of the null hypothesis H0 against the alternative hypothesis H1 as stated below:

H0: the data follow the specified distribution,

H1: the data do not follow the specified distribution.

In general, smaller values of these statistics indicate a better fit of the distribution to the data.

Let F(x;θ) be a CDF, where the form of F is known, but θ is unknown. To obtain the statistics W∗

and A∗, we can proceed as follows:

(1) Calculation of transformed values:

For each data point xi (sorted in ascending order), calculate vi = F(xi; θ̂).

(2) Standard normal transformation:

Transform vi to yi using the inverse of the standard normal CDF, Φ−1(vi).

(3) Normalization:

Calculate the normalized values ui using:

ui = Φ
(

yi − ȳ
sy

)

where ȳ =
1
n

n∑
i=1

yi and s2
y =

1
n− 1

n∑
i=1

(yi − ȳ)2.

(4) Calculation of W2 and A2 statistics:

Compute W2:

W2 =
n∑

i=1

(
ui −

2i− 1
2n

)2
+

1
12n

Compute A2:

A2 = −n−
1
n

n∑
i=1

[(2i− 1) log(ui) + (2n + 1− 2i) log(1− ui)]

(5) Adjustments for final statistics:

Adjust W2 and A2 to obtain W∗ and A∗:

W∗ = W2(1 +
0.5
n
)

A∗ = A2(1 +
0.75

n
+

2.25
n2 )
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The fit of the KumGEV distribution is compared with several other competitive models namely

Basic GEV, Weibull, Exponentiated Weibull, Gamma, and Inverse Gamma distribution with the

following CDF and PDFs.

Weibull distribution (Weibull)

F(x) = 1− exp−(x/σ)c, x > 0, c, σ > 0 (3.1)

and

f (x) =
c
σ

(
x
σ

)c−1

exp−(x/σ)c, x > 0, c, σ > 0 (3.2)

Exponentiated Weibull distribution (EW)

F(x) = [1− exp−(x/σ)c]k, x > 0, c, k, σ > 0 (3.3)

and

f (x) = ckσcxc−1 exp−(σx)c[1− exp−(x/σ)c]k−1, x > 0, c, k, σ > 0 (3.4)

Gamma distribution (Gamma)

F(x) =
1

Γ(c)σcγ

(
c,

x
σ

)
, x > 0, c, σ > 0 (3.5)

and

f (x) =
1

Γ(c)σc xc−1 exp−(x/σ), x > 0, c, σ > 0 (3.6)

Inverse Gamma distribution (IG)

F(x) =
Γ
(
c,

x
σ

)
Γ(c)

, x > 0, c, σ > 0 (3.7)

and

f (x) =
1

Γ(c)σc x−c−1 exp−(σ/x), x > 0, c, σ > 0 (3.8)

The values of W∗ and A∗ for GEV, KumGEV, Weibull, Exponentiated Weibull, Gamma, and

Inverse Gamma distribution are given in Table 2 for goodness-of-fit tests on rainfall data. Based on

the values of W∗ and A∗, the KumGEV distribution shows the p-values of these statistics, providing

the best fit compared to the other distributions.

3.2. Parameter and return level estimation. The GEV and KumGEV distribution results in Table 2

show the Goodness-of-fit tests, which best fit the extreme rainfall data in Phitsanulok province, are

based on the Block Maxima approach. Therefore, we illustrate the results of parameter estimates

in the GEV and KumGEV distributions in Table 3.

In Table 3, The GEV parameters are estimated using maximum likelihood estimation. The

estimated results are (µ, σ, ξ) = (24.9578, 22.5914, 0.0324), with standard errors (1.3935, 1.0627,

0.0515). The approximate 95% confidence intervals (CI) for the parameters are thus (22.22, 27.69)
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Table 2. Goodness-of-fit tests with Cramér-von Mises and Anderson- Darling statistics

Distribution W∗ p-value A∗ p-value

GEV 0.2561 0.1808 2.1826 0.0731

KumGEV 0.2229 0.2271 1.9123 0.1027

Weibull 0.9613 0.0030 6.8196 0.0004

EW 0.0011 0.0000 2.0859 0.0000

Gamma 0.0040 0.0000 8.2211 0.0000

IG 0.0349 0.0000 61.9210 0.0000

Table 3. Maximum likelihood estimates, standard errors and 95% CI of all param-

eters in GEV and KumGEV distribution

Distribution Parameter Estimate Standard error 95% CI

GEV µ 24.9578 1.3935 (22.22, 27.69)

σ 22.5914 1.0627 (20.51, 24.67 )

ξ 0.0324 0.0515 (−0.07, 0.13)

KumGEV µ 41.4966 0.6015 (40.32, 42.68)

σ 8.9467 0.0797 (8.79, 9.10 )

ξ -0.0502 0.0308 (−0.11, 0.01)

a 0.0310 0.0060 (0.02, 0.04)

b 0.2738 0.0155 (0.24, 0.30)

for µ, (20.51, 24.67) for σ, and (−0.07, 0.13) for ξ. Since the confidence intervals of ξ contain 0, the

Gumbel distribution is the optimal model for the GEV class.

Similarly, the KumGEV parameters are estimated using the maximum likelihood method. The

estimated results, as shown in Table 3, are (µ, σ, ξ, a, b) = (41.4966, 8.9467,−0.0502, 0.0310, 0.2738),

with standard errors (0.6015, 0.0797, 0.0308, 0.0060, 0.0155). The approximate 95% CI for the

parameters are thus (40.32, 42.68) for µ, (8.79, 9.10) for σ, (−0.11, 0.01) for ξ, (0.02, 0.04) for a, and

(0.24, 0.30) for b.

Table 4 shows the return level estimates at different return periods (T) of 10, 20, 50, and 100

years, based on two different distributions: GEV and KumGEV. As we can see, the estimates of

return levels of the GEV distribution show an increasing trend in the estimated return levels with

increasing return periods. For example, the estimated return levels for 10 years and 100 years are

77.6981 mm and 137.0483 mm, respectively. Consequently, the lower and upper limits for CIs also

increase with the return period.

Similarly, the KumGEV distribution shows an increasing trend in the estimated return levels

with increasing return periods. For example, the estimated return levels for 10 years and 100 years

are 80.6145 mm and 128.4912 mm, respectively. Consequently, the lower and upper limits for CIs

also increase with the return period.
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Table 4. Return level estimates (mm) at selected return periods (T) for the GEV and

KumGEV distributions

Distribution T Return Level 95% CI

GEV 10 77.6981 (71.29,84.11)

20 95.4000 (85.54,105.26)

50 118.937 (102.24,135.64)

100 137.0483 (113.46,160.64)

KumGEV 10 80.6145 (69.79, 81.76)

20 97.2075 ( 85.71, 99.30)

50 116.1407 (106.74, 121.61)

100 128.4912 (122.85, 138.44)

As we can see, the two distributions indicate similar patterns of increased return level estimates

as return periods rise. However, the estimated values and corresponding CIs obtained from the two

distributions are quite different, more precise CIs with KumGEV, which could be attributed to the

different characteristics of the distributions and the specific data used in the analysis. Therefore, it

is essential to carefully select the distribution appropriate for a particular data set to obtain reliable

results for practical use.

Figure 3. Diagnostic plots for KumGEV distribution, applying to rainfall data in

Phitsanulok province, Thailand.
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Figure 3 displays the diagnostic plots for the KumGEV distributions, respectively. Most proba-

bility and quantile plot points lie close to the unit diagonal. This implies that the KumGEV distri-

bution functions provide good fits as consistent with the Cramér-von Mises (W∗) and Anderson-

Darling (A∗) statistics.

4. Conclusion

For research methodology, we describe the maximum likelihood estimation of all parameters

and return levels of GEV and KumGEV distribution and their confidence intervals. Due to the

complexity of likelihood functions, the Newton-Raphson procedure is then implemented to find

the estimated values of all parameters. In addition, the KumGEV distributions are applied to

rainfall data and yield more favorable results than the GEV distribution based on the goodness-

of-fit tests: Cramér-von Mises and Anderson-Darling statistics. We hope this generalization will

attract applications in statistics, mathematics, biology, the environment, engineering, and other

areas.
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