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Abstract. This paper presents new classes of multifunctions called upper weakly quasi (τ1, τ2)-continuous multifunc-

tions and lower weakly quasi (τ1, τ2)-continuous multifunctions. Moreover, several characterizations and some prop-

erties concerning upper weakly quasi (τ1, τ2)-continuous multifunctions and lower weakly quasi (τ1, τ2)-continuous

multifunctions are considered.

1. Introduction

In 1961, Marcus [41] introduced the concept of quasi continuous functions. Popa [48] intro-

duced and investigated the notion of almost quasi continuous functions. Neubrunnovaá [42]

showed that quasi continuity is equivalent to semi-continuity due to Levine [39]. Popa and

Stan [49] introduced and studied the notion of weakly quasi continuous functions. Weak quasi

continuity is implied by quasi continuity and weak continuity [40] which are independent of

each other. It is shown in [45] that weak quasi continuity is equivalent to weak semi-continuity

due to Arya and Bhamini [1] and Kar and Bhattacharyya [32]. In [18], the present authors stud-

ied some properties of (Λ, sp)-open sets and (Λ, sp)-closed sets. Viriyapong and Boonpok [61]

investigated several characterizations of (Λ, sp)-continuous functions by utilizing the notions of

(Λ, sp)-open sets and (Λ, sp)-closed sets. Dungthaisong et al. [31] introduced and studied the

concept of g(m,n)-continuous functions. Duangphui et al. [30] introduced and studied the notion of

almost (µ,µ′)(m,n)-continuous functions. Furthermore, several characterizations of almost (Λ, p)-
continuous functions, strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous
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functions, θ(Λ, p)-continuous functions, weakly (Λ, b)-continuous functions, θ(?)-precontinuous

functions,?-continuous functions, θ-I -continuous functions, almost (g, m)-continuous functions,

pairwise almost M-continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-continuous

functions, almost nearly (τ1, τ2)-continuous functions and weakly (τ1, τ2)-continuous functions

were presented in [55], [56], [3], [50], [9], [8], [15], [22], [27], [28], [4], [5], [36] and [7], respectively.

Srisarakham et al. [54] introduced and investigated the notion of quasi θ(τ1, τ2)-continuous func-

tions. Kong-ied et al. [37] introduced and studied the concept of almost quasi (τ1, τ2)-continuous

functions. Chiangpradit et al. [29] introduced and investigated the notion of weakly quasi (τ1, τ2)-

continuous functions.

In 1975, Bânzara and Crivăţ [2] introduced and studied the concept of quasi continuous multi-

functions. Popa and Noiri [46] introduced the concept of almost quasi continuous multifunctions

and investigated some characterizations of such multifunctions. The notion of weakly quasi con-

tinuous multifunctions was introduced and investigated by the present authors [44]. Several

characterizations of weakly quasi continuous multifunctions have been obtained in [46]. Popa

and Noiri [47] introduced and studied the concepts of upper and lower θ-quasi continuous mul-

tifunctions. Noiri and Popa [43] investigated some characterizations of upper and lower θ-quasi

continuous multifunctions. Laprom et al. [38] introduced and investigated the concept of β(τ1, τ2)-

continuous multifunctions. Moreover, some characterizations of (τ1, τ2)α-continuous multifunc-

tions, (τ1, τ2)δ-semicontinuous multifunctions, almost weakly (τ1, τ2)-continuous multifunctions,

?-continuous multifunctions, β(?)-continuous multifunctions, weakly quasi (Λ, sp)-continuous

multifunctions, α-?-continuous multifunctions, almost α-?-continuous multifunctions, almost

quasi ?-continuous multifunctions, weakly α-?-continuous multifunctions, sβ(?)-continuous

multifunctions, weakly sβ(?)-continuous multifunctions, θ(?)-quasi continuous multifunctions,

almost ı?-continuous multifunctions, weakly (Λ, sp)-continuous multifunctions,α(Λ, sp)-continuous

multifunctions, almost α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multi-

functions, (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-continuous multifunctions, weakly

(τ1, τ2)-continuous multifunctions, weakly quasi (τ1, τ2)-continuous multifunctions and s-(τ1, τ2)p-

continuous multifunctions were established in [62], [23], [20], [25], [19], [60], [6], [14], [24], [13], [11],

[12], [17], [21], [10], [34], [16], [58], [53], [35], [57], [51] and [59], respectively. Khampakdee et al. [33]

introduced and investigated the concept of c-(τ1, τ2)-continuous multifunctions. Pue-on et al. [52]

introduced and studied the notion of almost quasi (τ1, τ2)-continuous multifunctions. In this pa-

per, we introduce the concepts of upper weakly quasi (τ1, τ2)-continuous multifunctions and lower

weakly quasi (τ1, τ2)-continuous multifunctions. We also investigate some characterizations of up-

per weakly quasi (τ1, τ2)-continuous multifunctions and lower weakly quasi (τ1, τ2)-continuous

multifunctions.
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2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y) always mean

bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect

to τi are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological

space (X, τ1, τ2) is called τ1τ2-closed [26] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed

set is called τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all

τ1τ2-closed sets of X containing A is called the τ1τ2-closure [26] of A and is denoted by τ1τ2-Cl(A).

The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [26] of A and is denoted

by τ1τ2-Int(A).

Lemma 2.1. [26] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the
following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).
(3) τ1τ2-Cl(A) is τ1τ2-closed.
(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [62] (resp. (τ1, τ2)s-open
[23], (τ1, τ2)p-open [23], (τ1, τ2)β-open [23]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Cl(τ1τ2-Int(A)),

A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The complement of a (τ1, τ2)r-open

(resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-closed, (τ1, τ2)s-closed,
(τ1, τ2)p-closed, (τ1, τ2)β-closed. Let A be a subset of a bitopological space (X, τ1, τ2). The inter-

section of all (τ1, τ2)s-closed sets of X containing A is called the (τ1, τ2)s-closure [23] of A and is

denoted by (τ1, τ2)-sCl(A). The union of all (τ1, τ2)s-open sets of X contained in A is called the

(τ1, τ2)s-interior [23] of A and is denoted by (τ1, τ2)-sInt(A).

Lemma 2.2. For a subset A of a bitopological space (X, τ1, τ2), the following properties hold:

(1) (τ1, τ2)-sCl(A) = τ1τ2-Int(τ1τ2-Cl(A))∪A [20];
(2) (τ1, τ2)-sInt(A) = τ1τ2-Cl(τ1τ2-Int(A))∩A.

Let A be a subset of a bitopological space (X, τ1, τ2). A point x ∈ X is called a (τ1, τ2)θ-cluster
point [62] of A if τ1τ2-Cl(U)∩A , ∅ for every τ1τ2-open set U containing x. The set of all (τ1, τ2)θ-

cluster points of A is called the (τ1, τ2)θ-closure [62] of A and is denoted by (τ1, τ2)θ-Cl(A). A

subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-closed [62] if (τ1, τ2)θ-Cl(A) = A.

The complement of a (τ1, τ2)θ-closed set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open

sets of X contained in A is called the (τ1, τ2)θ-interior [62] of A and is denoted by (τ1, τ2)θ-Int(A).

Lemma 2.3. [62] For a subset A of a bitopological space (X, τ1, τ2), the following properties hold:

(1) If A is τ1τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).
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(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

By a multifunction F : X → Y, we mean a point-to-set correspondence from X into Y, and we

always assume that F(x) , ∅ for all x ∈ X. For a multifunction F : X→ Y, we shall denote the upper

and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X | F(x) ⊆ B}
and

F−(B) = {x ∈ X | F(x)∩ B , ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F(x)} for each point y ∈ Y. For each A ⊆ X, F(A) = ∪x∈AF(x).

3. Upper and lower weakly quasi (τ1, τ2)-continuous multifunctions

In this section, we introduce the concepts of upper weakly quasi (τ1, τ2)-continuous multi-

functions and lower weakly quasi (τ1, τ2)-continuous multifunctions. Moreover, several char-

acterizations of upper weakly quasi (τ1, τ2)-continuous multifunctions and lower weakly quasi

(τ1, τ2)-continuous multifunctions are discussed.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly quasi (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x) ⊆ V and each τ1τ2-open set
U of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U and F(G) ⊆ σ1σ2-Cl(V).
A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be upper weakly quasi (τ1, τ2)-continuous if F is
upper weakly quasi (τ1, τ2)-continuous at each point x of X.

Theorem 3.1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper weakly quasi (τ1, τ2)-continuous;
(2) for each x ∈ X and every σ1σ2-open set V of Y such that F(x) ⊆ V, there exists a (τ1, τ2)s-open set

U of X containing x such that F(U) ⊆ σ1σ2-Cl(V);
(3) τ1τ2-Int(τ1τ2-Cl(F−(σ1σ2-Int(K)))) ⊆ F−(K) for every σ1σ2-closed set K of Y;
(4) F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F−(V)) ⊆ F−(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

Proof. (1) ⇒ (2): Let U (x) the family of all τ1τ2-open sets of X containing x. Let V be any σ1σ2-

open set of Y such that F(x) ⊆ V. For each H ∈ U (x), there exists a nonempty τ1τ2-open set GH

such that GH ⊆ H and F(GH) ⊆ σ1σ2-Cl(V). Let W = ∪{GH | H ∈ U (x)}. Then, W is τ1τ2-open in

X, x ∈ τ1τ2-Cl(W) and F(W) ⊆ σ1σ2-Cl(V). Put U = W ∪ {x}, then W ⊆ U ⊆ τ1τ2-Cl(W). Thus, U
is a (τ1, τ2)s-open set of X containing x such that F(U) ⊆ σ1σ2-Cl(V).

(2) ⇒ (4): Let V be any σ1σ2-open set of Y and x ∈ F+(V). Then, F(x) ⊆ V and there

exists a (τ1, τ2)s-open set U of X containing x such that F(U) ⊆ σ1σ2-Cl(V). Thus, x ∈ U ⊆
(τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) and so F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))).
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(4)⇒ (5): Let V be any σ1σ2-open set of Y. Then by (4), we have

X − F−(σ1σ2-Cl(V)) = F+(Y − σ1σ2-Cl(V))

⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(Y − σ1σ2-Cl(V))))

= (τ1, τ2)-sInt(F+(Y − σ1σ2-Int(σ1σ2-Cl(V))))

⊆ (τ1, τ2)-sInt(F+(Y −V))

= (τ1, τ2)-sInt(X − F−(V))

= X − (τ1, τ2)-sCl(F−(V))

and hence (τ1, τ2)-sCl(F−(V)) ⊆ F−(σ1σ2-Cl(V)).

(5)⇒ (3): Let K be any σ1σ2-closed set of Y. By (5) and Lemma 2.2, we have

τ1τ2-Int(τ1τ2-Cl(F−(σ1σ2-Int(K)))) ⊆ (τ1, τ2)-sCl(F−(σ1σ2-Int(K)))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K)))

⊆ F−(σ1σ2-Cl(K))

= F−(K).

(3)⇒ (4): Let V be any σ1σ2-open set of Y. By (3) and Lemma 2.2,

X − (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) = (τ1, τ2)-sCl(F−(Y − σ1σ2-Cl(V)))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V)))

= F−(Y − σ1σ2-Int(σ1σ2-Cl(V)))

⊆ F−(Y −V)

= X − F+(V)

and hence F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))).

(4) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y such that F(x) ⊆ V. By (4), we have

F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))). Put U = (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))), then U is (τ1, τ2)s-

open set of X containing x such that F(U) ⊆ σ1σ2-Cl(V). This shows that F is upper weakly quasi

(τ1, τ2)-continuous. �

Definition 3.2. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly quasi (τ1, τ2)-
continuous at a point x ∈ X if for each σ1σ2-open set V of Y such that F(x)∩V , ∅ and each τ1τ2-open set
U of X containing x, there exists a nonempty τ1τ2-open set G such that G ⊆ U and σ1σ2-Cl(V)∩ F(z) , ∅
for each z ∈ G. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower weakly quasi (τ1, τ2)-
continuous if F is lower weakly quasi (τ1, τ2)-continuous at each point x of X.

Theorem 3.2. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower weakly quasi (τ1, τ2)-continuous;
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(2) for each x ∈ X and every σ1σ2-open set V of Y such that F(x)∩V , ∅, there exists a (τ1, τ2)s-open
set U of X containing x such that σ1σ2-Cl(V)∩ F(z) , ∅ for every z ∈ U;

(3) τ1τ2-Int(τ1τ2-Cl(F+(σ1σ2-Int(K)))) ⊆ F+(K) for every σ1σ2-closed set K of Y;
(4) F−(V) ⊆ (τ1, τ2)-sInt(F−(σ1σ2-Cl(V))) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F+(V)) ⊆ F+(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y.

Proof. The proof is similar to that of Theorem 3.1. �

Theorem 3.3. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper weakly quasi (τ1, τ2)-continuous;
(2) (τ1, τ2)-sCl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(3) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(4) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(6) (τ1, τ2)-sCl(F−(σ1σ2-Int(K))) ⊆ F−(K) for every (σ1, σ2)r-closed set K of Y.

Proof. (1) ⇒ (2): Let B be any subset of Y. Since (σ1, σ2)θ-Cl(B) is σ1σ2-closed in Y, by Theorem

3.1,

τ1τ2-Int(τ1τ2-Cl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B))))) ⊆ F−((σ1, σ2)θ-Cl(B))

and by Lemma 2.2, we have

(τ1, τ2)-sCl(F−(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F−((σ1, σ2)θ-Cl(B)).

(2)⇒ (3): This is obvious since σ1σ2-Cl(B) ⊆ (σ1, σ2)θ-Cl(B) for every subset B of Y.

(3)⇒ (4): This is obvious since σ1σ2-Cl(V) = (σ1, σ2)θ-Cl(V) for every σ1σ2-open set V of Y.

(4) ⇒ (5): Let V be any (σ1, σ2)p-open set of Y. Then, we have V ⊆ σ1σ2-Int(σ1σ2-Cl(V)) and

σ1σ2-Cl(V) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V))). Now, put G = σ1σ2-Int(σ1σ2-Cl(V)), then G is σ1σ2-

open in Y and σ1σ2-Cl(G) = σ1σ2-Cl(V). Thus by (4), (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆

F−(σ1σ2-Cl(V)).

(5)⇒ (6): Let K be any (σ1, σ2)r-closed set of Y. Since σ1σ2-Int(K) is (σ1, σ2)p-open in Y, by (5),

we have

(τ1, τ2)-sCl(F−(σ1σ2-Int(K))) = (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(K)))))

⊆ F−(σ1σ2-Cl(σ1σ2-Int(K)))

= F−(K).

(6)⇒ (1): Let V be any σ1σ2-open set of Y. Then, σ1σ2-Cl(V) is (σ1, σ2)r-closed in Y and by (6),

(τ1, τ2)-sCl(F−(V)) ⊆ (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V))))

⊆ F−(σ1σ2-Cl(V)).

It follows from Theorem 3.1 that F is upper weakly quasi (τ1, τ2)-continuous. �
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Theorem 3.4. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower weakly quasi (τ1, τ2)-continuous;
(2) (τ1, τ2)-sCl(F+(σ1σ2-Int((σ1, σ2)θ-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(3) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(B)))) ⊆ F+((σ1, σ2)θ-Cl(B)) for every subset B of Y;
(4) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F+(σ1σ2-Cl(V)) for every σ1σ2-open set V of Y;
(5) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(6) (τ1, τ2)-sCl(F+(σ1σ2-Int(K))) ⊆ F+(K) for every (σ1, σ2)r-closed set K of Y.

Proof. The proof is similar to that of Theorem 3.3. �

Theorem 3.5. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper weakly quasi (τ1, τ2)-continuous;
(2) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)β-open set V of Y;
(3) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)s-open set V of Y;
(4) (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y.

Proof. (1)⇒ (2): Let V be any (σ1, σ2)β-open set of Y. Then, we have V ⊆ σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V)))

and hence σ1σ2-Cl(V) = σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V))). Since σ1σ2-Cl(V) is a (σ1, σ2)r-closed set,

by Theorem 3.3, (τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)).

(2)⇒ (3): This is obvious since every (σ1, σ2)s-open set is (σ1, σ2)β-open.

(3) ⇒ (4): For any (σ1, σ2)p-open set V of Y, σ1σ2-Cl(V) is (σ1, σ2)r-closed and σ1σ2-Cl(V) is

(σ1, σ2)s-open in Y.

(4)⇒ (1): Let V be any σ1σ2-open set of Y. Then, V is (σ1, σ2)p-open in Y. By (4), we have

(τ1, τ2)-sCl(F−(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F−(σ1σ2-Cl(V)).

It follows from Theorem 3.3 that F is upper weakly quasi (τ1, τ2)-continuous. �

Theorem 3.6. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower weakly quasi (τ1, τ2)-continuous;
(2) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)β-open set V of Y;
(3) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)s-open set V of Y;
(4) (τ1, τ2)-sCl(F+(σ1σ2-Int(σ1σ2-Cl(V)))) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y.

Proof. The proof is similar to that of Theorem 3.5. �

Theorem 3.7. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper weakly quasi (τ1, τ2)-continuous;
(2) τ1τ2-Int(τ1τ2-Cl(F−(V))) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(3) (τ1, τ2)-sCl(F−(V)) ⊆ F−(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(4) F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) for every (σ1, σ2)p-open set V of Y.
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Proof. (1) ⇒ (2): Let V be any (σ1, σ2)p-open set of Y. Since F is upper weakly quasi (τ1, τ2)-

continuous, by Lemma 2.2 and Theorem 3.3,

τ1τ2-Int(τ1τ2-Cl(F−(V))) ⊆ τ1τ2-Int(τ1τ2-Cl(F−(σ1σ2-Int(σ1σ2-Cl(V)))))

⊆ F−(σ1σ2-Cl(V)).

(2)⇒ (3): Let V be any (σ1, σ2)p-open set of Y. By (2) and Lemma 2.2, we have

(τ1, τ2)-sCl(F−(V)) = F−(V)∪ τ1τ2-Int(τ1τ2-Cl(F−(V)))

⊆ F−(σ1σ2-Cl(V)).

(3)⇒ (4): Let V be any (σ1, σ2)p-open set of Y. Then by (3), we have

X − (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))) = (τ1, τ2)-sCl(X − F+(σ1σ2-Cl(V)))

= (τ1, τ2)-sCl(F−(Y − σ1σ2-Cl(V)))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V)))

= X − F+(σ1σ2-Int(σ1σ2-Cl(V)))

⊆ X − F+(V)

and hence F+(V) ⊆ (τ1, τ2)-sInt(F+(σ1σ2-Cl(V))).

(4)⇒ (1): Since every σ1σ2-open set is (σ1, σ2)p-open, this follows from Theorem 3.1. �

Theorem 3.8. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower weakly quasi (τ1, τ2)-continuous;
(2) τ1τ2-Int(τ1τ2-Cl(F+(V))) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(3) (τ1, τ2)-sCl(F+(V)) ⊆ F+(σ1σ2-Cl(V)) for every (σ1, σ2)p-open set V of Y;
(4) F−(V) ⊆ (τ1, τ2)-sInt(F−(σ1σ2-Cl(V))) for every (σ1, σ2)p-open set V of Y.

Proof. The proof is similar to that of Theorem 3.7. �
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