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Abstract. Our goal is to construct an approximation of the unknown function f by Sobolev’s method, we construct

an approximation form of unknown function by interpolation splines minimizing the semi norm in K2(P3) Hilbert

space. Explicit formulas for coefficients of the interpolation splines are obtained. The resulting interpolation spline

is exact for the hyperbolic functions and constant. In the last section, we obtain several absolute errors graph in

interpolating functions with the sixth order algebraic-hyperbolic spline, and we compare absolute errors of cubic

spline and algebraic-hyperbolic in interpolating several functions. Numerical results show that the sixth-order spline

interpolates the functions with higher accuracy than the cubic spline.

1. Introduction

Nowadays, interpolation plays a crucial role in various fields including mathematics, engineer-

ing, computer science, statistics, and more. It involves approximate functions, fill in missing data,

smooth noisy data, and create continuous representations from discrete data. There are several

types of interpolation methods, each with its own characteristics and suitability for different types

of data and applications. Here are some common types: linear Interpolation, polynomial interpo-

lation, Spline Interpolation, Piecewise Interpolation, Inverse Distance Weighting (IDW), Kriging.

These are some of the main types of interpolation methods commonly used in various fields.

Among of them, splines provide a significant tool for the design of computationally economical

curves and surfaces for the construction of various objects like automobiles, ship hulls, airplane
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fuselages and wings, propeller blades, shoe insoles, bottles, etc. It also contributes in the descrip-

tion of geological, physical statistical, and even medical phenomena. Spline methods have proven

to be indispensable in a variety of modern industries, including computer vision, robotics, signal

and image processing, visualization, textile, graphic design, and even media., Among the methods

for constructing splines the approach [1] is known, in which the spline is found as a solution to

a boundary value problem for a differential equation with internal boundary conditions at the

interpolation nodes. Typically, a finite-difference approach is used to solve such problems, so the

method can be called the difference method for constructing splines. For tension splines, a corre-

sponding second-order approximation method was proposed and studied in [2]. According to this

method, the conditions for smooth conjugation of the first and second derivatives at interpolation

nodes are approximated by three symmetrically located nodes using fixed nodes to the left and

right of a given node, the solution values in which require exclusion during the calculation process.

In [3], a modification of the method [2] of the same order of approximation was proposed, which

differs from the latter by setting internal boundary conditions based on one-sided three-point

approximations of derivatives, which does not require the introduction of the fixed nodes.

Moreover, in [4] a medical application based on biomarkers is presented; longitudinal and

survival fitting model based on cubic polynomial B-splines sets is presented for modeling the lon-

gitudinal markers. The usage of quadratic splines [5], [6], cubic splines [7], piecewise polynomial

functions of various degrees [8], rational splines [9], a class of polynomial spline curve with free

parameters is established in [10], construction of exponential splines, fourth and m order algebraic

trigonometric , is showed in [11], [12], [13] respectively and additional approaches are developed

in [14], [15], [16], [17], [18], [26], [27].

Our work is also devoted to the construction of optimal algebraic hyperbolic splines. In the

space K2(P3). This work consists of 5 sections. In next section, we give a defination of sinxth order

algebraic-hyperbolic natural interpolation spline, then take a equations system to construct this

spline.

2. Statement of the problem

We consider the problem of recovering an approximation of a function given values in following

space:

K2(P3) := { f : [0, 1]→ R
∣∣∣ f ′′ is absolutely continuous and f ′′′ ∈ L2(0, 1)} (2.1)

equipped with the following semi norm:

∥∥∥ f
∥∥∥ := {

∫ 1

0
( f ′′′(x) − f ′(x))2dx}

1
2 , (2.2)

Equality 2.2 gives the semi-norm and
∥∥∥ f

∥∥∥ = 0 if and only if f (x) = d1ex + d2e−x + d3 and we can

rewrite f (x) as f (x) = d1 sinh(x) + d2 cosh(x) + d3. In this space the inner product is defined as
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following: 〈
f , g

〉
:=

∫ 1

0
( f ′′′(x) − f ′(x))(g′′′(x) − g′(x))dx

K2(P3) is the factorized Hilbert space if we identify functions that differ by a solution of f ′′′(x) −
f ′(x) = 0. We solve the following interpolation problem:

Problem 1 Find the function S(x) in K2(P3) which gives minimum to the semi-norm 2.2 and

satisfies the interpolation condition

S(xβ) = f (xβ), xβ ∈ [0, 1], β = 0, 1, ..., N, (2.3)

for any f ∈ K2(P3).

This problem is solved in K2(P2) space [19].

We give a definition of the interpolation spline function in the space K2(P3) following [20] .

Definition 2.1 Let ∆ : 0 = x0 < x1 < · · · < xN = 1 be a mesh on the interval [0,1], then the

interpolation spline function with respect to ∆ is a function S(x) ∈ K2(P3) and satisfies the following

conditions:

(1) S(x) is a linear combination of functions sinh x, cosh(x), 1, x sinh(x), x cosh(x), x on each

open mesh interval (xβ, xβ+1) , β = 0, 1, ..., N − 1;

(2) S(x) is a linear combination of functions sinh x, cosh(x), 1 on intervals (−∞, 0) and (1, ∞);

(3) S(x) satisfies the following continuity and natural spline conditions :

Sα(x−β ) = Sα(x+β ), α = 0, 1, 2, 3, 4, β = 1, 2, ..., N − 1,

S′′′(0) − S′(0) = S′′′(1) − S′(1) = 0,

S(4)(0) − S′′(0) = S(4)(0) − S′′(0) = 0.

(4) S(x) satisfies the interpolation conditions.

We get the following theorem based on definition 2.1

Theorem 2.1. The solution of the problem 1 is a algebraic-hyperbolic spline and it has the following form:

S(x) =
N∑
γ=0

CγG(x− xγ) + d1 sinh(x) + d2 cosh(x) + d3, (2.4)

where G(x) is the solution of G(6)(x) − 2G(4)(x) + G(2)(x) = δ(x) (δ(x) is Dirac’s delta function)
differential equation, and has the following form:

G(x) =
sign(x)

4
(x cosh(x) − 3 sinh(x) + 2x) (2.5)

and the coefficients Cγ, γ = 0, 1, 2, ..., N, d1, d2, d3 of the spline (2.4) are obtained from the following system
of N+4 linear equations,

N∑
γ=0

CγG(xβ − xγ) + d1 sinh xβ + d2 cosh xβ + d3 = f (xβ), β = 0, 1, ...N, (2.6)
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N∑
γ=0

Cγ sinh(xγ) = 0, (2.7)

N∑
γ=0

Cγ cosh(xγ) = 0, (2.8)

N∑
γ=0

Cγ = 0. (2.9)

where f ∈ K2(P3).

Proof: It is clear that the fifth derivative of the function G(x− xγ) =
sign(x−xγ)

4 ((x− xγ) cosh(x−
xγ)− 3 sinh(x− xγ)+ 2(x− xγ)) has a discontinuity equal to 1 at the points xγ, γ = 1, 2, ..., N− 1, and

from first order to the fourth order derivatives of G(x−xγ) are continuous. Suppose a function pγ(x)
coincides with the spline S(x) on the interval (xγ, xγ+1) , i.e., pγ(x) := pγ−1(x) + CγG(x − xγ), x ∈
(xγ, xγ+1), where Cγ is the jump of the function S(5)(x) at xγ:

Cγ = S(5)(x+γ ) − S(5)(x−γ )

Then the spline S(x) can be written in the following form

S(x) =
N∑
γ=0

CγG(x− xγ) + p−1(x), (2.10)

where

p−1(x) = d1 sinh(x) + d2 cosh(x) + d3 (2.11)

and d1, d2, d3 are real numbers.

We obtain (2.6) equation from the (2.10), (2.11) and the condition (iv). Furthermore, the function

S(x) satisfies the condition (ii) and therefore the function

1
4

N∑
γ=0

Cγ((x− xγ) cosh(x− xγ) − 3 sinh(x− xγ) + 2(x− xγ))

is a linear combination of the functions sinh(x), cosh(x), 1. It leads to the following conditions

for Cγ,
N∑
γ=0

Cγ sinh(xγ) = 0,
N∑
γ=0

Cγ cosh(xγ) = 0,
N∑
γ=0

Cγ = 0.

in the end , we obtain (2.6)-(2.9) equations system. After all, we have proved theorem 2.1

The rest of the paper is organized as follows. In Sect.3 we give an algorithm for solving the

system of equations (2.6)-(2.9) for equally spaced nodes xβ. Using this algorithm the coefficients

of the interpolation spline S(x)are computed in Sect. 4.
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3. An algorithm for computing the coefficients of interpolation splines

Here we use a similar method proposed by S.L.Sobolev [21], [22]for finding the coefficients of

optimal quadrature formulas in the space L(m)
2 . We use mainly the concept of discrete argument

functions and operations on them. The theory of discrete argument functions is given in [22] , [23].

Assume that the nodes xβ are equally spaced, i,e., xβ = hβ, h = 1/N, N = 1, 2, ...and Cβ = 0

when β < 0 and β > N. Using convolution, we rewrite equalities (2.6)-(2.9) as follows:

G(hβ) ∗Cβ + d1 sinh xβ + d2 cosh xβ + d3 = f (xβ), β = 0, 1, ...N (3.1)

N∑
γ=0

Cγ sinh(xγ) = 0 (3.2)

N∑
γ=0

Cγ cosh(xγ) = 0, (3.3)

N∑
γ=0

Cγ = 0, (3.4)

where G(hβ) is a function of discrete argument corresponding to the function G is given in (2.5) .

Thus, we have the following problem.

Problem 2 Find the coefficients Cβ, β = 0, 1, ..., N and the constants d1, d2, d3 which satisfy the

system (3.1)-(3.4).

Further we investigate Problem 2 which is equivalent to Problem 1. We introduce the following

functions to solve Problem 2

v(hβ) = G(hβ) ∗Cβ, (3.5)

u(hβ) = v(hβ) + d1 sinh(hβ) + d2 cosh(hβ) + d3. (3.6)

In such a statement it is necessary to express the coefficients Cβ by the function u(hβ). For this we

have to construct such an operator D(hβ) which satisfies the equality

D(hβ) ∗G(hβ) = δ(hβ,

where δ(hβ) =

 0, β , 0

1, β = 0
is the discrete delta-function. The construction of the discrete

analogue D(hβ) of the differential operator d6

dx6 − 2 d4

dx4 +
d2

dx2 is given in [24] .

Following [24] we have:

Theorem 3.1. The discrete analogue of the differential operator d6

dx6 − 2 d4

dx4 +
d2

dx2 has the form

D3(hβ) =
2
p



2∑
k=1

Akλk
|β|−1,

∣∣∣β∣∣∣ ≥ 0

1 +
2∑

k=1
Ak,

∣∣∣β∣∣∣ = 1

C +
2∑

k=1

Ak
λk

,
∣∣∣β∣∣∣ = 0

(3.7)
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p = h cosh h− 3 sinh h + 2h, C = −(2 + 4 cosh h) − 3 sinh 2h−2h+6 sinh h−10h cosh h
h cosh h−3 sinh h+2h ,

Ak =
(1−λk)

2(λ2
k+1−2λk cosh h)2(h cosh h−3 sinh h+2h)2

λk P4
′ (λk)

(3.8)

λ1, λ2 are |λk| < 1 zero of the polynomial

P4(λ) = (1− λK)2[(h cosh h− 3 sinh)λk
2 + [3 sinh 2h− 2h]λ+ (h cosh h− 3 sinh h])

+2h(λ2
k − 2λk cosh h + 1)2

We use some property of the discrete analogue D(hβ). They are shown in the following theorem.

Theorem 3.2. Discrete analogue D(hβ) of the differential operator d6

dx6 − 2 d4

dx4 +
d2

dx2 satisfies the following
equalities:
1)D(hβ) ∗ sinh(hβ) = 0

2)D(hβ) ∗ cosh(hβ) = 0

3)D(hβ) ∗ (hβ)sinh(hβ) = 0

4)D(hβ) ∗ (hβ)cosh(hβ) = 0

5)D(hβ) ∗G(hβ) = δ(hβ)
6)D(hβ) ∗ (hβ) = 0

7)D(hβ) ∗ 1 = 0.

This properties was proved in [25]. Then, taking into account (3.6) and Theorem 3.2 for optimal

coefficients we have

Cβ = D(hβ) ∗ u(hβ). (3.9)

Thus, if we find the function u(hβ) then the coefficients Cβ can be obtained from equality (3.9).

In order to calculate the convolution 3.9 we need a representation of the function u(hβ) for all

integer values of β. From equality 3.1 we get that u(hβ) = ϕ(hβ) when hβ ∈ [0, 1]. Now we need

to find a representation of the function u(hβ) when β < 0 and β > N.

Since Cβ = 0 when hβ < [0, 1] then Cβ = Dm(hβ) ∗ u(hβ) = 0, hβ < [0, 1]. We calculate now the

convolution v(hβ) = G(hβ) ∗Cβ when β ≤ 0 and β ≥ N.

Supposing β ≤ 0 and taking into account equalities (2.5), (3.2), (3.3), (3.4), we have

v(hβ) =
∞∑

γ=−∞
CγG(hβ− hγ) =

∞∑
γ=−∞

Cγ
sign(hβ−hγ)

4 {(hβ− hγ) cosh(hβ− hγ)−

−3 sinh(hβ− hγ) + 2(hβ− hγ)} = − 1
4

∞∑
γ=−∞

Cγ{(hβ− hγ)[cosh(hβ) cosh(hγ)−

− sinh(hβ) sinh(hγ)] − 3[sinh(hβ) cosh(hγ) − cosh(hβ) sinh(hγ)] + 2(hβ− hγ)}

= − 1
4

∞∑
γ=−∞

Cγ{(hβ) cosh(hβ) cosh(hγ) − (hβ) sinh(hβ) sinh(hγ) − (hγ) cosh(hβ) cosh(hγ)

+(hγ) sinh(hβ) sinh(hγ) − 3 sinh(hβ) cosh(hγ) + 3 cosh(hβ) sinh(hγ) + 2(hβ) − 2(hγ)}

= − 1
4

∞∑
γ=−∞

Cγ{(hβ) cosh(hβ) cosh(hγ) − (hβ) sinh(hβ) sinh(hγ) − (hγ) cosh(hβ) cosh(hγ)+

+(hγ) sinh(hβ) sinh(hγ)] − 3 sinh(hβ) cosh(hγ) + 3 cosh(hβ) sinh(hγ)+

+2(hβ) − 2(hγ)} = cosh(hβ) 1
4

∞∑
γ=−∞

Cγ(hγ) cosh(hγ) − sinh(hβ) 1
4

∞∑
γ=−∞

Cγ(hγ) sinh(hγ) + 1
2

∞∑
γ=−∞

Cγ(hγ).
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Denoting:

b1 =
1
4

∞∑
γ=−∞

Cγ(hγ) sinh(hγ), b2 =
1
4

∞∑
γ=−∞

Cγ(hγ) cosh(hγ), b3 =
1
2

∞∑
γ=−∞

Cγ(hγ)

we get for β ≤ 0

v(hβ) = −b1 sinh(hβ) + b2 cosh(hβ) + b3

And for β ≥ N

v(hβ) = b1 sinh(hβ) − b2 cosh(hβ) − b3.

Now, setting
d−1 = d1 − b1, d−2 = d2 + b2, d−3 = d3 + b3,

d+1 = d1 + b1, d+2 = d2 − b2, d+3 = d3 − b3

We formulate the following problem:

Problem 3 Find the solution of the equation

Dm(hβ) ∗ u(hβ) = 0, hβ < [0, 1] (3.10)

In the form:

u(hβ) =


d−1 sinh(hβ) + d−2 cosh(hβ) + d−3 , β ≤ 0,

f (hβ), 0 ≤ β ≤ N,

d+1 sinh(hβ) + d+2 cosh(hβ) + d+3 , β ≥ N,

(3.11)

where d−1 , d−2 , d−3 , d+1 , d+2 , d+3 are unknowns.
It is clear that

di =
1
2
(d+i + d−1 ), i = 1.2, 3, b1 =

1
2
(d+1 − d−1 ), b2 =

1
2
(d−2 − d+2 ), b3 =

1
2
(d−3 − d+3 ). (3.12)

These unknowns d−1 , d−2 , d−3 , d+1 , d+2 , d+3 can be found from equation (3.10), using the function

D(hβ). Then the explicit from of the function u(hβ) and coefficients Cβ, d1, d2, d3 can be found.

Thus, Problem 3 and respectively Problems 2 and 1 can be solved.

In the next section we realize this algorithm for computing the coefficients Cβ, β = 0, 1, .., N, d1, d2, d3

of the interpolation spline (2.4) for any N = 1, 2...

4. Computing the coefficients of the interpolation spline

In this section using the algorithm from the previous section we obtain explicit formulae for

coefficients of interpolation 2.4 which is the solution of Problem 1.

Theorem 4.1. Coefficients of interpolation spline 2.4 which minimizes the semi norm 2.2 with equally
spaced nodes in the space K2(P3) have the following form:

C0 =
2
p
{−d−1 sinh h + d−2 cosh h + d−3 + C f (0) + f (h) +

2∑
k=1

Ak
λk

[Mk +
N∑
γ=0

λ
γ
k f (hγ) + λN

k Nk]},

Cβ =
2
p
{ f (h(β− 1)) + C f (hβ) + f (h(β+ 1)) +

2∑
k=1

Ak
λk

[λ
β
kMk +

N∑
γ=0

λ|
β−γ|

k f (hγ) + λ
N−β
k Nk]}, β = 1, 2, ..., N − 1
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CN =
2
p
{d+1 sinh(h + 1) + d+2 cosh(h + 1) + d+3 + f (1− h) + C f (1) +

2∑
k=1

Ak
λk

[λN
k Mk +

N∑
γ=0

λ
N−γ
k f (hγ) + Nk]},

di =
1
2
(d+i + d−i ), i = 1, 2, 3

where

Mk = −d−1
λk sinh h

1 + λk
2 − 2λk cosh h

+ d−2
λk(cosh h− λk)

1 + λk
2 − 2λk cosh h

+ d−3
λk

1− λk
, (4.1)

Nk = d+1
λk(sinh(h + 1) − λk sinh 1)

1 + λk
2 − 2λk cosh h

+ d+2
λk(cosh(h + 1) − λk cosh 1)

1 + λk
2 − 2λk cosh h

+ d+3
λk

1− λk
(4.2)

and p, Ak, C, λk are given in 3.7 and d−1 , d−2 , d−3 , d+1 , d+2 , d+3 are defined by 4.3, 4.8.

Proof. First we find the expression for d−2 and d+2 . When β = 0 and β = N, from 3.11 we get

d−2 = f (0) − d−3 , d+2 =
f (1) − d+1 sinh(1) − d+3

cosh(1)
(4.3)

Now we find other four unknowns d−1 , d−3 , d+1 , d+3 which can be found from ((3.10)) when β =

−1, −2, N + 1, N + 2. Taking into account (3.11) and from (3.10) we have:
−1∑

γ=−∞
D(hβ− hγ)(d−1 sinh(hγ) + d−2 cosh(hγ) + d−3 ) +

N∑
γ=0

D(hβ− hγ) f (hγ)

+
∞∑

γ=N+1
D(hβ− hγ)(d+1 sinh(hγ) + d+2 cosh(hγ) + d+3 ) = 0,

∞∑
γ=1

D(hβ+ hγ)(−d−1 sinh(hγ) + d−2 cosh(hγ) + d−3 ) +
N∑
γ=0

D(hβ− hγ) f (hγ)

+
∞∑
γ=1

D(h(N + γ− β))(d+1 sinh(hγ+ 1) + d+2 cosh(hγ+ 1) + d+3 ) = 0.

Now, we use (4.3) and for β = −1, −2, N + 1, N + 2 we get the following system of linear equations

for d−1 , d−3 , d+1 , d+3 .

−d−1
∞∑
γ=1

D3(hγ+ hβ) sinh(hγ) + d−3
∞∑
γ=1

D3(hγ+ hβ)(1− cosh(hγ))

+d+1
1

cosh 1

∞∑
γ=1

D3(h (γ+ N − β)) sinh(hγ) + d+3
∞∑
γ=1

D3(h (γ+ N − β))(1− cosh(hγ+1)
cosh 1 )

= −
N∑
γ=0

D3(hβ− hγ) f (hγ) − f (0)
∞∑
γ=1

D3(hβ+ hγ) cosh(hγ) − f (1)
cosh 1

∞∑
γ=1

D3(h(γ+ N − β)) cosh(hγ+ 1)

and forβ = −1, −2, N+ 1, N+ 2 we get the following system of linear equations for d−1 , d−3 , d+1 , d+3

−d−1
∞∑
γ=1

D3(hγ− h) sinh(hγ) + d−3
∞∑
γ=1

D3(hγ− h)(1− cosh(hγ))

+d+1
1

cosh 1

∞∑
γ=1

D3(h (γ+ N + 1)) sinh(hγ) + d+3
∞∑
γ=1

D3(h (γ+ N + 1))(1− cosh(hγ+1)
cosh 1 )

= −
N∑
γ=0

D3(hγ+ h) f (hγ) − f (0)
∞∑
γ=1

D3(hγ− h) cosh(hγ)

−
f (1)

cosh 1

∞∑
γ=1

D3(h(γ+ N + 1)) cosh(hγ+ 1)

(4.4)
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−d−1
∞∑
γ=1

D3(hγ− 2h) sinh(hγ) + d−3
∞∑
γ=1

D3(hγ− 2h)(1− cosh(hγ))

+d+1
1

cosh 1

∞∑
γ=1

D3(h (γ+ N + 2)) sinh(hγ) + d+3
∞∑
γ=1

D3(h (γ+ N + 2))(1− cosh(hγ+1)
cosh 1 )

= −
N∑
γ=0

D3(hγ+ 2h) f (hγ) − f (0)
∞∑
γ=1

D3(hγ− 2h) cosh(hγ)

−
f (1)

cosh 1

∞∑
γ=1

D3(h(γ+ N + 2)) cosh(hγ+ 1)

(4.5)

−d−1
∞∑
γ=1

D3(h (γ+ N + 1)) sinh(hγ) + d−3
∞∑
γ=1

D3(h(γ+ N + 1))(1− cosh(hγ))

+d+1
1

cosh 1

∞∑
γ=1

D3(h (γ− 1)) sinh(hγ) + d+3
∞∑
γ=1

D3(h (γ− 1))(1− cosh(hγ+1)
cosh 1 )

= −
N∑
γ=0

D3(h (N + 1− γ)) f (hγ) − f (0)
∞∑
γ=1

D3(h (γ+ N + 1)) cosh(hγ)

−
f (1)

cosh 1

∞∑
γ=1

D3(h(γ− 1)) cosh(hγ+ 1)

(4.6)

−d−1
∞∑
γ=1

D3(h (γ+ N + 2)) sinh(hγ) + d−3
∞∑
γ=1

D3(h(γ+ N + 2))(1− cosh(hγ))

+d+1
1

cosh 1

∞∑
γ=1

D3(h (γ− 2)) sinh(hγ) + d+3
∞∑
γ=1

D3(h (γ− 2))(1− cosh(hγ+1)
cosh 1 )

= −
N∑
γ=0

D3(h (N + 2− γ)) f (hγ) − f (0)
∞∑
γ=1

D3(h (γ+ N + 2)) cosh(hγ)

−
f (1)

cosh 1

∞∑
γ=1

D3(h(γ− 2)) cosh(hγ+ 1)

(4.7)

Since |λk| < 1, k = 1.2, the series in the previous system of equations are convergent.

Using (4.3) and taking into account 3.7, after some calculations, from (4.4)-(4.7) we obtain the

following equations system: 
B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44

 ×


d−1
d−3
d+1
d+1

 =

T1

T2

T3

T4

(4.8)

where

B11 =
2
p
[C sinh (h) + sinh (2h) +

2∑
k=1

Ak

λ2
k

L1],

B21 =
2
p
[(1 +

2∑
k=1

Ak−

2∑
k=1

Ak

λ2
k

) sinh(h) + C sinh (2h) + sinh (3h) +
2∑

k=1

Ak

λ3
k

L1]

B12 =
2
p
[C(1− cosh (h)) + 1− cosh(2h) +

2∑
k=1

Ak

λ2
k

L5−

2∑
k=1

Ak

λ2
k

L2)],
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B22 =
2
p
[(1 +

2∑
k=1

Ak−

2∑
k=1

Ak

λ2
k

)(1− cosh(h)) + C(1− cosh(2h)) + 1− cosh(3h)

+
2∑

k=1

Ak

λ3
k

L5−

2∑
k=1

Ak

λ3
k

L2]

Bi3 =
2

p cosh 1

2∑
k=1

Akλk
N+i−1L1, i = 1, 2

Bi4 =
2
p
[

2∑
k=1

Akλk
N+i−1L5 −

1
cosh 1

2∑
k=1

Akλk
N+i−1L4], i = 1, 2

B(i+2)1 =
2
p

2∑
k=1

Akλk
N+i−1L1, i = 1, 2

B(i+2)2 =
2
p
[

2∑
k=1

Akλk
N+i−1L5 −

1
cosh 1

2∑
k=1

Akλk
N+i−1L2], , i = 1, 2

B33 =
2

p cosh 1
[C sinh (h) + sinh (2h) +

2∑
k=1

Ak

λ2
k

L1],

B43 =
2

p cosh 1
[(1 +

2∑
k=1

Ak −

2∑
k=1

Ak

λ3
k

) sinh(h)+C sinh (2h) + sinh (3h) +
2∑

k=1

Ak

λ3
k

L1],

B34 =
2
p
[C + 1 +

2∑
k=1

Ak

λ2
k

L5 −
1

cosh 1
{(C cosh(h + 1)+

+ cosh(2h + 1) +
2∑

k=1

Ak

λ2
k

L4}]

B44 =
2
p
[(1 +

2∑
k=1

Ak −

2∑
k=1

Ak

λ2
k

) +C + 1 +
2∑

k=1

Ak

λ3
k

L5 −
1

cosh 1
{(1 +

2∑
k=1

Ak −

2∑
k=1

Ak

λ2
k

) cosh(h + 1)

+ C cosh(2h + 1) + cosh(3h + 1) +
2∑

k=1

Ak

λ3
k

L4}]

T1 = −[ f (0) · (C cosh(h) + cosh(2h) +
2∑

k=1

Ak

λ2
k

L2) + ( f (0) +
2∑

k=1

Ak

N∑
γ=0

λ
γ
k f (hγ))+

+
f (1)

cosh(1)
·

2∑
k=1

Akλ
N
k L4];

T2 = −[ f (0) · ((1 +
2∑

k=1

Ak −

2∑
k=1

Ak

λ2
k

) cosh(h) + C cosh(2h) + cosh(3h) +
2∑

k=1

Ak

λ3
k

L2)+

+
2∑

k=1

Ak

N∑
γ=0

λ
γ+1
k f (hγ) +

f (1)
cosh(1)

·

2∑
k=1

Akλ
N+1
k L4];
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T3 = −[ f (0)
2∑

k=1

Akλ
N
k L2 +

2∑
k=1

Ak

N∑
γ=0

λ
N−γ
k f (hγ) + f (1)+

+
f (1)

cosh(1)
(C cosh(h + 1) + cosh(2h + 1) +

2∑
k=1

Ak

λ2
k

L4)];

T4 = −[ f (0)
2∑

k=1

Akλ
N+1
k L2 +

2∑
k=1

Ak

N∑
γ=0

λ
N+1−γ
k f (hγ)+

+
f (1)

cosh(1)
((1 +

2∑
k=1

Ak −

2∑
k=1

Ak

λ2
k

) cosh(h + 1) + C cosh(2h + 1) + cosh(3h + 1) +
2∑

k=1

Ak

λ3
k

L4)].

Where Li, i = 1, 5 are given follow:

1) L1 =
∞∑
γ=1

λk
γ sinh(hγ) = λk sinh h

1+λk
2−2λk cosh h ;

2)L2 =
∞∑
γ=1

λk
γ cosh(hγ) = λk(cosh h−λk)

1+λk
2−2λk cosh h ;

3)
∞∑
γ=1

λk
γ sinh(hγ+ 1) = λk(sinh(h+1)−λk sinh 1)

1+λk
2−2λk cosh h ;

4)
∞∑
γ=1

λk
γ cosh(hγ+ 1) = λk(cosh(h+1)−λk cosh 1)

1+λk
2−2λk cosh h

5)
∞∑
γ=1

λk
γ = λk

1−λk
;

Combaining (4.8) and (4.3) we obtain d−1 , d−2 , d−3 , d+1 , d+2 , d+3 . Then we obtain d1, d2, d3 which are

given in the statement of theorem 4.1.

Now, We calculate the coefficients Cβ, β = 0, 1, 2..., N. Taking into account (2.11) from (2.9) for

Cβ we get

Cβ = D3(hβ) ∗ u(hβ) =
∞∑
γ=1

D(hβ− hγ)u(hγ) =
∞∑
γ=1

D(hβ+ hγ)(−d−1 sinh(hγ) + d−2 cosh(hγ) + d−3 )

+
N∑
γ=0

D(hβ− hγ) f (hγ) +
∞∑
γ=1

D(h(N + γ− β))(d+1 sinh(hγ+ 1) + d+2 cosh(hγ+ 1) + d+3 ).

From which, using (3.7) and taking into account notations (4.1), (4.2) , when β = 0, 1, ..., N, for Cβ
we obtain the expression given in (4.1).

5. Numerical results

In this section, using (4.1), we obtain several absolute errors graph in interpolating functions

with the sixth order algebraic-hyperbolic spline, and we compare absolute errors of cubic spline

and algebraic-hyperbolic in interpolating several functions. We denote the sixth order algebraic-

hyperbolic natural spline as S6(x) and the cubic spline as S3(x).
Applying S6(x) with N=5,10, using (4.1) for the functions x2 , cos(2x), ex + x we obtain abso-

lute errors. The graphs of the corresponding absolute values of errors are presented in Figure 1
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and Figure 2.

Figure 1. Graphs show absolute errors when sixth order algebraic-hyperbolic

spline approximate x2 , cos(2x), ex + x functions at N=5: a)
∣∣∣x2
− S6(x)

∣∣∣
b)

∣∣∣cos(2x) − S6(x)
∣∣∣ c)

∣∣∣ex + x− S6(x)
∣∣∣.

Figure 2. Graphs show absolute errors when sixth order algebraic-hyperbolic

spline approximate x2 , cos(2x), ex + x functions at N=10: a)
∣∣∣x2
− S6(x)

∣∣∣
b)

∣∣∣cos(2x) − S6(x)
∣∣∣ c)

∣∣∣ex + x− S6(x)
∣∣∣.

Now, we compare the graphs of the absolute errors of interpolating the functions

sin(x), x2

2−x , ex with sixth order algebraic-hyperbolic natural spline and cubic spline,

where we get N=10.

Figure 3. Graphs show absolute errors when sixth order algebraic-hyperbolic

spline approximate sin(x), x2

2−x , ex functions at N=10 a)
∣∣∣sin(x) − S6(x)

∣∣∣b)
∣∣∣∣ x2

2−x − S6(x)
∣∣∣∣

c)
∣∣∣ex
− S6(x)

∣∣∣.
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Figure 4. This Graphs show absolute errors when cubic spline approximate sin(x),
x2

2−x , ex functions at N=10 a)
∣∣∣sin(x) − S3(x)

∣∣∣ b)
∣∣∣∣ x2

2−x − S3(x)
∣∣∣∣ c)

∣∣∣ex
− S3(x)

∣∣∣
Figure 1,2 and 3 show that it is possible to interpolate functions belonging tovarious

classes with high accuracy using an algebraic hyperbolic spline. Figure 3 and Figure

4 show that the sixth order algebraic-hyperbolic spline gives several times better

results than the cubic spline in interpolating functions.

6. Conclusion

In this work, we constructed an sixth order algebraic-hyperbolic interpolation, natural spline . To

solve this problem, we used the Sobolev method and obtain a spline function for the approximate

calculation of the unknown function. We first presented the interpolation spline function under

which conditions gives a minimum to the norm in a certain Hilbert space. To find the coefficients of

this spline, we created a system of equations based on certain conditions. We used Sobolev method

and gave the algorithem to solve equations system. When we found the coefficients of the sixth

order algebraic-hyperbolic interpolation natural siline, we obtain the exact expression of this spline.

The absolute error in approximating functions with the sixth orderalgebraic-hyperbolic natural

spline has been seen in the example of several functions and the absolute errors in approximating

fununctions with the kubic spline and the spline we built are compared. The results show that,

the spline we built approximates functions better than the cubic spline. We know, in many areas

the kubic spline is widely used, This means that, we can take better results through the spline we

have built.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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