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Abstract. The current study aims to propose several generalizations of a strong b-metric space which is called Strong-

composed cone metric spaces. Therefore, to illustrate the concept of these generalizations, the study provides examples

of Strong-composed cone metric space, which are neither a Strong-controlled metric type space nor Strong b-metric

space, also redefined with cone metric spaces. Finally, the study demonstrates the uniqueness of some fixed-point

results involving some general structures of nonlinear rational contractions with applications.

1. Introduction

In recent years, there has been a surge in interest in fixed point theorem (FPT). Its modification

depends on tools of triangular inequality of metric space via important contractions in extending

the concept of the fixed-point theorem with applications. In 1989, Bakhtin [1] investigated a metric

called the b-metric space (bMS), which is generalized to metric space. Many previous works in

this area dealt with the important properties of (bMS), (see [2, 3]), whereas others focused their

attention on (SbMS) as in Kirk [4], extending (SbMS) via some fixed-point theorems as in [5]. In

2023, Santina et al. introduced a new generalization of (SbMS) called controlled-strong b-metric

type space (CSbMS), through some fixed-point theorems with famous applications [6]. In 2024,

Anas et al. presented an expansion to CSbMS known as strong composed metric space (SCMS) [7]

(for more details see [8–13]). Despite all of these studies, there is much work concerning the

application of special contractions to (SbMS) (see [14, 15]).

There are various previous works on metric space. In 2007, Huang et al. [16] introduced the

notion of cone metric space as an expanded metric space. Hussain et al. [17] presented the cone
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b-metric spaces. Shateri [18] provided some fixed-point theorems on double controlled cone metric

spaces. Subsequently, Anas et al. in [19] introduced type I and II composed cone metric space,

and in [20] the extension of double-composed metric space to double composed metric like space

(for more details refer to [21–26]). Moreover, in 2020, Lateef [10] proved Fisher type fixed point

results in controlled metric spaces. Later, several authors including Dass and Gupta [27] and

Jaggi [28] discussed their results utilizing a contraction condition of the rational type. The authors

in [29] gave a generalization of rational contractions in double controlled metric space for common

fixed-point theorem (for more details see [7, 25, 29, 31]).

The objectives of this study establish an extended concept of CSbMS called strong-composed

cone metric space (SCCMS), which satisfies the inequality: ζ f (a, b) ≤ ζ f (a, c) + f (ζ f (c, b)), where

f : P→ P is an auxiliary nonconstant function, P is cone and a, b, c ∈ Γ, represent the reverse in not

necessarily true example, while CSbMS does not imply to SbMS in cone metric space. Further, the

first step in this study is employing the concept of four mappings in common fixed points results

via numerical contraction, using the study of Matkowski [32]. In addition, utilizing the study of

Karami [11], a new generalization of φ-contraction for four maps is created and rational. Finally,

the study introduces an application of polynomial and nonlinear integral equations which support

the fixed-point theorems within these new spaces.

2. Preliminaries

This section presents some notations and basic concepts of definitions and lemmas from earlier

research. These concepts are then employed throughout the main findings of this study.

Definition 2.1. [16] Let E be a real Banach space and P ⊂ E. P is called a cone if it satisfies the following
conditions:

(P1) {0E} , P is nonempty closed,
(P2) α1a + α2b ∈ P for all a, b ∈ P, where α1,α2 ≥ 0,
(P3) P∩ (−P) = {0E}.

Considering a cone P, a partial ordering � on E can be defined with respect to P by a � b if and only if
b − a ∈ P. Here, a ≺ b indicates that a � b and a , b, but a � b stands for b − a ∈ intP, such that intP
denotes the interior of P.

Let E be a Banach space, P be a cone in E such as intP , φ and � be a partial ordering of P.

The cone P is called normal if there exists a constant number M > 0 such that for all a, b ∈ E and

0 � a � b implies that ‖a‖ ≤M‖b‖ or equivalently, if

in f {‖a + b‖|a, b ∈ P, ‖a‖ = ‖b‖ = 1} > 0 for non-normal cone, (e.g., see [18]). Moreover, P is called

solid if intP , φ.

Now, some basic notations of cone metric spaces are presented with their properties.

Abdeljawad et al. [9] present the double controlled type-metric spaces. Moreover, the expanded-on

cone metric space is introduced as follows:
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Definition 2.2. [18] Let Γ be a nonempty set and ω1,ω2 : Γ × Γ → [1,∞). A function σ : Γ × Γ → E, if
for all a, b, c ∈ Γ, satisfying the following conditions:

(σ1) σ(a, b) = 0E if and only if a = b,
(σ2) σ(a, b) = σ(b, a),
(σ3) σ(a, b) � ω1(a, c)σ(a, c) +ω2(c, b)σ(c, b).

Then, the pair (Γ, σ) is called a double controlled-cone-metric type space (DCCMTS), and it is called a
controlled strong-cone-metric type space if ω1 = 1 or ω2 = 1, not both (for short, CSCMTS), and strong
cone b-metric space (SCbMS) if a function says ω2 = s, s ≥ 1.

Example 2.1. Let E = C(R), P = {ϕ(t) ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]} and Γ = [1,∞) and define
σ(a, b) = {|a− b|, 2|a− b| − 1}ϕ(t) for all a, b ∈ Γ and t ∈ [0, 1] such that ω2(a, b) = {a, b}+ 1.
Then, (Γ,ω) is a CSCMTS, but not a controlled strong b-metric type space.

Anas et al. [7] introduced the strong-composed metric type space, which is the triangular

inequality, exhibited by all a, b, c ∈ Γ,Sψ : Γ × Γ → R+, Sψ(a, b) ≤ Sψ(a, c) + ψ(Sψ(c, b)), where

ψ : R+
→ R+ nonconstant function. Now, the strong-composed cone-metric space is presented as

the follows:

Definition 2.3. Let Γ be a nonempty set. A mapping ζ f : Γ × Γ → E is a strong composed cone-metric if
for all a, b, c ∈ Γ, there exists a nonconstant function f : P→ P, satisfying the following necessaries:

(ζ1) ζ f (a, b) = 0E if and only if a = b,
(ζ2) ζ f (a, b) = ζ f (b, a),
(ζ3) ζ f (a, b) � ζ f (a, c) + f

(
ζ f (c, b)

)
.

Then, the triple (Γ, ζ f , f ) is called a strong composed cone-metric space (SCCMS) with regarly f . Obviously,
every CSCMTS is a SCCMS, but the reverse is not necessarily true, the following example clarifies this case.

Example 2.2. Let E = C(R2), P = {ϕ(t) ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]} and (Γ,Sb) be a strong b-metric space
via s > 1 and let ζ f (a, b) =

(
(Sb(a, b))et, 0

)
for all a, b ∈ Γ and t ∈ [0, 1].

It is enough to show that (ζ3). Since Sinh−1(w) is an increasing function, hence for all a1, a2 ≥ 0, this
undergoes (by a part 4 in [11]):

Sinh−1(a1 + a2) ≤ Sinh−1(a1) + Sinh−1(a2). (2.1)

Therefore, for all a, b, c ∈ Γ, the following result is obtained:

(Sb(a, b))et
≤

(
Sb(a, c) + sSb(a, b)

)
et

≤ Sb(a, c)et + sSb(c, b)et

≤ Sinh−1
(
Sb(a, c)

)
et + Sinh−1

(
sSinh

(
Sb(c, b)

))
et

≤ Sinh−1
(
Sb(a, c)

)
et + Sinh−1

(
sSinh

(
Sb(c, b)et

))
et

Thus,
ζ f (a, b) � ζ f (a, c) + f (ζ f (c, b)),
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where f (w) =
(
Sinh−1(sSinh(w1))et, 0

)
, w ∈ P. It is clear that it is not a CSCMTS. But (Γ, ζ f ) is an

SCCMS.

Remark 2.1. The assumption in example 2.2 can be interchanged if (Γ, σw) is considered a controlled
strong b-metric space via w : Γ × Γ → [1,∞). Also, the same result is obtained such that f (w) =(
Sinh−1(w(a, b)Sinh(w1))et, 0

)
.

Example 2.3. Let (Γ,S) be a S-metric space, then

S(a, a, b) ≤ 2S(a, a, c) +S(b, b, c),∀a, b, c ∈ Γ. (2.2)

Assume that E = C(R), P = {ϕ(t) ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}. SCCMS is defined by ζ f (a, b) =

Sinh−1
(
S(a, a, b)

)
et for all a, b ∈ Γ, t ∈ [0, 1], where ϕ(t) = et.

Clearly, (ζ1) and (ζ2) are held. It is clear that (ζ3) by (2.2), the result is:

ζ f (a, b) = Sinh−1
(
S(a, a, b)

)
et
� Sinh−1

(
2S(a, a, c) +S(b, b, c)

)
et

� Sinh−1
(
2S(a, a, c)

)
et + Sinh−1

(
S(b, b, c)

)
et

� ζ f (c, b) + f
(
ζ f (a, c)

)
,

where f (w) = Sinh−1
(
2Sinh(w))et, and w ∈ P, t ∈ [0, 1].

First, open and closed balls are defined in SCCMS.

Definition 2.4. Let us choose a ∈ Γ and for some 0E � c defined
B(a, c) = {b ∈ Γ : ζ f (a, b) � c} and B(a, c) = {b ∈ Γ : ζ f (a, b) � c} are called open and closed balls,
respectively.

Next, the notion of convergence is defined in SCCMS.

Definition 2.5. Let (Γ, ζ f ) be an SCCMS and E be a real Banach space via a cone P. Then:

(1) {an} in Γ converges to a if for every c ∈ E with 0E � c, there is N ∈ N such that for all
n ≥ N, ζ f (an, a)� c. It is denoted as lim

n→∞
an = a.

(2) {an} in Γ is said to be Cauchy if for every c ∈ E with 0E � c, there is N ∈ N such that for all
n, m ≥ N, ζ f (an, am)� c.

(3) (Γ, ζ f ) is said to be a complete SCCMS if every Cauchy sequence in Γ converges to some point in Γ.

Lemma 2.1. Let (Γ, ζ f ) be an SCCMS with respect to f , P be a normal cone with normal constant M. Let
{an} be a sequence in Γ. Then, {an} converges to a if and only if ζ f (an, a) = 0E.

Proof. By ( [19], Lemma 1.5) just taking ψ1 = I and ψ2 = f , an SCCMS exists. �

Lemma 2.2. Let (Γ, ζ f ) be an SCCMS with respect to f , P be a normal cone with normal constant M. Let
{an} be a sequence in Γ such that {an} converges to a and b. If f is bounded, then a = b. That is, the limit of
{an} is unique.

Proof. By ( [19], Lemma 1.6) just taking ψ1 = I and ψ2 = f , an SCCMS exists. �
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Proposition 2.1. Let (Γ, ζ f ) be an SCCMS, then for all a, b, c ∈ Γ

|ζ f (a, b) − ζ f (c, d)| � f
(
ζ f (a, d)

)
+ f

(
ζ f (b, c)

)
.

Proof. Utilizing the axiom (ζ3), then

ζ f (a, b) � ζ f (a, c) + f
(
ζ f (c, b)

)
� ζ f (c, d) + f

(
ζ f (d, a)

)
+ f

(
ζ f (b, c)

)
It implies that

ζ f (a, b) − ζ f (c, d) � f
(
ζ f (a, d)

)
+ f

(
ζ f (b, c)

)
. (2.3)

A similar argument shows that

ζ f (c, d) − ζ f (a, b) � f
(
ζ f (a, d)

)
+ f

(
ζ f (b, c)

)
. (2.4)

The desired result is obtained. �

Remark 2.2. Let {an} and {bn} be a sequences in Γ such that lim
n→∞

ζ f (an, a) = 0E and lim
m→∞

ζ f (bm, b) = 0E,
then by Proposition 2.1, the following result is obtained:

lim
n,m→∞

ζ f (an, bm) = ζ f (a, b), where f is bounded; this means that, ζ f is continuous.

Lemma 2.3. [4] The strong b-metric space is normal.

Lemma 2.4. An SCCMS is normal, where f is bounded.

Proof. Let (Γ, ζ f ) be an SCCMS. If a, b ∈ Γ such that a , b, then V := B(a, c
2(M+1) ) and W :=

B(b, c
2(M+1) ) are disjoint neighborhoods of a and b, respectively. Then, assume that V∩W , φ,

hence, there exists d ∈ V ∩W. Thus, by utilizing ζ f (a, d) ≺ c
2(M+1) and ζ f (b, d) ≺ c

2(M+1) , where

c = ζ f (a, b), the following result is obtained:

c = ζ f (a, b) � ζ f (a, d) + f
(
ζ f (d, b)

)
≺

c
2(M + 1)

+ f
(
ζ f (d, b)

)
. (2.5)

Since f is bounded, then there is M > 0 such that

‖ f
(
ζ f (d, b)

)
‖ ≤M‖ζ f (d, b)‖. (2.6)

Utilizing the norm in (2.5) and (2.6) results in:

c = ‖ζ f (a, b)‖ <
c

2(M + 1)
+ M

c
2(M + 1)

=
c
2
< c.

Hence, this represents a contradiction, so our claim holds. Therefore, it is concluded that Γ is

Hausdorff.

Now, let V and w be disjoint closed sets and let ζ f (a,V) := in fd∈Vζ f (a, d) and ζ f (b,W) :=

in fg∈Wζ f (a, g). Define the sets

V
′

:= {a ∈ Γ : ζ f (a,V) ≺ ζ f (a,W)} and W
′

:= {b ∈ Γ : ζ f (b,W) ≺ ζ f (b,V)}. �

Definition 2.6. [33] Let Φ be the set of all continuous self-maps φ of P, satisfying
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(1) φ is monotonically increasing,
(2) φ(w) = 0E if and only if w = 0E.

Then, it is called an altering distance function on the cone P.

Let Ψ be the family of all mappings ψ : [0,∞) → [0,∞), satisfying the condition t ≤ ψ(t) for

each t ∈ [0,∞), and ψ
′

is increasing (the derivative of ψ) [11].

Lemma 2.5. [7] If ψ ∈ Ψ, then for all a, b ∈ [0,∞), the result is:

|ψ−1(a) −ψ−1(b)| ≤ ψ−1(|a− b|) ≤ |a− b| ≤ ψ(|a− b|) ≤ |ψ(a) −ψ(b)|.

In particular, if b = 0, that is, |ψ−1(a)| ≤ ψ−1(|a|) ≤ |a| ≤ ψ(|a|) ≤ |ψ(a)|.

Lemma 2.6. [20] Let ψ ∈ Ψ, then for all a ∈ [0, 1] and 0 < q ≤ 1 ≤ p, the following result is obtained:

(1)
(
ψ(ap)

) 1
p
≤ ψ(a) ≤

(
ψ(aq)

) 1
q .

(2)
(
ψ−1(aq)

) 1
q
≤ ψ−1(a) ≤

(
ψ−1(ap)

) 1
p .

3. TheMain Results

This section presents four common fixed-point results with two φ-contractions in SCCMS.

Theorem 3.1. Let (Γ, ζ f ) be a complete SCCMS with functions f : P → P and P be a normal cone via
normal constant M. Consider T1, T2, T3, T4 : Γ→ Γ be a self-mapping such that

(1) T1(Γ) ⊆ T4(Γ) and T2(Γ) ⊆ T3(Γ),
(2) The pairs (T1, T4) and (T2, T3) are compatible,
(3) Ti is continuous for all i = 1, · · · , 4,
(4) For all a, b ∈ Γ,

φ
(
ζ f (T1a, T2b)

)
� λ1φ

(
ℵ1(a, b)

)
+ λ2φ

(
ℵ2(a, b)

)
, (3.1)

where, φ ∈ Φ, 0 < λ1 + λ2 < 1, and

ℵ1(a, b) = Max
{
ζ f (T3a, T4b), ζ f (T3a, T1a), ζ f (T4b, T2b),

ζ f (T3a, T1a)ζ f (T4b, T2b)

1 + ζ f (T3a, T4b)
,

ζ f (T3a, T1a)[1 + ζ f (T4b, T2b)]

1 + ζ f (T3a, T4b)
,
[ζ f (T3a, T1a) + ζ f (T4b, T2b)]ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T3a, T4b)

}
,

ℵ2(a, b) = Min
{
ζ f (T1a, T4b), ζ f (T2b, T3a)

}
.

(5)
∑n−2

i=m ‖ f
(
λi

1φ(ζ f (b1, b0))
)
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖ → 0.

Then, Ti, i = 1, · · · , 4 have a unique common fixed point in Γ.

Proof. Let a0 ∈ Γ be arbitrary. By the assumption T2(Γ) ⊆ T3(Γ), so there exists a1 in Γ such that

T2a0 = T3a1 and also as T1(Γ) ⊆ T4(Γ), that is T1a1 ∈ T4(Γ), hence taking a2 ∈ Γ, where T1a1 = T4a2.

In general, the following result is obtained:

T1a2n+1 = T4a2n+2 and T2a2n = T3a2n+1,∀n ∈N. (3.2)
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A sequence bn is obtained in Γ such that

b2n+1 = T1a2n+1 = T4a2n+2 and b2n = T2a2n = T3a2n+1,∀n ∈N. (3.3)

Next, the results prove that {bn} is a Cauchy sequence in Γ. It is deduced that

φ
(
ζ f (b2n+1, b2n)

)
= φ

(
ζ f (T1a2n+1, T2a2n)

)
� λ1φ

(
ℵ1(a2n+1, a2n)

)
+ λ2φ

(
ℵ2(a2n+1, a2n)

)
,

where

ℵ1(a2n+1, a2n) = Max
{
ζ f (T3a2n+1, T4a2n), ζ f (T3a2n+1, T1a2n+1), ζ f (T4a2n, T2a2n),

ζ f (T3a2n+1, T1a2n+1)ζ f (T4a2n, T2a2n)

1 + ζ f (T3a2n+1, T4a2n)
,
ζ f (T3a2n+1, T1a2n+1)[1 + ζ f (T4a2n, T2a2n)]

1 + ζ f (T3a2n+1, T4a2n)
,

[ζ f (T3a2n+1, T1a2n+1) + ζ f (T4a2n, T2a2n)]ζ f (T1a2n+1, T2a2n)

1 + ζ f (T1a2n+1, T2a2n) + ζ f (T3a2n+1, T4a2n)

}
,

= Max
{
ζ f (b2n, b2n−1), ζ f (b2n, b2n+1), ζ f (b2n−1, b2n),

ζ f (b2n, b2n+1)ζ f (b2n−1, b2n)

1 + ζ f (b2n, b2n−1)
,

ζ f (b2n, b2n+1)[1 + ζ f (b2n−1, b2n)]

1 + ζ f (b2n, b2n−1)
,
[ζ f (b2n, b2n+1) + ζ f (b2n−1, b2n)]ζ f (b2n+1, b2n)

1 + ζ f (b2n+1, b2n) + ζ f (b2n, b2n−1)

}
,

�Max{ζ f (b2n, b2n−1), ζ f (b2n, b2n+1)}. (3.4)

Furthermore,

ℵ2(a2n+1, a2n) = Min{ζ f (T1a2n+1, T4a2n), ζ f (T2a2n, T3a2n+1)}

= Min{ζ f (b2n+1, b2n−1), ζ f (b2n, b2n)} = 0E (3.5)

Thus,

φ
(
ζ f (b2n+1, b2n)

)
� λ1φ

(
ℵ1(a2n+1, a2n)

)
+ λ2φ

(
ℵ2(a2n+1, a2n)

)
, (3.6)

where ℵ1(a2n+1, a2n) = Max{ζ f (b2n, b2n−1), ζ f (b2n, b2n+1)}, and ℵ2(a2n+1, a2n) = 0E.

Case 1. If ℵ1(a2n+1, a2n) = ζ f (b2n, b2n+1), then by (3.6), it is deduced that

φ(ζ f (b2n+1, b2n)) � λ1φ
(
ζ f (b2n, b2n+1)

)
≺ φ

(
ζ f (b2n, b2n+1)

)
, (3.7)

clarifying a contradiction.

Case 2. If ℵ1(a2n+1, a2n) = ζ f (b2n, b2n−1), based on (3.6), it is concluded that

φ
(
ζ f (b2n+1, b2n)

)
� λ1φ

(
ζ f (b2n, b2n−1)

)
� · · · � λn

1φ
(
ζ f (b1, b0)

)
. (3.8)

Applying it recursively, the result is:

φ
(
ζ f (bn, bn+1)

)
� λn

1φ
(
ζ f (b1, b0)

)
, (3.9)
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For m < n, and n, m ∈N, the following result is obtained:

ζ f (bm, bn) � f
(
ζ f (am, am+1)

)
+ ζ f (am+1, an)

� f
(
ζ f (am, am+1)

)
+ f

(
ζ f (am+1, am+2)

)
+ ζ f (am+2, an)

...

�

n−2∑
i=m

f
(
ζ f (ai, ai+1)

)
+ ζ f (an−1, an). (3.10)

Employing (3.9) in (3.10) leads to:

‖φ
(
ζ f (bm, bn)

)
‖ �M

n−2∑
i=m

‖ f
(
λi

1φ
(
ζ f (b1, b0)

))
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖

 .

Thus, as n, m→∞, and by using item 5, the result is:

‖ζ f (bm, bn)‖ = 0.

Therefore, the sequence {bn} is called Cauchy. Since (Γ, ζ f ) is a complete SCCMS, there must exist

an element b ∈ Γ such that {bn} → b. Consider

ζ f (bn, b) = 0E. (3.11)

It implies that

T1a2n+1 = T2a2n = T3a2n+1 = T4a2n+2 = b.

It is argued that Tib = b, and by the assumption items 2, 3 are continuous and compatible for all

i = 1, · · · , 4. Hence,

T4b = T4T2a2n = T4T2a2n = T2T4a2n = T2T4a2n = T2b. (3.12)

Moreover, it is concluded that

T1b = T1T3a2n+1 = T1T3a2n+1 = T3T1a2n+1 = T3T1a2n+1 = T3b. (3.13)

Employing the condition 4 of inequality (3.1), let p = T4b = T2b and q = T1b = T3b, the following

result is obtained:

φ
(
ζ f (q, p)

)
= φ

(
ζ f (T1b, T2b)

)
� λ1φ

(
ℵ1(b, b)

)
+ λ2φ

(
ℵ2(b, b)

)
,

where

ℵ1(b, b) = Max
{
ζ f (T3b, T4b), ζ f (T3b, T1b), ζ f (T4b, T2b),

ζ f (T3b, T1b)ζ f (T4b, T2b)

1 + ζ f (T3b, T4b)
,

ζ f (T3b, T1b)[1 + ζ f (T4b, T2b)]

1 + ζ f (T3b, T4b)
,
[ζ f (T3b, T1b) + ζ f (T4b, T2b)]ζ f (T1b, T2b)

1 + ζ f (T1b, T2b) + ζ f (T3b, T4b)

}
,

= ζ f (q, p).
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It is noted that ℵ2(b, b) = Min
{
ζ f (T1b, T4b), ζ f (T2b, T3b)

}
= ζ f (q, p). Subsequently,

φ
(
ζ f (q, p)

)
� (λ1 + λ2)φ

(
ζ f (q, p)

)
≺ φ

(
ζ f (q, p)

)
,

where λ1 + λ2 < 1. That is a contradiction. Thus, φ
(
ζ f (q, p)

)
= 0E, that is; p = q = T1b = T2b =

T3b = T4b.

Additionally, it is deduced that T1q = T1T3b = T3T1b = T3q and T2p = T2T4b = T4T2b = T4p.

Moreover, by inequality (3.1), the following result is found:

φ
(
ζ f (T1q, T1b)

)
= φ

(
ζ f (T1q, T2b)

)
� λ1φ

(
ℵ1(q, b)

)
+ λ1φ

(
ℵ2(q, b)

)
, (3.14)

where,

ℵ1(q, b) = Max
{
ζ f (T3q, T4b), ζ f (T3q, T1q), ζ f (T4b, T2b),

ζ f (T3q, T1q)ζ f (T4b, T2b)

1 + ζ f (T3q, T4b)
,

ζ f (T3q, T1q)[1 + ζ f (T4b, T2b)]

1 + ζ f (T3q, T4b)
,
[ζ f (T3q, T1q) + ζ f (T4b, T2b)]ζ f (T1q, T2b)

1 + ζ f (T1q, T2b) + ζ f (T3q, T4b)

}
,

= Max
{
ζ f (T1q, T1b), ζ f (T1q, T1q), ζ f (T2b, T2b),

ζ f (T1q, T1q)ζ f (T2b, T2b)

1 + ζ f (T1q, T1b)
,

ζ f (T1q, T1q)
[
1 + ζ f (T2b, T2b)

]
1 + ζ f (T1q, T1b)

,

[
ζ f (T1q, T1q) + ζ f (T2b, T2b)

]
ζ f (T1q, T1b)

1 + ζ f (T1q, T1b) + ζ f (T1q, T1b)


= ζ f (T1q, T1b),

and

ℵ2(q, b) = Min
{
ζ f (T1q, T4b), ζ f (T2b, T3q)

}
= ζ f (T1q, T1b).

It leads to φ
(
ζ f (T1q, T1b)

)
� (λ1 + λ2)φ

(
ζ f (T1q, T1b)

)
, whenever λ1 + λ2 < 1, which implies a

contradiction, so that T1q = T3q = T1b = q.

By following the same method of proof in the mentioned equality (3.12), thus T2p = T4p = T2b = p.

That is, p = q = T1q = T2q = T3q = T4q. Let Ti, i = 1, · · · , 4 have a different fixed-point say r, then

φ
(
ζ f (q, r)

)
= φ

(
ζ f (T1q, T2r)

)
� λ1φ

(
ℵ1(q, r)

)
+ λ2φ

(
ℵ2(q, r)

)
,

where,

ℵ1(q, r) = Max
{
ζ f (T3q, T4r), ζ f (T3q, T1q), ζ f (T4r, T2r),

ζ f (T3q, T1q)ζ f (T4r, T2r)

1 + ζ f (T3q, T4r)
,

ζ f (T3q, T1q)[1 + ζ f (T4r, T2r)]

1 + ζ f (T3q, T4r)
,
[ζ f (T3q, T1q) + ζ f (T4r, T2r)]ζ f (T1q, T2r)

1 + ζ f (T1q, T2r) + ζ f (T3q, T4r)

}
= ζ f (q, r),

and

ℵ2(q, r) = Min
{
ζ f (T1q, T4r), ζ f (T2r, T3q)

}
= ζ f (q, r).
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Subsequently, φ
(
ζ f (q, r)

)
� (λ1 + λ2)φ

(
ζ f (q, r)

)
≺ φ

(
ζ f (q, r)

)
, where λ1 + λ2 < 1. Therefore, q = r

and it is concluded that the mappings Ti, i = 1, · · · , 4 have a unique common fixed-point. �

Example 3.1. Consider the set E = C(R), P =
{
ϕ(t) ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]

}
and SCCMS by ζ f (a, b) =

Sinh−1
(
Sb(a, b)

)
et for all a, b ∈ Γ and t ∈ [0, 1]. Let Γ = [1,∞) and Sb be CSbMS defined by Sb(a, b) =

Max {|a− b|, 2|a− b| − 1} with f (w) = Sinh−1
(
(a + b + 1)Sinh(w1)

)
et.

Then, φ(w) = Sinh(w) and T1(a) = a+4
5 , T2(a) = a+3

4 , T3(a) = a+1
2 , T4(a) = a+2

3 are defined as
continuous.
Here, T1(Γ) ⊆ T4(Γ) and T2(Γ) ⊆ T3(Γ). Also, the pairs (T1, T4) and (T2, T3) are compatible. by taking
λ1 = 1

5 and λ2 = 1
4 , it is deduced that

φ
(
ζ f (T1a, T2b)

)
= Sinh

(
Sinh−1

(
Sb

(
a + 4

5
,

b + 3
4

))
et
)
�

1
5

Sinh
(
ℵ1(a, b)

)
+

1
4

Sinh
(
ℵ2(a, b)

)
,

where,

ℵ1(a, b)

= Max
{

Sinh−1
(
Sb

(
a + 1

2
,

b + 2
3

))
et, Sinh−1

(
Sb

(a + 1
2

,
a + 4

5

))
et, Sinh−1

(
Sb

(
b + 2

3
,

b + 3
4

))
et,

Sinh−1
(
Sb

(
a+1

2 , a+4
5

))
Sinh−1

(
Sb

(
b+2

3 , b+3
4

))
e2t

1 + Sinh−1
(
Sb

(
a+1

2 , b+2
3

))
et

,
Sinh−1

(
Sb

(
a+1

2 , a+4
5

))
et

[
1 + Sinh−1

(
Sb

(
b+2

3 , b+3
4

))
et
]

1 + Sinh−1
(
Sb

(
a+1

2 , b+2
3

))
et

,

[
Sinh−1

(
Sb

(
a+1

2 , a+4
5

))
+ Sinh−1

(
Sb

(
b+2

3 , b+3
4

))]
Sinh−1

(
Sb

(
a+4

5 , b+3
4

))
e2t

1 + Sinh−1
(
Sb

(
a+4

5 , b+3
4

))
et + Sinh−1

(
Sb

(
a+1

2 , b+2
3

))
et

 ,

ℵ2(a, b) = Min
{

Sinh−1
(
Sb

(
a + 4

5
,

b + 2
3

))
et, Sinh−1

(
Sb

(
b + 3

4
,

a + 1
2

))
et
}

.

Hence, Theorem 3.1 is fulfilled and a0 = 1 ∈ Γ is a common fixed point.

Corollary 3.1. Let (Γ, ζ f ) be a complete SCCMS with functions f : P → P and P be a normal cone via
normal constant M. Consider T1, T2 : Γ→ Γ to be a continuous self-mapping such that, for all a, b→ Γ,

φ
(
ζ f (T1a, T2b)

)
� λ1φ

(
ℵ1(a, b)

)
+ λ2φ(ℵ2(a, b)

)
,

where, φ ∈ Φ, 0 < λ1 + λ2 < 1, and

ℵ1(a, b) = Max
{
ζ f (T2a, T1b), ζ f (T2a, T1a), ζ f (T1b, T2b),

ζ f (T2a, T1a)ζ f (T1b, T2b)

1 + ζ f (T2a, T1b)
,

ζ f (T2a, T1a)
[
1 + ζ f (T1b, T2b)

]
1 + ζ f (T2a, T1b)

,

[
ζ f (T2a, T1a) + ζ f (T1b, T2b)

]
ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T2a, T1b)

 ,

ℵ2(a, b) = Min
{
ζ f (T1a, T1b), ζ f (T2b, T2a)

}
.

n−2∑
i=m

‖ f
(
λi

1φ
(
ζ f (b1, b0)

))
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖ → 0.

Then, T1 and T2 have a unique common fixed point in γ.
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Proof. Immediately from Theorem 3.1 by taking T1 = T4 and T2 = T3. �

Corollary 3.2. Let (γ, ζ f ) be a complete SCCMS with functions f : P → P and P be a normal cone via
normal constant M. Consider T1, T4 : Γ→ Γ to be a self-mapping such that,

(1) T1(Γ) ⊆ T4(Γ),
(2) The pair (T1, T4) is compatible,
(3) T1 and T4 are continuous,
(4) For all a, b ∈ Γ,

φ
(
ζ f (T1a, T1b)

)
� λ1φ

(
ℵ1(a, b)

)
+ λ2φ(ℵ2(a, b)

)
, (3.15)

where, φ ∈ Φ, 0 < λ1 + λ2 < 1, and

ℵ1(a, b) = Max
{
ζ f (T4a, T4b), ζ f (T4a, T1a), ζ f (T4b, T1b),

ζ f (T4a, T1a)ζ f (T4b, T1b)

1 + ζ f (T4a, T4b)
,

ζ f (T4a, T1a)
[
1 + ζ f (T4b, T1b)

]
1 + ζ f (T4a, T4b)

,

[
ζ f (T4a, T1a) + ζ f (T4b, T1b)

]
ζ f (T1a, T1b)

1 + ζ f (T1a, T1b) + ζ f (T4a, T4b)

 ,

ℵ2(a, b) = Min
{
ζ f (T1a, T4b), ζ f (T1b, T4a)

}
.

(5)
∑n−2

i=m ‖ f
(
λi

1φ
(
ζ f (b1, b0)

))
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖ → 0.

Then, T1 and T4 have a unique common fixed point in Γ.

Proof. By taking T1 = T2 and T3 = T4 in Theorem 3.1, the desired result is obtained. �

Corollary 3.3. Let (Γ, ζ f ) be a complete SCCMS with functions f : P → P and P be a normal cone via
normal constant M. Consider T : Γ→ Γ to be a continuous self-mapping such that, for all a, b ∈ Γ,

φ
(
ζ f (Ta, Tb)

)
� λ1φ

(
ℵ1(a, b)

)
+ λ2φ

(
ℵ2(a, b)

)
, (3.16)

where, φ ∈ Φ, 0 < λ1 + λ2 < 1, and

ℵ1(a, b) = Max

ζ f (a, b), ζ f (a, Ta), ζ f (b, Tb),
ζ f (a, Ta)ζ f (b, Tb)

1 + ζ f (a, b)
,
ζ f (a, Ta)

[
1 + ζ f (b, Tb)

]
1 + ζ f (a, b)

,[
ζ f (a, Ta) + ζ f (b, Tb)

]
ζ f (Ta, Tb)

1 + ζ f (a, b) + ζ f (Ta, Tb)

 ,

ℵ2(a, b) = Min
{
ζ f (Ta, b), ζ f (Tb, a)

}
.∑n−2

i=m ‖ f
(
λi

1φ
(
ζ f (b1, b0)

))
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖ → 0.

Then, T has a unique common fixed point in Γ.

Proof. Substitute T = T1 = T2 and T3 = T4 = I in proof Theorem 3.1, where I the identity map. �

Remark 3.1. In Corollary 3.3, any term can be taken to set the maximum and λ2 = 0 get the specified
various contractions. Therefore, referring to the expanded Banach [4], the state is satisfied:

φ
(
ζ f (Ta, Tb)

)
� λ1φ

(
ζ f (a, b)

)
. (3.17)
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Corollary 3.4. Let (Γ, ζ f ) be a complete SCCMS with functions f : P → P and P be a normal cone via
normal constant M. Consider T1, T2, T3, T4 : Γ→ Γ to be a self-mapping such that,

(1) T1(Γ) ⊆ T2(Γ) ⊆ T3(Γ),
(2) The pair (T1, T3) is compatible,
(3) Ti are continuous for all i = 1, · · · , 3,
(4) For all a, b ∈ Γ,

φ
(
ζ f (T1a, T2b)

)
� λ1φ

(
ℵ1(a, b)

)
+ λ2φ

(
ℵ2(a, b)

)
, (3.18)

where, φ ∈ Φ, 0 < λ1 + λ2 < 1, and

ℵ1(a, b) = Max
{
ζ f (T3a, T2b), ζ f (T3a, T1a),

ζ f (T3a, T1a)

1 + ζ f (T3a, T2b)
,

ζ f (T3a, T1a)ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T3a, T2b)

}
,

ℵ2(a, b) = Min
{
ζ f (T1a, T2b), ζ f (T2b, T3a)

}
.

(5)
∑n−2

i=m ‖ f
(
λi

1φ
(
ζ f (b1, b0)

))
‖+ ‖λn−1

1 φ
(
ζ f (b1, b0)

)
‖ → 0.

Then, Ti, i = 1, · · · , 3 have a unique common fixed point in Γ.

Proof. Put T2 = T4 in the proof of Theorem 3.1, the result is deduced. �

Remark 3.2. Clearly, if φ(w) = w, then the inequality (3.1) in Theorem 3.1 becomes

ζ f (T1a, T2b) � λ1ℵ1(a, b) + λ2ℵ2(a, b),

where, λ1,λ2 ∈ (0, 1), and 0 < λ1 + λ2 < 1, but

ℵ1(a, b) = Max
{
ζ f (T3a, T4b), ζ f (T3a, T1a), ζ f (T4b, T2b),

ζ f (T3a, T1a)ζ f (T4b, T2b)

1 + ζ f (T3a, T4b)
,

ζ f (T3a, T1a)
[
1 + ζ f (T4b, T2b)

]
1 + ζ f (T3a, T4b)

,

[
ζ f (T3a, T1a) + ζ f (T4b, T2b)

]
ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T3a, T4b)


ℵ2(a, b) = Min

{
ζ f (T1a, T4b), ζ f (T2b, T3a)

}
.

Next, the study shows some specific cases of Theorem 3.1 and Remark 3.2.

Corollary 3.5. Suppose (Γ, ζ f ) is a complete SCCMS with functions f : P → P and P is a normal cone
via normal constant M. Consider T1, T2, T3, T4 : Γ→ Γ to be a self-mapping such that,

(1) T1(Γ) ⊆ T4(Γ) and T2(Γ) ⊆ T3(Γ),
(2) The pair (T1, T4) and (T2, T3) are compatible,
(3) Ti are continuous for all i = 1, · · · , 4,
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(4) For all a, b ∈ Γ,

ζ f (T1a, T2b) � λ1ζ f (T3a, T4b) + λ2ζ f (T3a, T1a) + λ3ζ f (T4b, T2b) + λ4
ζ f (T3a, T1a)ζ f (T4b, T2b)

1 + ζ f (T3a, T4b)

+ λ5

ζ f (T3a, T1a)
[
1 + ζ f (T4b, T2b)

]
1 + ζ f (T3a, T4b)

+ λ6

[
ζ f (T3a, T1a) + ζ f (T4b, T2b)

]
ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T3a, T4b)

+ λ7Min
{
ζ f (T1a, T4b), ζ f (T2b, T3a)

}
.

where, λi ∈ (0, 1), for all i = 1, · · · , 7, and δ = λ1+λ3
1−λ2−λ4−λ5−λ6

,

(5)
∑n−2

i=m ‖ f
(
δiζ f (b1, b0)

)
‖+ ‖δn−1ζ f (b1, b0)‖ → 0.

Then, Ti, i = 1, · · · , 4 have a unique common fixed point in Γ.

Proof. It suffices to observe, for each a, b ∈ Γ and by the same way of Theorem 3.1 with note of

Remark 3.2, let take ∆n = ζ f (b2n+1, b2n) and ∆n−1 = ζ f (b2n, b2n−1) in (3.4), (3.5) such that λi ∈ (0, 1),

for all i = 1, · · · , 7, it results in that

∆n �
λ1 + λ3

1− λ2 − λ4 − λ5 − λ6
∆n−1 = δ∆n−1.

Therefore, by Theorem 3.1, the desired result is obtained. �

Corollary 3.6. Suppose (Γ, ζ f ) is a complete SCCMS with functions f : P → P and P is a normal cone
via normal constant M. Consider T1, T2 : Γ → Γ to be a self-mapping and continuous such that, for all
a, b ∈ Γ,

ζ f (T1a, T2b) � λ1ζ f (T2a, T1b) + λ2ζ f (T2a, T1a) + λ3ζ f (T1b, T2b) + λ4
ζ f (T2a, T1a)ζ f (T1b, T2b)

1 + ζ f (T2a, T1b)

+ λ5

ζ f (T2a, T1a)
[
1 + ζ f (T1b, T2b)

]
1 + ζ f (T2a, T1b)

+ λ6

[
ζ f (T2a, T1a) + ζ f (T1b, T2b)

]
ζ f (T1a, T2b)

1 + ζ f (T1a, T2b) + ζ f (T2a, T1b)

+ λ7Min{ζ f (T1a, T1b), ζ f (T2b, T2a)}.

where, λi ∈ (0, 1), for all i = 1, · · · , 7, and δ = λ1+λ3
1−λ2−λ4−λ5−λ6

,∑n−2
i=m ‖ f

(
δiζ f (b1, b0)

)
‖+ ‖δn−1ζ f (b1, b0)‖ → 0.

Then, Ti, i = 1, 2 have a unique common fixed point in Γ.

Proof. By taking T1 = T4 and T2 = T3 in Corollary 3.5, the desired result is obtained. �

Remark 3.3. By adopting the proofs provided in Corollary 3.2, 3.3, and 3.4 and with Remark 3.1, the same
conclusions in the context seen in Corollary 3.5 hold the conditions.

4. Applications

The fixed-point results play a vital role in the existence of various classes of equations, precisely,

for solving differential equations, integral equations and fractional differential equations, etc. This

has led to improvements in the applications of fixed-point techniques.
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4.1. Polynomial equations.

Theorem 4.1. Consider the equation below

(a + 1)p + 1 = (ξ+ 1)a(a + 1)p + ξa, (4.1)

has a unique solution in the interval [0, 1] and for p ∈N.

Proof. Define the mapping T : [0, 1] → [0, 1] by Ta =
(a+1)p+1

(ξ+1)(a+1)p+ξ for p ∈ N. Noting that a is a

fixed-point if and only if there is a solution to Eq.(4.1).

By taking ζ f (a, b) = |a − b|et, for t ∈ [0, 1], and f (w) = e(a+b+1)w+t
− et, it is easy to observe that

([0, 1], ζ f ) is a complete SCCMS. Therefore,

ζ f (Ta, Tb) =

∣∣∣∣∣∣ (a + 1)p + 1
(ξ+ 1)(a + 1)p + ξ

−
(b + 1)p + 1

(ξ+ 1)(b + 1)p + ξ

∣∣∣∣∣∣ et,

�
1

(2ξ+ 1)2

∣∣∣(a + 1)p − (b + 1)p
∣∣∣ et,

�
n2n−1

(2ξ+ 1)2 |a− b|et,

�
ξ

(2ξ+ 1)2 |a− b|et,

= λ1ζ f (a, b).

such that ξ ≥ p2p−1 and λ1 = ξ
(2ξ+1)2 ∈ [0, 1),λ2 = 0. Thus, all the axioms in Corollary 3.3 and Eq.

(3.17) of remark 3.1 via φ(w) = w are held, so they have a UFP. �

4.2. Non-linear integral equation. Let us consider the nonlinear integral equation

u(t) = λ1

∫ t

0
G(t, w)F (w, u(t))dw, t ∈ [0, 1],λ1 ≥ 0, (4.2)

where the functions G : [0, 1]2 → R+, and F : [0, 1] ×R→ R for a given.

Now, let Γ = C[0, 1] be a set of all continuous functions on [0, 1] endowed with the SCCMS

ζ f (u1, u2) = supw∈[0,1]Sinh−1
( ∣∣∣u1(w) − u2(w)

∣∣∣q )e t3 , (4.3)

for each u1, u2 ∈ C[0, 1], 0 < q ≤ 1. Clearly, (Γ, ζ f ) is a complete SCCMS with auxiliary function

f (w) = Sinh−1
(
∆Sinh(w)

)
e
t
3 , ∆ = Max{u1, u2}+ 1, w ∈ P = {ϕ(t) ∈ E : ϕ(t) ≥ 0, t ∈ [0, 1]}.

Moreover, the mapping T : Γ→ Γ is seen by

Tu(t) = λ1

∫ t

0
G(t, w)F (w, u(t))dw,∀u ∈ Γ, t ∈ [0, 1]. (4.4)

Theorem 4.2. Consider the integral equation in (4.2) for the following necessaries:

(1) F is continuous and there is such thatF (w, u1(t))−F (w, u(t)) ≤
∣∣∣u1(w) − u2(w)

∣∣∣ , t, w ∈ [0, 1].
(2) T is a continuous map.
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(3) The constant λ1, and function F hold the condition

0 < λ1

∫ t

0
G(t, w)dw <

(
3λ1e−t

) 1
q ,

for t ∈ (0, 1). The integral equation in (4.2) has a unique solution.

Proof. By the definition of (4.3), with Lemma 2.6, it is deduced that (0 < q ≤ 1)

ζ f (Tu1, Tu2) = supw∈[0,1]Sinh−1
( ∣∣∣Tu1(w) − Tu2(w)

∣∣∣q )et

3

= supw∈[0,1]Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)F (w, u1(t))dw− λ1

∫ t

0
G(t, w)F (w, u(t))dw

∣∣∣∣∣∣
q )

et

3

= supw∈[0,1]Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)

(
F (w, u1(t)) −F (w, u2(t))

)
dw

∣∣∣∣∣∣
q )

et

3

� supw∈[0,1]Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)|u1(w) − u2(w)|dw

∣∣∣∣∣∣
q )

et

3

= supw∈[0,1]Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)

(
|u1(w) − u2(w)|q

) 1
q dw

∣∣∣∣∣∣
q )

et

3

= supw∈[0,1]Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)

(
Sinh

(
Sinh−1

(
|u1(w) − u2(w)|q

) 1
q
)
dw

∣∣∣∣∣∣
q )

et

3

� Sinh−1
( ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)

(
Sinh(ζ f (u1, u2))

1
q

)
dw

∣∣∣∣∣∣
q )

et

3

� Sinh−1
(

et

3
Sinh

(
ζ f (u1, u2)

) ∣∣∣∣∣∣λ1

∫ t

0
G(t, w)dw

∣∣∣∣∣∣
q )

It is implying that

Sinh
(
ζ f (Tu1, Tu2)

)
� λ1Sinh

(
ζ f (u1, u2)

)
.

where λ1 ∈ (0, 1) and φ(w) = Sinh(w). Therefore, all of the conditions of Corollary 3.3 are met,

and the desired results are obtained. �

5. Conclusions

This study developed a novel concept of SCCMS, which is a generalization of CSbMS and ex-

tended to SbMS in Cone metric space. It provided some results for the specifically φ-contraction

fixed point theorems, with various rational contractions in SCCMS with some topological results.

Moreover, it illustrated the application of polynomial and nonlinear integral equations. In fu-

ture, the study will examine the strongly composed fuzzy metric space and high generalized

contractions with establishing some new applications with non-linear (or fractional) differential

equations.
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