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ABSTRACT. This study investigates emerging concepts for defining and categorizing topological spaces based on 

various features. Paralindelöf spaces are one such idea that is required to understand the compactness and covering 

features of topological spaces. This study is the first to introduce D-paralindelöf spaces, a novel type of topological 

space defined combining D-sets and paralindelöf spaces. The study's goal is to offer precise definitions for 

paralindelöf spaces and D-paralindelöf spaces, while also investigating their properties and linkages with other 

forms of topological spaces. The study contains various theoretical conclusions, definitions, and features that are 

rigorously proven by extending previous theorems on paralindelöf spaces. It is further backed by extensive 

illustrative examples. 
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1. Introduction 

In topological structures, there is a mathematical way of studying the characteristics of sets 

and their relationships is provided by the topological spaces. Topological spaces of lindelöfness, 

paralindelöfness, metalindelöf, difference metalindelöfness, difference lindelöfness, and their 

variants are among the many topological concepts that are essential to understanding the 

topological structure of spaces. We explore the deeper implications and connections among 

these concepts in this research, providing insight into the complicated content of topological 

spaces. 

In topological spaces, the lindelöf spaces are a basic and interesting type of topological space 

that exhibits special characteristics in the study of topology. Lindelöf spaces present a 

significant viewpoint on the form of open covers. The notion of lindelöf was provided by 

Alexandroff and Urysohn (1929), see Engelking [1], which if each open cover of a topological 

space has a countable subcover, then the space is said to be lindelöf. 

Moreover, a generalization about the extensively studied lindelöf space in topology is called 

paralindelöf spaces, where the notion introduced and studied by Tall [2] is that the topological 

space is called paralindelöf if every open cover contains an open locally countable refinement. 

The concept was introduced to explore the interaction between local covering qualities. This 

notion provides an advanced representation of the extent and structure of open covers in a 

topological space by using locally countability and lindelöf spaces. 

Additionally, several generalizations of lindelöf spaces were introduced, one of them by 

Engelking [1] called metalindelöf spaces. If each open cover of a topological space has an open 

point countable refinement, then the space is called metalindelöf. Also, the core of 

metalindelöfness is captured in this definition, which ensures the presence of a specially refined 

covering that observes lindelöfness's global countability as well as metacompactness's intrinsic 

local finiteness. Metalindelöf spaces are distinguished by the complex interplay of these 

characteristics, which provide an exclusive viewpoint on the structure of open sets. 

Also, in topological spaces, the difference sets allow us to define and explore new key 

topological notions, especially the properties and notions that relate to covering, separation 

axioms, and compactness. Many papers studied and used several topological spaces with this 

notion as a generalization of the spaces by using a special open cover called 𝐷 −cover. Such as 

the notion of 𝐷 −metalindelöf spaces established by Oudetallah, et al. [3], which showed every 
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D-cover of topological space has a point countable parallel refinement. Also, Qoqazeh, et al. [4] 

defined the notion of 𝐷 −lindelöf spaces, in which every 𝐷 −cover of a topological space has a 

countable subcover. 

In the same way, we will use the concepts of paralindelöf spaces and difference sets (called 

𝐷 −sets) to define and study new key topological notions called 𝐷 −paralindelöf spaces. 

Alexandroff and Urysohn (1924) introduced the notion of compactness, see Engelking [1]. 

Also, Alexandroff and Urysohn (1929) contributed the notion of lindelöf spaces, see Engelking 

[1]. The compactness concept, which is more often used and implies the presence of a finite 

subcover, is weakened by the lindelöf notion. Later, Dieudonné [5] first proposed paracompact 

spaces as a conceptual generalisation of compactness. Since then, several fields of topology and 

analysis have greatly benefited from paracompactness and its tools, including refinement 

techniques and locally finite or closure−preserving conditions.  

More applications of the paracompactness concepts with various topological spaces can be 

obtained from the studies [6-22 ]. 

Lindelöf spaces have been generalised in a number of ways in literary works, and each of 

these generalisations is examined independently for different purposes. To generalise 

lindelöfness, Frolik [23] was first suggested and researched the concept of weakly lindelöf 

spaces, and it was further explored by several authors. Burke [24] discussed the closed mapping 

characteristics of the paralindelöf spaces and associated it with topological spaces. He 

demonstrated that a paralindelöf property is maintained under perfect mappings but not under 

closed mappings. Further, the perfect mapping results of σ −paralindelöf spaces and the spaces 

with σ −locally countable basis are provided. 

Additionally, by using open sets, Tong (1982)[25] proposed the concept of difference sets. He 

then utilized this idea to speeity and study an advanced separation axiom named 𝐷𝑖(𝑖 = 0,1,2) 

spaces. Fleissner [26] was responsible for creating the paralindelöf concept. About the topic, 

Balasubramanian [27] initialized and investigated certain concepts of nearly−lindelöf spaces, 

which is in between lindelöf and weakly−lindelöf spaces. Also, Dissanayake and Willard [28] 

were first suggested the notion of almost lindelöf spaces. Therefore, Ganster, et al. [29] defined 

and studied σ −lindelöf spaces. 

Moreover, Cammaroto and Santoro [30] contributed the notions of nearly regular−lindelöf, 

almost regular−lindelöf, and weakly regular−lindelöf spaces on using regular covers. In 
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addition, as a generalisation of regular−lindelöf spaces, nearly regular−lindelöf, almost 

regular−lindelöf, and weakly regular−lindelöf spaces are all studied by Fawakhreh and 

Kilicman [31], they proposed characterizations and certain attributes for these spaces. They are 

also researched in relation to one another.  

Additionally, Barr, et al. [32] introduced the conditions for a topological space that guarantee 

its product with each lindelöf space is lindelöf, and presented a Alster's condition, which they 

defined to as spaces satisfy his condition as Alster spaces, makes it a key tool. In addition, they 

examine a few variations upon scattered spaces that is significant to this study. 

Thereafter, Kilicman and Salleh [33] proposed the idea of pairwise weakly lindelöf 

bitopological spaces, researched it, and found some findings. Additionally, they looked at some 

of the properties of pairwise weakly lindelöf subspaces and subsets and demonstrated that a 

pairwise weakly lindelöf property is not inherited. Alfaham and Al-Awadi [34] introduced the 

notions of paralindelöf and semi−paralindelöf bitopological spaces. They also determined some 

of these notions' features and provided an explanation of their relationship. 

Al-Fatlawee [35] also defined a topological 𝑚 −paralindelöf, countable paralindelöf, 𝑚 −

σ −paralindelöf, and countable σ −paralindelöf and examined several of these notions' 

characteristics before relating them. They provided the connection between normal spaces and 

paralindelöf spaces. In addition, Juhasz, et al. [36] introduced and analysed a type of weakly 

linear lindelöf spaces. While Dhanabalan and Padma [37] introduced and examined some 

product spaces and μ −paralindelöf spaces within generalized topological spaces. Furthermore, 

Qoqazeh, et al. [4] defined the notion of 𝐷 −lindelöf spaces. Bani-Ahmad, et al. [38] defined and 

analysed the new type of 𝐷 −perfect functions, a type of perfect function in topological spaces. 

Moreover, Sarsak [39] presented and studied, as extended topological spaces (GTSs), the 

notion of μ − β −lindelöf sets as a subclass of both highly μ −lindelöf sets and μ −semi−lindelöf 

sets. Additionally, he studied and introduced a novel class of generalized open sets in GTSs 

known as τμ − β −open sets and uses them to derive additional features of μ − β −Lindelöf sets. 

While Song and Xuan [40] studied the topological characteristics of star weakly lindelöf spaces, 

they investigated the links between star almost lindelöf spaces, star weakly lindelöf spaces, and 

the spaces of star lindelöf. 
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2. Preliminaries 

This Within this section, the main associated definitions, properties, examples, figures, and 

theorems to our study are provided as follows:  

Definition 2.1 [1] Let (𝑍, ℓ) be a topological space. Then �̃� = {𝑂𝜔: 𝜔 ∈ 𝛺, 𝑂𝜔 ⊆ 𝑍} is called cover of 𝑍 if 

and only if 𝑍 =  ⋃ 𝑂𝜔𝜔∈𝛺
. Observe the following Figure 2.1 that represent the cover of space 𝑍.                          

 

Figure 2.1 The cover of the topological space. 

Moreover, there are types of covers of the topological space as follows [1]: 

• Open cover: A collection of open sets that covers the space is called an open cover of a   

space. 

• Closed cover: A collection of closed sets that covers the space is called a closed cover of a 

space. 

• Finite cover: A collection of finite sets that covers the space is called a finite cover of a 

space. 

• Countable cover: A collection of countable sets that covers the space is called a countable 

cover of a space. 

Definition 2.2 [1] Let (𝑍, ℓ) be a topological space and �̃� be a cover of 𝑍. Then a subcover of �̃� of 𝑍 is a 

set �̃�  ⊆ �̃� such that �̃� is also cover for 𝑍. Observe the following Figure 2.2 that represents the subcover 

of space Z. 

 

Figure 2.2 The subcover of the topological space. 
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Moreover, there are types of subcovers of the topological space as follows: 

• Finite subcover [1]: A collection of finite subsets that covers the space is called a finite 

subcover of a space. 

• Countable subcover [1]: A collection of countable subsets that covers the space is called a 

couuntable subcover of a space. 

Definition 2.3 [1] A new cover in the same space that has each set as a subset of some set from the old 

cover is called a refinement of the cover of space 𝑍. i.e., the cover �̃� = {𝑃𝜆: 𝜆 ∈ 𝛬} is a refinement of the 

cover �̃� = {𝑂𝜔: 𝜔 ∈ 𝛺} if and only if for all 𝑃𝜆 ∈ �̃�, there exist 𝑂𝜔 ∈ �̃� such that 𝑃𝜆 ⊆ 𝑂𝜔. 

Definition 2.4 [41] When all open cover of (𝑍, ℓ) has a point finite open refinement, then a topological 

space (𝑍, ℓ) is said to be a metacompact space. 

Definition 2.5 [42] If 𝐹 ⊆ 𝑍 such that 𝐷𝑧 ∩ 𝐹 ≠ ∅, for all 𝑧 ∈ 𝑍 and every difference set 𝐷𝑧 containing 

𝑧, then 𝐹 is called a difference dense. Observe the following Figure 2.3 that represents the difference dense 

set in the space (𝑍, ℓ): 

 

Figure 2.3 The difference dense in the topological space. 

Definition 2.6 [42] If a topological space (𝑍, ℓ) has a countable subset of difference dense, then it is said 

to be difference separable.  

Definition 2.7 [42] Let (𝑍, ℓ) and (𝑆, 𝜌) be any two topological spaces are required to be considered. A 

function 𝛹: 𝑍 ⟶ 𝑆 is continuous if the preimage of each open set is open in, or alternatively, if the 

preimage of each closed set is closed. In other words, if 𝑅 ∈ 𝜌, then 𝛹−1(𝑅) ∈ ℓ. Observe the following 

Figure 2.4 that represents the continuous function of the topological spaces. 

 

Figure 2.4 The continuous function of the topological spaces. 
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Definition 2.8 [1] If each open cover of a topological space (𝑍, ℓ) has a countable subcover, then the 

topological space is said to be Lindelöf space. 

In the field of general topology, the lindelöf spaces are significant type having special 

covering characteristics. Observe the Flow Chart 3.1 that represents the impact relation of 

lindelöf spaces with other topological spaces. 

Definition 2.9 [2] If each open cover of a topological space (𝑍, ℓ) has an open locally countable 

refinement, then the topological space is said to be paralindelöf space.  

Definition 2.10 [25] Whenever there are 𝐻 and 𝐺 are two open sets in a way that 𝐻 ≠ 𝐺 and 𝐹 = 𝐻 −

𝐺, then it is said that a subset 𝐹 of a topological space (𝑍, ℓ) is a difference set. We define 𝐹 as a 𝐷 −set 

generated by 𝐻 and 𝐺. If 𝐹 = 𝐻 and 𝐺 = 𝜙, then each open set 𝐻 that differs from 𝑍 is a 𝐷 −set. Observe 

the following Figure 2.5 that represents the difference sets of the topological space (𝑍, ℓ). 

 

Figure 2.5 The difference sets of the topological space. 

Definition 2.11 [25] Let (𝑍, ℓ) and (𝑆, 𝜌) be any topological spaces. If 𝛹: (𝑍, ℓ)  ⟶ (𝑆, 𝜌) be closed, 

continuous, surjective, and proper function (or 𝛹−1(𝑠) is compact in 𝑍, for all 𝑠 ∈ 𝑆). Then the function 

𝛹 is said to be perfect. 

Definition 2.12 [1] Let (𝑍, ℓ) and (𝑆, 𝜌) be any topological spaces and 𝛹: 𝑍 ⟶ 𝑆. If the image 𝛹(𝐾) is 

closed in 𝑆 for any closed set 𝐾 in 𝑍, then the function 𝛹 is said to be closed. Observe the following 

Figure 2.6 that represents the closed function of topological spaces. 

 

Figure 2.6 The closed function of topological space. 

 



8 Int. J. Anal. Appl. (2025), 23:24 

 

Definition 2.13 [1] If each open cover of a topological space has a finite subcover, then the space is called 

compact. 

Definition 2.14 [1] Let's say there are two topological spaces (𝑍, ℓ) and (𝑆, 𝜌). The topological space is 

thus represented by the Cartesian product (𝑍 × 𝑆, ℓ × 𝜌).  

To illustrate more, let 𝑍 =  ℝ, 𝑆 = ℝ, and 𝑂 ∈ ℓ, 𝑃 ∈ 𝜌. Then observe the following Figure 2.7 

that represents the Cartesian product (ℝ × ℝ, 𝑂 × 𝑃) of the topological spaces. 

 

Figure 2.7 The Cartesian product of topological space. 

Definition 2.15 [43] If each open cover of a topological space has an open point countable refinement, 

then the space is called metalindelöf. 

Definition 2.16 [44] Let (𝑍, ℓ) and (𝑆, 𝜌) be any topological spaces and 𝛹: 𝑍 ⟶ 𝑆. If the image 𝛹(𝐻) 

is open in 𝑆 for any open set 𝐻 in 𝑍, then the function 𝛹 is said to be open. Observe the following Figure 

2.8 that represents the open function of topological spaces. 

 

Figure 2.8 The open function of topological space. 

Definition 2.17 [44] When all open cover of (𝑍, ℓ) has a locally finite open refinement, then a topological 

space (𝑍, ℓ) is said to be a paracompact space. 

Definition 2.18 [44] If every point in a topological space (𝑍, ℓ) has a neighborhood that intersects only a 

finite number of the sets in the collection, then the collection of subsets of 𝑍 is said to be locally finite. 
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Definition 2.19 [45] If every point in a topological space (𝑍, ℓ) has a neighborhood that intersects only a 

countable number of the sets in the collection, then the collection of subsets of 𝑍 is said to be locally 

countable. 

Definition 2.20 [35] When all every countable open cover in a topological space (𝑍, ℓ) has a locally 

countable open refinement. Then the space is said to be countable paralindelöf. 

Definition 2.21 [4] When all 𝑂𝜔 is a difference set for all 𝜔 ∈ 𝛺, then a cover �̃� of a topological space 

(𝑍, ℓ) is said to be 𝐷 −cover. 

Definition 2.22 [4] When all countable difference cover of a topological space (𝑍, ℓ) has a finite 

subcover, then the space is said to be 𝐷 −countably compact. 

Definition 2.23 [4] If each 𝐷 −cover of a topological space (𝑍, ℓ) has a finite subcover, thereafter the 

space is said to be 𝐷 −compact. 

Definition 2.24 [3] If each 𝐷 −cover of topological space has a point countable parallel refinement, then 

the space is called 𝐷 −metalindelöf space. 

Definition 2.25 [3] If each 𝐷 −cover of topological space has a point finite parallel refinement, then the 

space is called 𝐷 −metalcompact space. 

Definition 2.26 [4] When all of difference cover of a topological space (𝑍, ℓ) has a countable subcover, 

then the space is said to be 𝐷 −lindelöf. 

It is important to note that a topological space (𝑍, ℓ) will include specific topological 

properties if it has a 𝐷 −topological property. We have the following properties [4]: 

• A topological space (𝑍, ℓ) is lindelöf if 𝐷 −lindelöf is true for it. 

• A topological space is called compact when (𝑍, ℓ) is 𝐷 −compact. 

Theorem 2.27 [4] A difference compact space's continuous image is a difference compact space. 

Theorem 2.28 [4] Each 𝐷 −compact space is a compact space. 

Theorem 2.29 [4] Any open cover is a 𝐷 −cover. 

Remark 2.30 [4] Any open set is a 𝐷 −set, but the converse need not to be true. 

Example 2.31 Let 𝑍 =  {𝑎, 𝑏, 𝑐} and ℓ =  {𝜙, 𝑍, {𝑎}, {𝑎, 𝑏}}. Then 𝐷 =  {𝑎, 𝑏} − {𝑎}  =  {𝑏} is 𝐷 −set. 

But 𝐷 not open set. 

Definition 2.32 [38] If 𝛹 is a continuous, closed function and 𝛹−1(𝑠) is a difference compact function 

for any 𝑠 ∈ 𝑆, then the function is said to be a 𝐷 −perfect function. 

Definition 2.33 [46] If every open set is clopen, then the topological space (𝑍, ℓ) is called locally 

indiscrete. 
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3. Notions and Properties of Difference Paralindelöf Spaces 

In this section, the notion of difference paralindelöf space in topological spaces and discusses 

how it relates to other types of spaces are introduced. Also, describe some of their 

characteristics. This would establish the groundwork for presenting some theoretical findings 

related to the topic at hand. 

Definition 3.1 If any 𝐷 −cover of a topological space (𝑍, ℓ) has an open locally countable 

refinement, then the space is said to be 𝐷 −paralindelöf space.       

  To illustrate more, let �̃� = {𝑂𝜔: 𝜔 ∈ Ω} be any 𝐷 −cover of the topological space (𝑍, ℓ) has an 

open locally countable refinement �̃� = {𝑃𝜆: 𝜆 ∈ Λ}. i.e. each 𝑂𝜔 is a 𝐷 −set for all 𝜔 ∈ Ω such that 

𝑍 = ⋃ 𝑂𝜔𝜔∈𝛺  has an open locally countable refinement �̃� = {𝑃𝜆: 𝜆 ∈ Λ}, which the open  

refinement �̃� is a locally countable if every point 𝑥𝑖 of the space 𝑍 has a neighborhood 𝑁𝑖 such 

that 𝑃𝜆 ∩ 𝑁𝑖 ≠ ∅ is countable for all λ, 𝑖 ∈ Λ. Then observe the following Figure 3.1 that 

represents the 𝐷 −paralindelöf space (𝑍, ℓ): 

 

Figure 3.1 The difference paralindelöf space. 

In topological spaces, the difference paralindelöf space represents a basic class characterized 

by special coverings. Observe the following of study's results flow chart that represents the 

relation of difference paralindelöf spaces with other topological spaces. 

 

Flow chart 3.1 The study's results flow chart. 
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Theorem 3.2 Every 𝐷 −paralindelöf space (𝑍, ℓ) is paralindelöf. 

Proof. Let (𝑍, ℓ) be a 𝐷 −paralindelöf space and �̃� = {𝑂𝜔: 𝜔 ∈ Ω} be an open cover of (𝑍, ℓ). Then 

by Theorem 2.29, the cover �̃� is a 𝐷 −cover, and so it has an open locally countable refinement. 

Hence, we get the result that the space (𝑍, ℓ) is paralindelöf. 

Example 3.3 Given that the space (ℝ, ℓ𝑢) is a 𝐷 −paralindelöf, it implies that the topological 

space is paralindelöf. 

The next illustration in the Example 3.2.2 shows why the above theorem's converse is not 

always true. 

Example 3.4 A topological space (ℝ, ℓ𝑐𝑜𝑓) is paralindelöf, but it is not a 𝐷 −paralindelof space. 

Since every set of the form ℝ − {𝑛}, for all 𝑛 ∈ ℝ is an open set in a topological space (ℝ, ℓ𝑐𝑜𝑓),  

then let 𝑂 =  ℝ − {𝑛} and 𝑃 = ℝ − {𝑚} be any two open sets, for all 𝑛, 𝑚 ∈ ℝ such that 𝐹 =

 𝑂 − 𝑃 =  {𝑚} is a 𝐷 −set that is not open. Now, �̃� = {{𝑚}: 𝑚 ∈ ℝ} is a 𝐷 −cover of the space 

(ℝ, ℓ𝑐𝑜𝑓) that is no of a locally countable refinement. Suppose that �̃� = {{𝑚}: 𝑚 ∈ ℝ} has a 

locally open countable refinement {{𝑚1}, {𝑚2}, … }, then ℝ  ⊆ ⋃ 𝑚𝑖
∞
𝑖=1 , and hence we get that ℝ is 

a countable set, is true. Which is a contradiction with the fact that ℝ is uncountable set. 

The contrapositive of the given Theorem 3.2 is shown by the illustration in the following 

example: 

Example 3.5 The topological space (ℝ, ℓ𝑙.𝑟) is not paralindelöf, so it is not a 𝐷 −paralindelöf 

space. 

The purpose of the next Theorem 3.2.2 is to demonstrate that the converses of the previous 

Theorem 3.2 might hold valid in under conditions. 

Theorem 3.6 If any topological space (𝑍, ℓ) is locally indiscrete and paralindelöf, then it is a 

𝐷 −paralindelöf space. 

Proof. Let �̃� = {𝑂𝜔: 𝜔 ∈ Ω} be any 𝐷 −cover of (𝑍, ℓ) and (𝑍, ℓ) be a locally indiscrete and 

paralindelöf space. Then each 𝐷 −set 𝑂𝜔 is clopen for all ω ∈ Ω. So �̃� is open cover of (𝑍, ℓ). 

Since (𝑍, ℓ) is a paralindelöf space, then �̃� has an open locally countable refinement. Hence, we 

get the result that (𝑍, ℓ) is a  𝐷 −paralindelöf space. 

Example 3.7 (i) Let 𝑍 = ℝ and ℓ𝑖𝑛𝑑 be a topology on 𝑍.  The topological space (ℝ, ℓ𝑖𝑛𝑑) is locally 

indiscrete and paralindelöf, hence by applying the Theorem 3.6 we get that (ℝ, ℓ𝑖𝑛𝑑) is clearly 

𝐷 −paralindelöf topological space. 
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(ii) Let 𝑍 = ℝ and ℓ = {𝜙, ℝ, ℝ − {3}} be a topology on 𝑍. Then (𝑍, ℓ) is locally indiscrete and 

paralindelöf space. Hence, by applying the Theorem 3.6 we get that (𝑍, ℓ) is clearly 

𝐷 −paralindelöf topological space. 

Theorem 3.8 Given that 𝐹 ⊆ 𝑍 and (𝑍, ℓ) is a topological space, (𝐹, ℓ𝐹) is only 𝐷 −paralindelöf as and 

only as every 𝐷 −cover of 𝐹 by difference sets in 𝑍 has an open locally countable refinement. 

Proof. ⇒) Suppose that (𝐹, ℓ𝐹) is 𝐷 −paralindelöf topological space, for all 𝐹 ⊆ 𝑍 and �̃� =

{𝑂𝜔: 𝜔 ∈ Ω} is 𝐷 −cover of 𝐹 by difference sets in 𝑍. Let 𝑂ω
∗ = 𝑂ω ∩ 𝐹 be a difference set in 𝐹, for 

all ω ∈ Ω. Then �̃�∗ = {𝑂𝜔
∗ : 𝜔 ∈ Ω} is a difference cover of 𝐹 by difference sets in 𝐹. Now, since the 

topological space (𝐹, ℓ𝐹) is 𝐷 −paralindelöf, then the difference cover �̃�∗ has an open locally 

countable refinement {𝑂𝜔1
∗ , 𝑂𝜔2

∗ , … } for the subset 𝐹. Because of this, the family {𝑂ω1, 𝑂ω2, … } is 

an open locally countable refinement of �̃� in 𝑍 for 𝐹, where 𝑜𝜔𝑖
∗ = 𝑜𝜔𝑖 ∩ 𝐹, ∀ 𝑖 = 1,2, … . Hence, 

we get the required result. 

⇐) Suppose that there is an open locally countable refinement for any difference cover of 𝐹 

by difference sets in 𝑍. Assuming that �̃� = {𝐹ω: ω ∈ Ω} is a difference cover of 𝐹 by difference 

sets in 𝐹. Therefore, there is a difference set of 𝑂𝜔 in 𝑍 such that 𝐹ω = 𝑂ω ∩ 𝐹 for all ω ∈ Ω. At 

this point, we get that �̃� = {𝑂ω: ω ∈ Ω} is a difference cover of 𝐹 by difference sets in 𝑍. On this 

basis of the supposition that �̃� has an open locally countable refinement {𝑂ω1, 𝑂ω2, … }. Since 

𝐹ω ⊆ 𝑂𝜔, for all ω ∈ Ω, 𝑖 = 1, 2, …, the family {𝐹ω1, 𝐹ω2, … } is an open locally countable 

refinement of �̃� for 𝐹. Hence, we get the result that the space (𝐹, ℓ𝐹) is 𝐷 −paralindelöf. 

Let's look at next corollaries, which every open cover is a 𝐷 −cover. 

Corollary 3.9 Let (𝐹, ℓ𝐹) be any 𝐷 −paralindelöf topological space. Then all open cover of 𝐹 by open sets 

in 𝑍 has an open locally countable refinement. 

Corollary 3.10 A topological space (𝐹, ℓ𝐹) is paralindelöf if every 𝐷 −cover of 𝐹 by 𝐷 −sets in 𝑍 has an 

open locally countable refinement. 

Proof. Let (𝑍, ℓ) be a paralindelöf topological space. Then by applying the Theorem 3.2.1 that 

every 𝐷 −paralindelöf space is a paralindelöf, we get that the second trend from the earlier 

Theorem 3.8 is the direct cause of this corollary. 

Theorem 3.10 Let (𝑍, ℓ1) and (𝑍, ℓ2) be any two topological spaces, respectively. If ℓ1 ⊆ ℓ2 and (𝑍, ℓ2) 

is 𝐷 −paralindelöf space, then (𝑍, ℓ1) is a 𝐷 −paralindelöf space. 

Proof. Let (𝑍, ℓ2) is 𝐷 −paralindelöf space and ℓ1 ⊆ ℓ2 such that �̃� = {𝑂𝜔: 𝜔 ∈ Ω} be a difference 

cover of the topological space (𝑍, ℓ1). Since ℓ1 ⊆ ℓ2, then we get that �̃� is also a 𝐷 −cover of the 



Int. J. Anal. Appl. (2025), 23:24 13 

 

space (𝑍, ℓ1). And since (𝑍, ℓ2)  is 𝐷 −paralindelöf space, then the difference cover �̃� = {𝑂𝜔: 𝜔 ∈

Ω}  has a refinement that is open locally and countable. Hence, we get the result that (𝑍, ℓ1) is 

𝐷 −paralindelöf space. 

Theorem 3.11 Every closed subspace (𝐹, ℓ𝐹) of a 𝐷 −paralindelöf topological space (𝑍, ℓ) is a 

𝐷 −paralindelöf closed subspace. 

Proof. Let (𝑍, ℓ) be a 𝐷 −paralindelöf topological space and (𝐹, ℓ𝐹) be a closed subspace of the 

space (𝑍, ℓ). Then �̃� = {𝑂ω: ω ∈ Ω} is difference cover of 𝐹 by the difference sets in 𝑍. Since 𝐹 ⊆

𝑍, then �̃�  ∪ {𝑍 − 𝐹} is a 𝐷 −cover of 𝑍. Since 𝑍 is 𝐷 −paralindelöf space, then the difference 

cover �̃�  ∪ {𝑍 − 𝐹} has an open locally countable refinement �̃�∗ − {𝑍 − 𝐹}. Therefore, since 𝐹 ⊆

𝑍 we get that �̃�∗ − {𝑍 − 𝐹} is also an open locally countable refinement of �̃� for 𝐹. Hence, we get 

the required result that the closed subspace (𝐹, ℓ𝐹) is 𝐷 −paralindelöf subspace. 

Theorem 3.12 Every 𝐷 −paralindelöf space (𝑍, ℓ) has closed subspaces, each of them is a paralindelöf 

subspace. 

Proof. Consider 𝐹 to be closed subset of 𝑍 and 𝑍 be a 𝐷 −paralindelöf topological space. Let �̃� =

{𝑂𝜔: 𝜔 ∈ Ω} be an open cover of 𝐹 by open sets in 𝑍. Then �̃� − {𝑍 − 𝐹} is an open cover of 𝑍. 

Since 𝑍 is a 𝐷 −paralindelöf space, then by applying the Theorem 3.2 we get that 𝑍 is 

paralindelöf space such that the open cover �̃� − {𝑍 − 𝐹} of 𝑍 has a locally countable refinement 

�̃�∗ − {𝑍 − 𝐹}. Now, since 𝐹 is a subset of 𝑍, then the open cover �̃� of 𝐹 has an open locally 

countable refinement �̃�∗ − {𝑍 − 𝐹}. Hence, we get the result that each closed subspace of 

paralindelöf space (𝑍, ℓ) is a paralindelöf subspace. 

Theorem 3.13 If the space (𝑍, ℓ) is 𝐷 −separable and 𝐷 −paralindelöf, then it is a 𝐷 −lindelöf space. 

Proof. Suppose that (𝑍, ℓ) is not a 𝐷 −lindelöf space. Then �̃� = {𝑂ω: ω ∈ Ω} is difference cover of 

𝑍 such that �̃� has no countable subcover. However, let �̃� = {𝑃λ: λ ∈ Λ} be an open uncountably 

locally refinement of �̃� and 𝐹 be a countable difference dense subset of 𝑍 such that 𝑃λ ∩ 𝐹 ≠ ∅, 

for all λ ∈ Λ, then 𝐹 is an uncountable set because �̃� is uncountable, which is a contradiction, 

and hence we get the result that (𝑍, ℓ) is a 𝐷 −lindelöf space. 

We can get the following corollary by the same work. 

Corollary 3.14 If the space (𝑍, ℓ) is 𝐷 −separable and 𝐷 −paralindelöf, then it is a lindelöf space. 

Definition 3.15 If every countable 𝐷 −cover of a topological space (𝑍, ℓ) has an open locally countable 

refinement, then the space (𝑍, ℓ) is called a countably 𝐷 −paralindelöf. 
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Theorem 3.16 If the topological space (𝑍, ℓ) is a 𝐷 −lindelöf and countably 𝐷 −paralindelöf, then the 

space (𝑍, ℓ) is 𝐷 −paralindelöf. 

Proof. Let �̃� = {𝑂ω: ω ∈ Ω} be any difference cover of (𝑍, ℓ) and let (𝑍, ℓ) be 𝐷 −lindelöf and 

countably 𝐷 −paralindelöf space. Since (𝑍, ℓ) is a 𝐷 −lindelöf space, then the difference cover �̃� 

has a countable subcover �̃�  =  {𝑃𝑖}𝑖=1
∞ . Since (𝑍, ℓ) is countably 𝐷 −paralindelöf, then �̃� has an 

open locally countable refinement of �̃�. Hence, we get the result that (𝑍, ℓ) is a 𝐷 −paralindelöf 

space. 

By the same work we get the following corollaries. 

Corollary 3.17 If the topological space (𝑍, ℓ) is a 𝐷 −lindelöf countably and 𝐷 −paralindelöf, then the 

space (𝑍, ℓ) is a paralindelöf space. 

Corollary 3.18 If the topological space (𝑍, ℓ) is a lindelöf countably and 𝐷 −paralindelöf, then the space 

(𝑍, ℓ) is a paralindelöf space. 

Example 3.19 The space (𝑍, ℓ𝑑𝑖𝑠) is countably 𝐷 −paralindelöf and 𝐷 −lindelöf, so by applying 

the Theorem 3.16 we obvious get that (𝑍, ℓ𝑑𝑖𝑠) is a 𝐷 −paralindelöf topological space. 

 

4. Product of Difference Paralindelöf Spaces 

In this section, further of complex properties relating to the concept of mappings and the 

product of two difference paralindelöf spaces are explaned. As a result, the difference 

paralindelöf spaces are essential topics for study in areas associated with topology. Their 

finiteness and tightness give rise to important findings and applications in mathematics by 

offering a framework for comprehending and interpreting the structure of spaces. several 

theoretical findings relating to the concept of mappings and the product of two 𝐷 −paralindelöf 

spaces will be established. 

Theorem 4.1 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces. If Ψ: 𝑍 ⟶ 𝑆 is 𝐷 −perfect function 

and the space 𝑍 is a locally indiscrete, then 𝑍 is a 𝐷 −paralindelöf space, if 𝑆 is so. 

Proof. Let Ψ: 𝑍 ⟶ 𝑆 be a 𝐷 −perfect function such that the space (𝑆, 𝜌) be a 𝐷 −paralindelof 

space and (𝑍, ℓ) be a locally indiscrete space. Then consider �̃� = {𝑂𝜔: 𝜔 ∈ Ω} to be a 𝐷 −cover of 

𝑍. Since Ψ is a 𝐷 −perfect function, then for each 𝑠 ∈ 𝑆, Ψ−1(𝑠) is a 𝐷 −compact of 𝑍. So, there is 

a finite subset ρ𝑠 of Ω, in a way that Ψ−1(𝑠) ⊆∪ω∈ρ𝑠
𝐻𝜔, and since 𝑍 is locally indiscrete, then 

each difference set Ο𝜔 is clopen for all ω ∈ Ω. So, the difference cover �̃� is an open cover of 𝑍. 

Now, let �̃� = {𝑃𝑠: 𝑠 ∈ 𝑆} be a difference cover of 𝑆 such that 𝑃𝑠 = 𝑆 − Ψ(𝑍 − ∪ω∈ρ𝑠
𝐻ω) is 
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difference sets of 𝑆 and 𝛹−1(𝑃𝑠) ⊆∪ω∈ρ𝑠
𝐻𝜔, where 𝑠 ∈ 𝑃𝑠. Since 𝑆 is 𝐷 −paralindelöf, then �̃� has 

an open locally countable refinement �̃�∗ = {𝑃𝑠
∗: 𝑠 ∈ 𝑆}, where 𝑃𝑠

∗ is a difference sets of 𝑆. Because 

Ψ is a 𝐷 −perfect, so the set {Ψ−1(𝑃𝑠
∗): 𝑠 ∈ 𝑆} is an open locally countable refinement of 𝑍. 

Hence, we get the result that the space  𝑍 is 𝐷 −paralindelöf. 

Theorem 4.2 Let 𝛹: (𝑍, ℓ)  ⟶ (𝑆, 𝜌) be a 𝐷 −perfect function. Then 𝑍 is paralindelöf space if 𝑆 is 

𝐷 −paralindelöf. 

Proof. Similar to the proof of Theorem 4.1, this is theorem also are simple to prove. 

Theorem 4.3 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces. If 𝛹: 𝑍 ⟶ 𝑆 is 𝐷 −perfect function, such 

that 𝑍 is a locally indiscrete and 𝑆 is a countable set, then 𝑍 is countably 𝐷 −paralindelöf space, if 𝑆 is so. 

Proof. Let Ψ be a 𝐷 −perfect function such that the space (𝑍, ℓ) be a locally indiscrete space and 

(𝑆, 𝜌) be a countably 𝐷 −paralindelöf space, where 𝑆 is a countable set. Then consider �̃� =

{𝑂ω: ω ∈ Ω} be any countable 𝐷 −cover of 𝑍. Since Ψ is a 𝐷 −perfect function, then for each 𝑠 ∈

𝑆, Ψ−1(𝑠) is a 𝐷 −compact of 𝑍. So, there is a finite subset of Ω, where Ψ−1(𝑠) ⊆∪𝑖=1
𝑚 𝐻𝑖, and 

since 𝑍 is a locally indiscrete, then each difference set 𝑂ω is clopen for all ω ∈ Ω. So, the 

difference cover �̃� is an open cover of 𝑍 and 𝐻𝑖 is a difference open of 𝑍, ∀ 𝑖 ∈ 𝛺. Now, let �̃� =

{𝑃𝑠: 𝑠 ∈ 𝑆} be a countable difference cover of 𝑆 such that 𝑃𝑠 = 𝑆 − Ψ(𝑍 −∪𝑖=1
𝑚 𝐻𝑖) is countable 

difference sets of 𝑆 and 𝜓−1(𝑃𝑠) ⊆∪𝑖=1
𝑚 𝐻𝑖, where 𝑠 ∈ 𝑃𝑠. Also, since 𝑆 is a countably difference 

paralindelöf, then the countable difference cover �̃� has an open locally countable refinement 

�̃�∗ = {𝑃𝑠1, 𝑃𝑠2, … }, where 𝑃𝑠
∗ is a difference sets of 𝑆, and since Ψ is a 𝐷 −perfect function, then 

the set {Ψ−1(𝑃𝑠
∗): 𝑠 ∈ 𝑆} is an open locally countable refinement of 𝑍. Hence, we get the result 

that the space 𝑍 is a countably 𝐷 −paralindelöf. 

During this study, we get the following new theory that related to paralindelöf spaces. 

Theorem 4.4 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces and the function 𝛹: (𝑍, ℓ) ⟶ (𝑆, 𝜌) be a 

𝐷 −perfect. If (𝑆, 𝜌) is a paralindelof space, then (𝑍, ℓ) is so. 

Proof. Let Ψ be a 𝐷 −perfect function and the space (𝑆, 𝜌) be a paralindelöf. Then consider �̃� =

{𝑂ω: ω ∈ Ω} be any open cover of (𝑍, ℓ), so by applying the theorem 2.29 we get the fact that the 

open cover �̃� is a difference cover of 𝑍. Since Ψ is a 𝐷 −perfect function, then for each 𝑠 ∈ 𝑆, 

Ψ−1(𝑠) is a 𝐷 −compact of 𝑍. So, there is a finite subset of Ω, where Ψ−1(𝑠) ⊆∪𝑘=1
𝑚 {𝑂𝑘: 𝑘 ∈ 𝛺}, 

and 𝑂𝑘 is a difference open of 𝑍, ∀ 𝑘 ∈ 𝛺. Now, let �̃� = {𝑇𝑠: 𝑠 ∈ 𝑆} be an open cover of 𝑆 such that 

𝑇𝑠 = 𝑆 − Ψ(𝑍 −∪𝑘=1
𝑚 𝑂𝑘: 𝑘 ∈ Ω) is an open set of 𝑆 and 𝜓−1(𝑇𝑠) ⊆∪𝑘=1

𝑚 𝑂𝑘, where 𝑠 ∈ 𝑇𝑠. Also, 

since 𝑆 is a paralindelöf space, then the open cover �̃� has an open locally countable refinement 
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�̃�∗ = {𝐵𝜆: 𝜆 ∈ 𝛬}, where 𝐵λ
∗ is an open set of the space 𝑆. Let 𝐹 = {𝛹−1(𝐵λ)𝑂𝑘: λ ∈ Λ, 𝑘 ∈ Ω}, then 

the set 𝐹 is an open locally countable refinement of the open cover �̃�. Hence, we get the result 

that the space 𝑍 is a paralindelöf. 

Theorem 4.5 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces such that the space 𝑍 is a 

𝐷 −compact and the space 𝑆 is a 𝐷 −paralindelöf. Then 𝑍 × 𝑆 is a 𝐷 −paralindelöf space. 

Proof. By using the fact that the projection function 𝐽: 𝑍 × 𝑆 ⟶ 𝑆 is continuous and 𝐽−1{𝑠} ≅ 𝑍 is 

𝐷 −compact, for all 𝑠 ∈ 𝑆, then 𝐽: 𝑍 × 𝑆 ⟶ 𝑆 is a 𝐷 −perfect function. Now, since the space 𝑆 is 

𝐷 −paralindelöf, then 𝑍 × 𝑆 is also 𝐷 −paralindelöf space. 

Corollary 4.6 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces such that the space 𝑍 is a compact and the 

space 𝑆 is a paralindelöf. Then 𝑍 × 𝑆 is a paralindelöf space. i.e., The product between compact space and 

paralindelöf space is a paralindelöf. 

Example 4.7 A topological space (ℝ, ℓ𝑐𝑜𝑓) is both compact and paralindelöf space, so the 

cartesian product between them (ℝ ×  ℝ, ℓ𝑐𝑜𝑓  ×  ℓ𝑐𝑜𝑓) is also a paralindelöf space. 

Theorem 4.8 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces. Let 𝛹: (𝑍, ℓ) ⟶ (𝑆, 𝜌) be a continuous, 

closed, and onto function such that 𝑆 is a locally indiscrete space. Then, the space 𝑆 is a 𝐷 −paralindelöf if 

𝑍 is so. 

Proof. Let Ψ: (𝑍, ℓ) ⟶ (𝑆, 𝜌) be a continuous, closed, and onto function such that 𝑆 is a locally 

indiscrete space and 𝑍 is 𝐷 −paralindelöf space. Then consider �̃� = {𝑂ω: ω ∈ Ω} be a 𝐷 −cover of 

𝑆. Since 𝑆 is locally indiscrete space, then each difference set 𝑂ω is clopen for all ω ∈ Ω. So, the 

difference cover �̃� is an open cover of 𝑆 .Also, since Ψ is continuous, closed, and onto function, 

then also the set �̃� = {Ψ−1(𝑂ω): ω ∈ Ω} is an open cover of 𝑍. Now, since 𝑍 is a 𝐷 −paralindelöf 

space, then there exists an open locally countable refinement �̃�∗ = {Ψ−1(𝑂ω
∗ ): ω ∈ Ω} of �̃�. 

Hence, we get the result that the space 𝑆 is 𝐷 −paralindelöf. 

With the same strategy we get the following corollary. 

Corollary 4.8 Let (𝑍, ℓ) and (𝑆, 𝜌) be two topological spaces. Let 𝛹: (𝑍, ℓ) ⟶ (𝑆, 𝜌) be a continuous, 

closed, and onto function such that 𝑆 is a locally indiscrete space. Then, the space 𝑆 is a 𝐷 −paralindelöf if 

𝑍 is paralindelöf. 

5. Conclusion and Future Works 

In this section, the conclusion of the main achievements that presented in both Section 3 and 

Section 4 are presented. Furthermore, a few future studies that are connected to our study of 

difference paralindelöf in topological spaces are proposed. 
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5.1. Main Achievement 

This research embarks on an exploration of paralindelöfness, which serves as the basis for 

defining a distinctive class of covering properties known as difference paralindelöf spaces 

within topological contexts. This generalization brought to light a new concept that uses 

difference sets and paralindelöf spaces to represent the 𝐷 −paralindelöf spaces that have a 

certificate cover type called a difference cover with an open locally countable refinement. 

This research main goal is to clarify the notion of different paralindelöf spaces. By delving 

into their inherent properties and intricate relationships with other topological spaces, the 

research aims to shed light on their characteristics. The research involves the examination of 

various examples to illustrate the concepts introduced.  

Furthermore, the research extends its scope by generalizing well-established theorems, 

thereby contributing to the expanding body of knowledge surrounding difference paralindelöf 

spaces. Also, this research enriches our understanding of these spaces and their connections, 

enhancing the broader field of topology and its implications for mathematical exploration. 

Moreover, some preliminary and basic notions were provided related to the notion of 

difference paralindelöf spaces, such as paralindelöf spaces, difference sets, paracompact spaces, 

countably paralindelöf spaces, etc. Also, some of their characteristics and illustrated figures 

were presented in section 2 Furthermore, in section 3, we provided the definition and 

established the figure form of the notion of difference paralindelöf in topological spaces, which 

supported us in illustrating and understanding the main notions and properties. After all, we 

introduced the flow chart 3.1, which represented the relationship of difference paralindelöf 

spaces with other topological spaces. Our study has used some of the basic properties of 

topological structures as functions and the Cartesian product to introduce new properties and 

results of the notion of difference paralindelöf spaces. 

5.2. Future Works 

Developments in the study of paralindelöf spaces are still occurring. Considering their 

specific characteristics, connections to other topological concepts, and applications in other 

mathematical contexts, there are still unanswered questions and guesses. With possible 

applications in many mathematical fields, more investigation into these spaces should provide a 

deeper understanding of the properties and structure of topological spaces. 
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The studies of the difference of paralindelöf spaces often result in the development of new 

obstacles and the investigation of novel research avenues. By participating in the current study 

about the characterization, categorization, and features of 𝐷 −paralindelöf spaces, we make a 

significant contribution to the direction of topological and related research. The study of 

𝐷 −paralindelöf spaces lies at the interface of topology and other branches of mathematics. Such 

as in fuzzy sets, researchers can generalize the fuzzy paralindelöf spaces to be fuzzy 

𝐷 −paralindelöf spaces. Also, in algebra field, there is a compact (topological) group, which we 

can generalize to a 𝐷 −paralindelöf group and provide mathematicians with a way to expand 

their knowledge about both topological and group algebra. This also acts as an effective basis 

for future research. 
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