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Abstract. Using Constantin-Iyer representation also known more generally as Euler-Lagrangian approach, we prove

the local existence of the Navier-Stokes equations in weighted Sobolev spaces with external forcing on Rd, for any

dimension d and p such that p > d ≥ 2.

1. Introduction

The Navier-Stokes equations are widely regarded as one of the most important equations in

fluid mechanics due to their broad science and engineering applications. While there is a huge

amount of work dedicated to the analysis of velocity equations, the Lagrangian approach is less

investigated. In Lagrangian settings, flow equations (positions of individual particles) are derived

and the solutions naturally allow tracking of particles. In ( [1], [2], [3]), the Euler coordinates were

used to study motion of incompressible fluid on compact manifolds. Fluid flows were treated as

intrinsically defined infinitely dimensional systems. In particular, Ebin and Marsden have shown

in [2] the local well-posedness of the deterministic Euler equations by solving ODEs in the space of

Sobolev volume-preserving diffeomorphisms. In [4], the author followed ideas of ( [1], [2], [3]) to

study the Euler equations with a random forcing term Ẇt. Flow equations were derived and solved

for d ≥ 2 as ODEs in weighted Hölderlder spaces. Without utilizing geometric tools, the author
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dealt with spaces of diffeomorphisms analytically. More recently, the authors of [5] provided a

stochastic framework extending the geometric approach of Ebin and Mardens. Their results can be

applied to prove the local well-posedness of the stochastic Euler equations with a random forcing

term Ẇt in the Sobolev spaces with p = 2 and s > d
2 + 1.

The equivalence between the deterministic Navier-Stokes equations and corresponding flow

formulation was shown analytically in [6]. Later, a self-contained proof for the local existence in

Hölder spaces was provided in [7]. The main idea was to perturb the flow by a Wiener process.

By averaging out random trajectories, the velocity can be recovered. While the results of [6] have

motivated a plethora of research into the Euler-Lagrangian approach of the Navier-Stokes and

Euler equations, only a handful has investigated it in Sobolev spaces. In [8], the Lagrangian

formulation was used to prove the local existence for the deterministic Euler equations in standard

Sobolev spaces Hs
p with p = 2, d ≥ 2 and s > d

2 + 1 on the torus domain Td := Rd/2πZd. Under

the same setting, their results were extended by [9] to cover the stochastic Euler equations with

Stratonovich transport noise.

While the geometric approach is elegant, the analytical approach is arguably more accessible,

especially for practitioners. For this reason, we follow the idea of ( [4], [6], [7]) to study the La-

grangian formulation of the Navier-Stokes equations. Our approach mostly relies on fundamental

results in harmonic analysis and can be easily understood by non-technical readers.

Our novel contribution can be summarized as follows:

• We study Constantin-Iyer representation for the Navier-Stokes equations with random

forcing G (t) dt in the full space domain instead of the Euler equations with/without

Stratonovich transport noise on tori ( [8], [9], [10]) or the Navier-Stokes equations without

forcing term on periodic domains ( [6], [7]). Note that in [6], the authors were well aware

that G (t) dt can be handled, however, only formal discussion was provided.

• To the best of our knowledge, this work is the first to investigate Lp−theory of Constantin-

Iyer representation with general p > d ≥ 2 for the Navier-Stokes equations. Our results are

new even without the forcing term. We elaborate this further in the next point.

• Based on our Constantin-Iyer representation, we provide a self-contained proof for the

local existence of the Navier-Stokes equations in weighted Sobolev spaces that can cover

p > d ≥ 2 instead of non-weighted Sobolev spaces with p = 2 in ( [8], [9]) or Hölder spaces

in ( [6], [7], [10]). Our work entails some additional analytical results needed to handle the

challenge of general p in weighted spaces compared to the case of p = 2 in non-weighted

spaces or the Hölder spaces. We impose an assumption l > 1 + d
p for the existence of the

flow equations which is similar to s > 1 + d
2 found in ( [8], [9]).

• We also emphasize that our proof of existence covers the case of the Euler equations namely

ε = 0 without any special treatment such as passing to the limit ε→ 0.

Let (Ω,F , P) be a complete probability space with a filtration of σ−algebras F = (Ft, t ≥ 0) satisfy-

ing the usual conditions and Bt, Wt be independent standard d−dimensional Wiener processes on
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(Ω,F , P). Let FW =
(
F

W
t , t ≥ 0

)
be the standard sub-filtration of F generated by Wt. We will prove

the local existence of the velocity u : Ω× (0,∞)×Rd
→ Rd which is FW

−adapted and evolves with

t in a weighted Sobolev space according to the following Navier-Stokes equation with ε ≥ 0 (see

Theorem 5.2),

du (t) =

[
S

(
−uk (t) ∂ku (t)

)
+
ε2

2
∆u (t) + G (t)

]
dt

u (0) = u0, div u = 0, t > 0.

The symbol S stands for the solenoidal projection. We assume that the initial datum u0

is FW
0 −measurable, div u0 = 0 and the external forcing term G : Ω × (0,∞) × Rd

→ Rd is

FW
−adapted.

Similar to [7], we define the perturbed flow η : Ω × (0,∞) ×Rd
→ Rd by

dη (t) = u (t, η (t)) dt + εdBt, η (0) = e, t > 0.

Here, e denotes the identity map on Rd. We derive (see Lemma 5.1 and Remark 5.2) the following

equation for the flow η, denoting κ (t) = η−1 (t) the spatial inverse of η (t),

dη (t) = E
[
S (∇κ (t, z))∗ gη (t,κ (t, z)) |FW

t

]∣∣∣∣
z=η(t)

dt + εdBt

η (0) = e, t > 0.

where

gη (t, x) = u0 +

∫ t

0
(∇η (s, x))∗G (s, η (s, x)) ds, (ω, t, x) ∈ Ω × (0,∞) ×Rd.

Once we prove the local existence of η, the velocity can be recovered from the flow via the formula,

u (t) = E
[
S (∇κ (t))∗ gη (t,κ (t)) |FW

t

]
.

Lastly, we note that G can be random, although this does not cause any additional difficulties

compared to the case of deterministic G. The fact that G can be FW
−adapted heuristically allows

passing to the limit to the stochastic equations with a stochastic integral as a forcing term, i.e.,

G (t) dWt instead of G (t) dt.

2. Notation

We list some commonly used notations in this paper.

• EW
t (X) denotes the conditional expectation E

(
X|FW

t

)
.

• We assume throughout this paper that d ≥ 2.

• Nd
0 denotes the set of all d−dimensional multi-indices.

• e denotes an identity map from Rd to Rd. I denotes the d× d identity matrix.

• For any matrix or vector A, A∗ denotes its transpose.

• C∞0 = C∞0
(
Rd

)
denotes the set of all indefinitely differentiable real-valued functions on Rd

with compact support.
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• |·| denotes standard Euclidean norms for both vectors and matrices, regardless of dimen-

sions.

• For a real-valued function f on Rd,
∣∣∣ f ∣∣∣
∞
= supx∈Rd

∣∣∣ f (x)∣∣∣ . It is generalized to vector-valued

and matrix-valued functions by taking the maximum of |·|∞ of all entries.

• For a real-valued function f on [0,∞) × Rd, its partial derivatives are denoted by ∂t f =

∂ f /∂t, ∂i f = ∂ f /∂xi, ∂2
i j f = ∂2 f /∂xi∂x j, D f = ∇ f = (∂1 f , ..., ∂d f ). Given a multi-index

γ ∈ Nd
0, Dγ f = ∂γ f = ∂|γ| f

∂xγ1
1 ...∂x

γd
d

and the same notations is used for weak derivatives.

• For f =
(

f 1, f 2, ..., f m
)∗

: Rd
→ Rm and a multi-index γ ∈ Nd

0, Dγ f =
(
Dγ f 1, ..., Dγ f m

)∗
denotes its partial derivative and D f = ∇ f =

(
∂ j f i

)
i, j

denotes its Jacobian matrix. The

notation Dγ f is also extended to a matrix-valued function by entry-wise differentiation.

We will also write
∥∥∥ f

∥∥∥ = ∣∣∣ f (0)∣∣∣+ ∣∣∣∇ f
∣∣∣
∞

.

• If f is a real-valued, vector-valued or matrix-valued function on Rd, we denote Dk f =

(Dγ f )
|γ|=k , k = 1, 2, 3, ... the tensor of all derivatives of order k.

• Cn
(
Rd

)
= Cn

(
Rd; R

)
, n ≥ 0 denotes the set of all n-times continuously differentiable func-

tions on Rd endowed with the finite norm
∣∣∣ f ∣∣∣Cn =

∑
0≤|γ|≤n supx

∣∣∣Dγ f (x)
∣∣∣ < ∞.

• C
α
(
Rd

)
= Cα

(
Rd; R

)
, α > 0 denotes the standard Hölder spaces on Rd endowed with the

finite norm ∣∣∣ f ∣∣∣
Cα

=
∣∣∣ f ∣∣∣Cn + sup

x,y

∣∣∣ f (x) − f (y)
∣∣∣∣∣∣x− y

∣∣∣β
where α = n + β, n is an integer and β ∈ (0, 1] .

• Cn (resp. Cn) is extended to the space vector-valued and matrix-valued functions whose

all components belong to Cn (resp. Cn.) It is endowed with the the maximum of Cn
−norm

(resp. Cn
−norm) of all entries. The same notation

∣∣∣ f ∣∣∣Cn (resp.
∣∣∣ f ∣∣∣
Cn) are used. For the spaces,

we will write Cn
(
Rd; B

)
and Cn

(
Rd; B

)
with appropriate B, e.g., B = Rd.

• For a multi-linear continuous operator F : E→ F where E, F are Banach spaces, ‖F‖ denotes

its operator norm.

• C, N, M ∈ (0,∞) with or without subscriptions denote constants which generally change

from line to line or even within the same line.

• We will use the Einstein summation convention over repeated indices when there is no

chance of confusion.

• When two functions are equal almost everywhere, we generally refer to them by the same

notation. If some properties of a function hold after a modification on a set of measure zero,

then we simply say that a function satisfies such properties. In particular, if a function is

Hölder continuous or continuously differentiable after a modification on a set of measure

zero due to Sobolev embedding theorem, then we simply say that it has such properties.
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3. Function Spaces and Decomposition of Vector Fields

3.1. Function Spaces. We will use Sobolev function spaces with asymptotic conditions originally

introduced by Cantor in [11] and were used in [12] to prove the local well-posedness of the

deterministic Euler equations.

For p > 1, l ≥ 0, δ ∈ R, we denote by Hl
δ,p

(
Rd

)
= Hl

δ,p

(
Rd; R

)
the space of real-valued functions

f : Rd
→ R whose weak derivatives have the finite norm

∣∣∣ f ∣∣∣Hl
δ,p

=
l∑

k=0

∑
|γ|=k

(∫
Rd

wp(δ−l+k−d/p) (x)
∣∣∣Dγ f (x)

∣∣∣p dx
)1/p

where w (x) =
(
1 + |x|2

)1/2
. By interpolation inequalities, the norm

∣∣∣ f ∣∣∣Hl
δ,p

is equivalent to the norm,

(∫
Rd

wp(δ−l−d/p) (x)
∣∣∣ f (x)∣∣∣p dx

)1/p

+
∑
|γ|=l

(∫
Rd

wp(δ−d/p) (x)
∣∣∣Dγ f (x)

∣∣∣p dx
)1/p

.

It is easy to show that C∞0
(
Rd

)
is dense in Hl

p,δ

(
Rd

)
(e.g., [13, Proposition 2.3.1].) If v is a vector,

a matrix or even a multi-dimensional tensor, the norm |v|Hl
δ,p

is similarly defined by intrepreting |·|

as the Euclidean norm. The corresponding spaces are denoted with respect to the dimensions of

the range spaces, for example, Hl
δ,p

(
Rd; Rm

)
or Hl

δ,p

(
Rd; Rm

×Rn
)

.

For 0 < T ≤ ∞, we denote by
∑l
δ,p (T) the space of Hl

δ,p−valued functions v on [0, T] with the

finite norm supt∈[0,T]

∣∣∣v (t)∣∣∣Hl
δ,p

. We use the same notation
∑l
δ,p (T) regardless of dimensions as there

is no chance of confusion.

If δ = 0, we write Hl
p

(
Rd; B

)
= Hl

0,p

(
Rd; B

)
and if δ = l = 0, we write Lp

(
Rd; B

)
= H0

0,p

(
Rd; B

)
with an appropriate B.

We use |·|p to denote the Lp norms regardless of dimensions. The estimates of types
∣∣∣ f g

∣∣∣
p ≤

C
∣∣∣ f ∣∣∣
∞

∣∣∣g∣∣∣p and
∣∣∣ f g

∣∣∣
∞
≤ C

∣∣∣ f ∣∣∣
∞

∣∣∣g∣∣∣
∞

with some generic C will be used abundantly in this paper. We

will not be pedantic about the value of C even when C = 1, since it depends on exact dimensions

of f and g.

Whenever p > d, we will interpret all derivatives of f ∈ Hl
p

(
Rd

)
and thus of f ∈ Hl

δ,p

(
Rd

)
when

δ ≥ l + d
p as classical derivatives (cf. [14, Theorem 5 of Chapter 5].) Consequently, we may rely

on results in fundamental calculus such as chain rules, product rules, Taylor’s expansion, and

integration by-parts.

3.2. Decomposition of Vector Fields. Recall the definition of the Newtonian potential,

Γ (x) = Γd (|x|) =


|x|2−d

d(2−d)ωd
, d > 2

1
2π ln |x| , d = 2

and

Γi (x) =
∂
∂xi

Γ (x) =
1

dωd

xi

|x|
|x|1−d , x , 0, d ≥ 2
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where ωd is the volume of the unit ball in Rd.

Define the operators

Ti f (x) =
∫

Rd
Γi (x− y) f (y) dy, f ∈ C∞0

(
Rd

)
, i = 1, . . . , d.

We will use Ti, i = 1, ..., d to define gradient and solenoidal projections for v ∈ Hl
θ+l,p

(
Rd; Rd

)
respectively. First, we set for v =

(
v1, ...., vd

)∗
∈ C∞0

(
Rd; Rd

)
,

G (v) = ∇Ti

(
vi
)∗

,

S (v) = v−G (v)

where the standard summation convention over repeated indices is assumed. It is well-known

that

G (v) = ∇Ti

(
vi
)∗
= −RR jv j,

where R j f = −iF −1
(
ξ j

|ξ|F f
)

is the Riesz transform of f and R = (R1, ..., Rd)
∗ . Usually, G (v) and

S (v) are referred to as gradient and solenoidal projections of the vector field v respectively, and∫
G (v) · S ( f ) dx = 0, v, f ∈C∞0

(
Rd; Rd

)
.

In fact, G (v) = ∇Ti

(
vi
)∗

and S (v) = v −G (v) are continuous in Lp
(
Rd; Rd

)
i.e.

∣∣∣G (v)
∣∣∣
p ≤ C |v|p

and
∣∣∣S (v)∣∣∣p ≤ C |v|p (see [15, Remark 3.5].) For more detailed discussion on projections in non-

weighted Sobolev spaces see for instance [16, Section 3.1.2], [15, Section 3.2] and references therein.

The following Helmholtz decomposition for weighted Sobolev spaces is a key result for our main

proof.

Lemma 3.1. Let p > 1, l ≥ 0, θ ∈ (1, d). The operators

Ti : Hl
θ+l,p

(
Rd

)
→ Hl+1

θ+l,p

(
Rd

)
, i = 1, ..., d

are bounded. That is for any i = 1, . . . , d, there exists C > 0 such that∣∣∣Ti f
∣∣∣
Hl+1
θ+l,p
≤ C

∣∣∣ f ∣∣∣Hl
θ+l,p

, f ∈ Hl
θ+l,p

(
Rd

)
.

Consequently,

G : Hl
θ+l,p

(
Rd; Rd

)
→ Hl

θ+l,p

(
Rd; Rd

)
, S : Hl

θ+l,p

(
Rd; Rd

)
→ Hl

θ+l,p

(
Rd; Rd

)
are linear continuous. Moreover,

Hl
θ+l,p

(
Rd; Rd

)
= G

(
Hl
θ+l,p

(
Rd; Rd

))
⊕S

(
Hl
θ+l,p

(
Rd; Rd

))
and S

(
Hl
θ+l,p

(
Rd; Rd

))
=

{
v ∈ Hl

θ+l,p

(
Rd; Rd

)
| div v = 0

}
.

Proof. The first estimate is an immediate consequence of Lemma 8.5 whose proof is provided fully

in the Appendix. Regarding the direct sum and divergence-free vector fields, we refer to [15,

Lemma 3.7] and its proof which clearly carry over to weighted Sobolev spaces. �
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Remark 3.1. The solonoidal projection has a convenient formula in weighted Sobolev spaces. Indeed,
if f ∈ Hl

θ+l,p

(
Rd; Rd

)
for some p > 1, l ≥ 0, θ ∈ (1, d) and ui j = ∂iN

(
f j
)
, then by Lemma 8.5,

u ∈ Hl+1
θ+l,p

(
Rd; Rd

×Rd
)

. Following [4, Proposition 2], we let

G f =
∑

i

∇Ti

(
f i
)∗
=

∑
i

∇

(
uii

)∗
,
(
S̃ f

) j
=

∑
i

∂
∂xi

(
ui j
− u ji

)
, 1 ≤ j ≤ d.

By passing to the limit, f j = ∆N
(

f j
)
=

∑
i ∂iui j =

(
S̃ f

) j
+ (G f ) j . Therefore, S f = S̃ f and

(S f ) j =
∑

i

∂
∂xi

(
∂i

(
N

(
f j
))
− ∂ j

(
N

(
f i
)))

.

In particular, if f = ∇p where p ∈ Hl+1
θ+l,p

(
Rd

)
is a scalar, then S f = 0.

4. Schauder Ring Properties

We now establish slightly modified Schauder ring properties. All parameters are assumed to be

non-negative.

Lemma 4.1. (cf. [17, Theorem 4.39]) Let p > 1, l > d
p , m + m′ ≤ l. Then there exists C > 0 such that for

all u ∈ Hl−m
p

(
Rd

)
, v ∈ Hl−m′

p

(
Rd

)
,∫ ∣∣∣u (x) v (x)

∣∣∣ pdx ≤ C |u| p
Hl−m

p
|v| p

Hl−m′
p

.

Proof. We follow the proof of [17, Theorem 4.39]. According to which, we have the following

embedding.

(i) Let lp ≤ d and p ≤ r ≤ dp
d−lp (or p ≤ r < ∞ if lp = d.) Then there is a constant C such that for all

g ∈ Hl
p

(
Rd

)
, ∫ ∣∣∣g (x)∣∣∣ rdx ≤ C

∣∣∣g∣∣∣ r
Hl

p
.

(ii) Let lp > d. Then there is a constant C such that for all g ∈ Hl
p

(
Rd

)
and dx-a.s.,∣∣∣g (x)∣∣∣ ≤ C

∣∣∣g∣∣∣ Hl
p
.

Hence, if (l−m) p > d, then ∫ ∣∣∣u (x) v (x)
∣∣∣ pdx ≤ C |u| p

Hl−m
p
|v| pp.

Similarly, if (l−m′) p > d, then ∫ ∣∣∣u (x) v (x)
∣∣∣ pdx ≤ C |u| pp |v|

p
Hl−m′

p
.

If both (l−m) p ≤ d and (l−m′) p ≤ d, noting that we always have (l−m + l−m′) p > d, then

d− (l−m) p
d

+
d− (l−m′) p

d
< 1,
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and there exist positive numbers r, r′ > 1 such that 1
r +

1
r′ = 1,

p ≤ rp <
dp

d− (l−m) p
,

p ≤ r′p <
dp

d− (l−m′) p
.

Finally, we obtain by applying (i),∫ ∣∣∣u (x) v (x)
∣∣∣ pdx ≤

(∫ ∣∣∣u (x)
∣∣∣ rpdx

)
1/r

(∫ ∣∣∣v (x)∣∣∣ r′pdx
)

1/r′

≤ C |u| p
Hl−m

p
|v| p

Hl−m′
p

.

The proof is complete. �

Corollary 4.1. Let p > 1, l > d
p , k = k1 + . . . + kN ≤ l. Then there exists C > 0 such that for all

ui ∈ Hl−ki
p

(
Rd

)
, i = 1, ..., N, the product

∏N
i=i ui ∈ Hl−k

p

(
Rd

)
and∣∣∣∣∣∣∣

N∏
i=i

ui

∣∣∣∣∣∣∣
Hl−k

p

≤ C
N∏

i=1

|ui|Hl−ki
p

.

Proof. Let N = 2, and µ,µ′ ∈ Nd
0 be multi-indices so that

∣∣∣µ∣∣∣ + ∣∣∣µ′∣∣∣ ≤ l − k. Since Dµu1 ∈

Hl−k1−|µ|
p

(
Rd

)
, Dµ′u2 ∈ Hl−k2−|µ′|

p

(
Rd

)
and k1 +

∣∣∣µ∣∣∣+ k2 + |µ′| ≤ l , we have by Lemma 4.1,∣∣∣Dµu1Dµ′u2
∣∣∣ p ≤ C |Dµu1|Hl−k1−|µ|

p

∣∣∣Dµ′u2
∣∣∣

Hl−k2−|µ
′|

p
≤ C |u1|Hl−k1

p
|u2|Hl−k2

p
.

The statement follows by induction. �

Corollary 4.1 can be generalized to weighted Sobolev spaces.

Corollary 4.2. Let p > 1, l > d
p , k = k1 + . . .+ kN ≤ l and δ ≤ δ1 + . . .+ δN − (N − 1) d

p . Then there

exists C > 0 such that for all ui ∈ Hl−ki
δi+l,p

(
Rd

)
, i = 1, . . . , N, the product

∏N
i=i ui ∈ Hl−k

δ+l,p

(
Rd

)
and∣∣∣∣∣∣∣

N∏
i=i

ui

∣∣∣∣∣∣∣
Hl−k
δ+l,p

≤ C
N∏

i=1

|ui|Hl−ki
δi+l,p

.

In particular, if δ1 = . . . = δN = δ ≥ d
p , then δ1 + . . .+ δN − (N − 1) d

p = δ+ (N − 1)
(
δ− d

p

)
≥ δ and

hence, ∣∣∣∣∣∣∣
N∏

i=i

ui

∣∣∣∣∣∣∣
Hl−k
δ+l,p

≤ C
N∏

i=1

|ui|Hl−ki
δ+l,p

.

If, in addition, ki = 0 for all i, then ∣∣∣∣∣∣∣
N∏

i=i

ui

∣∣∣∣∣∣∣
Hl
δ+l,p

≤ C
N∏

i=1

|ui|Hl
δ+l,p

.
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Proof. Indeed, for any multi-index γ ∈ Nd
0 such that

∣∣∣γ∣∣∣ ≤ l− k,

wδ+k+|γ|−d/pDγ

 N∏
i=1

ui

 = wδ−(
∑

i δi−(N−1)d/p)
∑

µ1+...+µN=γ

N∏
i=1

wδi+ki+|µi|−d/pDµiui.

Since Dµiui ∈ Hl−ki−|µi|

δi+l,p

(
Rd

)
, we have wδi+ki+|µi|−d/pDµiui ∈ Hl−ki−|µi|

p

(
Rd

)
and∣∣∣∣wδi+ki+|µi|−d/pDµiui

∣∣∣∣ Hl−ki−µi
p

≤ C |Dµiui|Hl−ki−|µi|
δi+l,p

≤ C |ui|Hl−ki
δi+l,p

.

The statement follows by Corollary 4.1. �

Clearly, Corollary 4.1 and Corollary 4.2 can be extended to multiplication between matrices. We

have the following estimate of function composition. We note that all derivatives are interpreted

as classical since p > d.

Lemma 4.2. Let p > d, l ≥ 0, δ, δ′ ≥ d
p , N > 0. Then there exists C > 0 such that for all f ∈ Hl

δ+l,p

(
Rd

)
;

and g : Rd
→ Rd a diffeomorphism with

∣∣∣∣det∇
(
g−1

)∣∣∣∣
∞

+
∥∥∥g−1

∥∥∥+ χl≥1

∣∣∣∇g
∣∣∣
∞
+ χl≥2

∣∣∣D2g
∣∣∣
Hl−2
δ′+l−1,p

≤ N,∣∣∣ f ◦ g
∣∣∣
Hl
δ+l,p

≤ C
(
1 +

∥∥∥g−1
∥∥∥)δ−d/p+l ∣∣∣ f ∣∣∣Hl

δ+l,p

(
1 + χl≥1

∣∣∣∇g
∣∣∣
∞
+ χl≥2

∣∣∣D2g
∣∣∣
Hl−2
δ′+l−1,p

)l

.

Proof. We first mention a simple estimate,

w
(
g−1 (x)

)
w (x)

=

(
1 +

∣∣∣g−1 (x)
∣∣∣2) 1/2(

1 + |x|2
)1/2

≤ 1 +
∥∥∥g−1

∥∥∥ ,
∥∥∥g−1

∥∥∥ = ∣∣∣g−1 (0)
∣∣∣+ ∣∣∣∇g−1

∣∣∣
∞

.

If l = 0, by changing the variable of integration,∣∣∣ f ◦ g
∣∣∣
H0
δ,p

=
∣∣∣wδ−d/p f (g)

∣∣∣
p ≤

(
1 +

∥∥∥g−1
∥∥∥)δ−d/p ∣∣∣wδ−d/p f

∣∣∣
p .

For a multi-index γ ∈ Nd
0 with

∣∣∣γ∣∣∣ = l ≥ 1, wδ−d/p+lDγ ( f ◦ g) is a summation of terms in the form

of

A =wδ−d/p+mDµ f (g)
m∏

i=1

w|µi|−1Dµi gai

where µ1 + . . .+ µm = γ,
∣∣∣µi

∣∣∣ ≥ 1 for i = 1, ..., m,
∣∣∣µ∣∣∣ = m, 1 ≤ m ≤ l, and 1 ≤ ai ≤ d are component

indices.

If
∣∣∣µi

∣∣∣ = 1 for all i = 1, ..., m then

|A|p ≤ C
(
1 +

∥∥∥g−1
∥∥∥)δ−d/p+m ∣∣∣wδ−d/p+mDµ f

∣∣∣
p

∣∣∣∇g
∣∣∣m
∞

.

We may now assume that l ≥ 2 and
∣∣∣µi

∣∣∣ ≥ 2 for some i. Since (l−m) p > d, by Sobolev embedding

theorem for f and Corollary 4.1,
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|A|p ≤ C
(
1 +

∥∥∥g−1
∥∥∥)δ−d/p+m ∣∣∣wδ−d/p+mDµ f

∣∣∣
∞

m∏
i=1,|µi|=1

∣∣∣∇gai
∣∣∣
∞

∣∣∣∣∣∣∣∣
m∏

i=1,|µi|≥2

w|µi|−1Dµi gai

∣∣∣∣∣∣∣∣
p

≤ C
(
1 +

∥∥∥g−1
∥∥∥)δ−d/p+m ∣∣∣ f ∣∣∣Hl

δ+l,p

m∏
i=1,|µi|=1

∣∣∣∇gai
∣∣∣
∞

m∏
i=1,|µi|≥2

∣∣∣Dµi gai
∣∣∣
Hl−|µi|

d/p+l−1,p

.

The proof is complete. �

Examining the proof above the restriction δ ≥ d
p can be easily relaxed as follows:

Corollary 4.3. Let p > d, l ≥ 0, δ ≥ 0, δ′ ≥ d
p , N > 0. Then there exists C > 0 such that for all

f ∈ Hl
δ+l,p

(
Rd

)
; and g : Rd

→ Rd a diffeomorphism with
∣∣∣∣det∇

(
g−1

)∣∣∣∣
∞

+
∥∥∥g

∥∥∥+ ∥∥∥g−1
∥∥∥+ χl≥1

∣∣∣∇g
∣∣∣
∞
+

χl≥2

∣∣∣D2g
∣∣∣
Hl−2
δ′+l−1,p

≤ N,∣∣∣ f ◦ g
∣∣∣
Hl
δ+l,p

≤ C
(
1 +

∥∥∥g
∥∥∥+ ∥∥∥g−1

∥∥∥)|δ−d/p|+l ∣∣∣ f ∣∣∣Hl
δ+l,p

(
1 + χl≥1

∣∣∣∇g
∣∣∣
∞
+ χl≥2

∣∣∣D2g
∣∣∣
Hl−2
δ′+l−1,p

)l

.

Clearly, Lemma 4.2 and Corollary 4.3 also hold if f is a vector or a matrix.

5. Flow Representation andMain Results

In this section, we discuss flow representation of the Navier-Stokes equations and state our main

results. We will assume that the prescribed fields u0 and G satisfy the following assumption with

l ≥ 2.

Assumption F (l) .

(i) u0 isFW
0 −measurable. For allω ∈ Ω, u0 is divergence-free, and u0 ∈ C2

(
Rd; Rd

)
∩Hl−2

θ+l−2,p

(
Rd; Rd

)
.

(ii) G is FW
−adapted. For all (ω, t) ∈ Ω× [0,∞), G (t) is divergence-free and G (t) ∈ Hl−2

θ+l−2,p

(
Rd; Rd

)
.

For all ω ∈ Ω, G ∈ C
(
[0,∞) , C2

(
Rd; Rd

))
.

5.1. Flow Representation. Let (Ω,F , P) be a complete probability space with a filtration F

of σ− algebras (Ft, t ≥ 0) satisfying the usual conditions and Bt, Wt be independent standard

d−dimensional Wiener processes on (Ω,F , P). Let FW =
(
F

W
t , t ≥ 0

)
be the standard sub-filtration

of F generated by Wt. We consider the following Navier-Stokes equations with a random forcing

term G,

du (t) =
[
S

(
−uk (t) ∂ku (t)

)
+
ε2

2
∆u (t) + G (t)

]
dt (5.1)

u (0) = u0, div u (t) = 0, t > 0.
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We now formulate the flow representation of (5.1). Note that u0 and G have sufficient regularity

thanks to Assumption F (l) to make the computation rigorous. To make the statement less cum-

bersome, we define some notations for the next Lemma. For a smooth vector field u, we let the

perturbed flow η (t) : Rd
→ Rd, t > 0 be given by

dη (t) = u (t, η (t)) dt + εBt, η (0) = e, t > 0.

and let κ (t) = η−1 (t) be its spatial inverse whenever it is well-defined. Also, we let

gη (t, x) = u0 +

∫ t

0
(∇η (s, x))∗G (s, η (s, x)) ds, (ω, t, x) ∈ Ω × (0,∞) ×Rd.

Lemma 5.1. Let p > d, l ≥ 2, θ ∈ (1, d) , α ∈ (0, 1] , N1, N2 > 0 and F (l) holds. Let u : Ω× [0, T]×Rd
→

Rd be FW
−adapted such that

sup
(ω,t)∈Ω×[0,T]

∣∣∣u (t)
∣∣∣
C3+α ≤ N1.

If (i) (∇κ (t))∗ gη (t,κ (t)) ∈ Hl
θ+l,p

(
Rd; Rd

)
for all (ω, t) ∈ Ω × [0, T] and

(ii) E
∣∣∣∣S [

(∇κ (t))∗ gη (t,κ (t))
]∣∣∣∣

C2
≤ N2 for all t ∈ [0, T] ,

then for P−a.s., y (t) = EW
t S

[
(∇κ (t))∗ gη (t,κ (t))

]
solves

dy (t) =S
[
−uk (t) ∂ky (t) − (∇u (t))∗ y (t)

]
dt +

[
ε2

2
∆y (t) + G (t)

]
dt (5.2)

y (0) =u0, div y (t) = 0, t ∈ (0, T]

as an equality in Hl−2
θ+l−2,p

(
Rd; Rd

)
.

Remark 5.1. We will justify in the proof that κ is well-defined. For clarity, we note that u0 satisfies both
the above conditions and assumption F (l).

Proof. We consider the perturbed flow η (t) : Rd
→ Rd given by

dη (t) = u (t, η (t)) dt + εBt (5.3)

η (0) = e, t ∈ (0, T] .

According to [18, Theorem 2.1 and 2.4], the classical solution η (t) of (5.3) and its spatial inverse

κ (t) = η−1 (t) belongs to C
(
[0, T] , C3

(
Rd; Rd

))
and for P−a.s., κ (t) is the classical solution of the

following equation,

dκ (t) =

[
−∇κ (t) u (t) +

ε2

2
∆κ (t)

]
dt− ε∂kκ (t) dBk

t

κ (0) = e, t ∈ (0, T] .
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Therefore, for any m, l = 1, . . . , d,

d∂lκ
m (t)

=

[
−∇∂lκ

m (t) u (t) −∇κm (t) ∂lu (t) +
ε2

2
∆∂lκ

m (t)
]

dt− ε∂k∂lκ
m (t) dBk

t .

By writing the above equation in a matrix form with A (t) = (∂lκ
m (t)) 1≤m≤d,

1≤l≤d
and multiplying by

gη (t,κ (t)) from the right, we obtain

(dA (t)∗) gη (t,κ (t))

=

(
−uk (t) ∂kA (t)∗ − (∇u (t))∗A (t)∗ +

ε2

2
∆A (t)∗

)
gη (t,κ (t)) dt

− ε∂kA (t)∗ gη (t,κ (t)) dBk
t .

Next applying Itô-Wentzell formula for gη (t,κ (t)) and multiplying by A (t)∗ from the left, we

obtain

A (t)∗ dgη (t,κ (t))

=
[
G (t) −A (t)∗ ∇gη (t,κ (t))∇κ (t) u (t)

]
dt

+
ε2

2

(
A (t)∗ ∇gη (t,κ (t))∆κ (t) + A (t)∗ ∂2

i jgη (t,κ (t))
(
∇κi (t) · ∇κ j (t)

))
dt

− εA (t)∗ ∇gη (t,κ (t)) ∂kκ (t) dBk
t .

Finally, the covariation term is d
[
A (t)∗ , gη (t,κ (t))

]
= ε2∂kA (t)∗ ∇gη (t,κ (t)) ∂kκ (t) dt.

By Itô product rule, summing the terms above, z (t) = A (t)∗ gη (t,κ (t)) must satisfy the following

equation

dz (t) =

[
G (t) − uk (t) ∂kz (t) − (∇u (t))∗ z (t) +

ε2

2
∆z (t)

]
dt

− ε∂kz (t) dBk
t

z (0) = u0.

Due to (i), z (t) ∈ Hl
θ+l,p

(
Rd; Rd

)
. According to Lemma 3.1, we may let z (t) = Sz (t) + (∇p (t))∗ be

its Helmholtz decomposition in Hl
θ+l,p

(
Rd; Rd

)
where p (t) ∈ Hl+1

θ+l

(
Rd

)
is a scalar. By collecting all

gradient terms, we derive

dz (t) =

[
G (t) − uk (t) ∂kSz (t) − (∇u (t))∗Sz (t) +

ε2

2
∆Sz (t) + (∇q (t))∗

]
dt

− ε∂kz (t) dBk
t

z (0) = u0

where q (t) = −∇p (t) u (t) − ε2

2 ∆p (t) . Next, we take the optional projection EW
t on both sides. Due

to (ii), EW
t can be interchanged with the integral with respect to dt and derivatives of Sz (t) .
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Finally, by taking a solenoidal projection in Hl−2
θ+l−2,p

(
Rd; Rd

)
and applying Remark 3.1, it is easily

verified that

y (t) = EW
t Sz (t) = EW

t S
[
(∇κ (t))∗ gη (t,κ (t))

]
is a solution of (5.2) as an equality in Hl−2

θ+l−2,p

(
Rd; Rd

)
. �

In the next Lemma, we derive a simplified form of EW
t S

[
(∇κ (t))∗ gη (t,κ (t))

]
.

Lemma 5.2. Let p > d, l ≥ 2, θ ∈ (1, d) and F (l) holds. Let η (t) : Rd
→ Rd, t ∈ [0, T] be a diffeomorphism

and κ (t) : Rd
→ Rd, t ∈ [0, T] be its spatial inverse such that

(i) (∇κ (t))∗ gη (t,κ (t)) ∈ Hl
θ+l,p

(
Rd; Rd

)
for all (ω, t) ∈ Ω × [0, T] ,

(ii) η (t), κ (t) are spatially twice differentiable for all (ω, t) ∈ Ω × [0, T] ,

(iii) for any multi-index γ ∈ Nd
0 with 0 ≤

∣∣∣γ∣∣∣ ≤ 2, Dγη (t, x) is continuous in t for all (ω, x) ∈ Ω ×Rd.

Then for all (ω, t) ∈ Ω × [0, T] ,

S

(
(∇κ (t))∗ gη (t,κ (t))

)
= Kη,hη (t) (5.4)

where for j = 1, ..., d,

K j
η,hη

(t, x) =
∫

Γi (x− z)
[
φ

ji
η,hη

(t, z) −φi j
η,hη

(t, z)
]

dz, (5.5)

φη,h (t, x) = (∇κ (t, x))∗ h (t,κ (t, x))∇κ (t, x)

and

hη (t, x) = ∇u0 (x) +
∫ t

0
(∇η (s, x))∗ ∇G (s, η (s, x)) (∇η (s, x)) ds,

for all (ω, t, x) ∈ Ω × [0, T] ×Rd.

Proof. In fact, if f ∈ Hl
θ+l,p

(
Rd; Rd

)
then by Remark 3.1,

(S f ) j =

∫
Γi (· − z)

(
∂i f j (z) − ∂ j f i (z)

)
dz. (5.6)

Applying (5.6) for (∇κ (t))∗ gη (t,κ (t)) ∈ Hl
θ+l,p

(
Rd; Rd

)
, we obtain(

S

(
(∇κ (t))∗ gη (t,κ (t))

)) j

=

∫
Γi (· − z)

[
∂i

(
∂ jκ

k (t, z) gk
η (t,κ (t, z))

)
− ∂ j

(
∂iκ

k (t, z) gk
η (t,κ (t, z))

)]
dz

=

∫
Γi (· − z)

[
∂ jκ

k (t, z)∇gk
η (t,κ (t, z)) (∂iκ (t, z))∗ − ∂iκ

k (t, z)∇gk
η (t,κ (t, z))

(
∂ jκ (t, z)

)∗]
dz

=

∫
Γi (· − z)

[(
∇κ (t, z)∗ ∇gη (t,κ (t, z))∇κ (t, z)

) ji
−

(
∇κ (t, z)∗ ∇gη (t,κ (t, z))∇κ (t, z)

)i j
]

dz

and by (iii),

∇gη (t) = ∇u0 +

∫ t

0
(∇η (s))∗ ∇G (s, η (s))∇η (s) ds +

∫ t

0
A (s) ds
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where (A (s))i j = ∂2
i jη

k (s)Gk (s, η (s)) is symmetric. The statement follows. �

Remark 5.2. For the time being, we provide a formal argument to derive the form of the flow equations. If
a diffeomorphism η (t) and κ (t) = η−1 (t) its spatial inverse satisfy

dη (t) = EW
t S

[
(∇κ (t, z))∗ gη (t,κ (t, z))

]
|z=η(t)dt + εdBt (5.7)

= EW
t Kη,hη (t, η (t)) + εdBt

η (0) = e, t ∈ (0, T] ,

then by letting u (t) = EW
t S

[
(∇κ (t))∗ gη (t,κ (t))

]
in Lemma 5.1, (5.2) becomes (5.1) where the term

(∇u (t))∗ u (t) = 1
2∇

∣∣∣u (t)
∣∣∣2 disappears under the solenoidal projection.

Our strategy is to find a solution of (5.7) in appropriate weighted Sobolev spaces and then return to
Lemma 5.1 and show that indeed the velocity

u (t) = EW
t S

[
(∇κ (t))∗ gη (t,κ (t))

]
is a Hl+1

θ,p −solution of (5.1) where the equality is understood in Hl−2
θ+l−2,p

(
Rd; Rd

)
(see Theorem 5.2 for the

complete statement.)

5.2. Main Results. We are now ready to state main results of this paper. Intuitively, η (t) remains

close to the identity mapping for a short time. Due to the lack of Sobolev regularity of constants

and the identity map e, it is convenient to consider for t ≥ 0 the displacement ζ (t) defined by

ζ (t) = η (t) − e− εBt.

Therefore, from (5.7), ζ (t) must satisfy the equation

dζ (t) = EW
t Kη,hη (t, η (t)) dt

ζ (0) = 0.

We start with the existence of the flow equation.

Theorem 5.1. Let p > d, l > 1 + d
p , θ ∈

[
1 + d

p , d
)

, N > 0 and

sup
ω∈Ω
|u0|Hl+1

θ+l,p
+ sup

(ω,t)∈Ω×[0,∞)

∣∣∣G (t)
∣∣∣
Hl+1
θ+l,p
≤ N.

Then for some deterministic T > 0, there exists ζ ∈ C
(
[0, T] , Hl+1

θ+l,p

(
Rd; Rd

))
such that

ζ (t) =
∫ t

0
EW

s Kη,hη (s, η (s)) ds, (ω, t) ∈ Ω × [0, T] (5.8)

holds in Hl
θ+l−1,p

(
Rd; Rd

)
. Moreover, there exists M > 0 such that

sup
(ω,t)∈Ω×[0,T]

|ζ|Hl+1
θ+l,p
≤M.

Next, we state the existence of the velocity equation.
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Theorem 5.2. Let p > d, l > 2 + d
p , θ ∈

[
1 + d

p , d
)

, N > 0, F (l) holds and

sup
ω∈Ω
|u0|Hl+1

θ+l,p
+ sup

(ω,t)∈Ω×[0,∞)

∣∣∣G (t)
∣∣∣
Hl+1
θ+l,p
≤ N.

Suppose thatζ is the solution of (5.8) as given in Theorem 5.1. Then for P−a.s., u (t) := EW
t S (∇κ (t))

∗ gη (t,κ (t)) ,

(ω, t) ∈ Ω × [0, T] solves

du (t) =
[
S

(
−uk (t) ∂ku (t)

)
+
ε2

2
∆u (t) + G (t)

]
dt (5.9)

u (0) =u0, div u (t) = 0, t ∈ (0, T]

as an equality in Hl−2
θ+l−2,p

(
Rd; Rd

)
. Moreover, there exists M > 0 such that

sup
(ω,t)∈Ω×[0,T]

∣∣∣u (t)
∣∣∣
Hl+1
θ+l,p
≤M.

6. Estimates of Diffeomorphisms

We collect some basic estimates regarding diffeomorphisms. First, for any differentiable function

f : Rd
→ Rd,

w ( f (x))
w (x)

=

(
1 +

∣∣∣ f (x)∣∣∣2) 1/2(
1 + |x|2

)1/2
≤ 1 +

∥∥∥ f
∥∥∥ ,

∥∥∥ f
∥∥∥ = ∣∣∣ f (0)∣∣∣+ ∣∣∣∇ f

∣∣∣
∞

.

If η = e + b + ζ, for some b ∈ Rd and a continuously differentiable ζ : Rd
→ Rd with |∇ζ|∞ ≤ 1

2d2 ,

then η is a diffeomorphism with spatial inverse κ , ∇η = I +∇ζ, (∇η)−1 =
∑
∞

n=0 (−1)n (∇ζ)n, and

|∇κ|∞ =
∣∣∣∣(∇η)−1

∣∣∣∣
∞

≤ 1 +
∞∑

n=1

dn−1
|∇ζ|n∞ ≤ 1 +

∞∑
n=1

1
2ndn+1

(6.1)

≤ 1 +
1

d (2d− 1)
≤ 2.

Moreover,

|∇κ− I|∞ =
∣∣∣∣(∇η)−1

− I
∣∣∣∣
∞

≤
1

d (2d− 1)
≤

1
2d

. (6.2)

For any x, y ∈ Rd, ∣∣∣x− y
∣∣∣ ≤ |∇κ|∞ ∣∣∣η (x) − η (y)

∣∣∣
If we take y = κ (0) , x = 0, then ∣∣∣κ (0)∣∣∣ ≤ |∇κ|∞ ∣∣∣η (0)∣∣∣ . (6.3)

Therefore, by (6.1),

‖κ‖ =
∣∣∣κ (0)∣∣∣+ |∇κ|∞ ≤ (

1 +
∣∣∣η (0)∣∣∣) |∇κ|∞ (6.4)

≤ 2
(
1 + |b|+

∣∣∣ζ (0)∣∣∣) .
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For determinants of Jacobian matrices, by (6.1) for all x ∈ Rd,∣∣∣det∇κ (x)
∣∣∣ ≤ C |∇κ|d∞ ≤ C, (6.5)∣∣∣det∇η (x)
∣∣∣ ≤ C (1 + |∇ζ|∞)

d
≤ C. (6.6)

We now discuss linear combination of η = e + b + ζ and η̄ = e + b̄ + ζ̄ where |∇ζ|∞ ,
∣∣∣∇ζ̄∣∣∣

∞
≤

1
2d2 .

Considering for s ∈ [0, 1] , ηs = (1− s) η+ sη̄, bs = (1− s) b + sb̄, ζs = (1− s) ζ+ sζ̄, we have

ηs = e + bs + ζs,

∇ηs = I +∇ζs,

where |∇ζs|∞ ≤
1

2d2 . Hence, by (6.1),
∣∣∣∣∇ (

η−1
s

)∣∣∣∣
∞

=
∣∣∣∣(∇ηs)

−1
∣∣∣∣
∞

≤ 2. Denoting b0 = max
{
|b| ,

∣∣∣b̄∣∣∣} ,

l0 = max
{∣∣∣ζ (0)∣∣∣ , ∣∣∣ζ̄ (0)∣∣∣} , it follows from (6.4) that∥∥∥η−1

s

∥∥∥ ≤ 2 (1 + b0 + l0) . (6.7)

Obviously, for all x ∈ Rd, ∣∣∣∣det∇
(
η−1

s

)
(x)

∣∣∣∣ ≤ C,
∣∣∣det∇ηs (x)

∣∣∣ ≤ C. (6.8)

Definition 6.1. For M > 0, T > 0, p > 1, l ≥ 0, θ ∈ (1, d) , we say that ζ ∈ Ap,l,θ
M,T if for all (ω, t) ∈

Ω × [0, T] , ζ (t) is continuously differentiable and
(i)

∣∣∣∇ζ (t)∣∣∣
∞
≤

1
2d2 ,

∣∣∣ζ (t, 0)
∣∣∣ ≤M,

(ii)
∣∣∣ζ (t)∣∣∣Hl+1

θ+l,p
≤M.

We will consistently denote η (t) = e + εBt + ζ (t) and κ (t) to be the spatial inverse of η (t) .

Assumptions (i), (ii) will be used without explicit mention. Clearly, if ζ ∈ Ap,l,θ
M,T then η (t) is a

diffeomorphism. We start with a simple Lemma which facilitates later computations. To ease

notation, we will write λt = λεt = 1 + ε sups∈[0,t] |Bs| , t ≥ 0.

Lemma 6.1. There exists C > 0 such that for all ζ ∈ Ap,l,θ
M,T and (ω, t, x) ∈ Ω × [0, T] ×Rd,

w (η (t))
w

≤ Cλt,
w (κ (t))

w
≤ Cλt.

Moreover, ∣∣∣det∇η (t)
∣∣∣
∞
≤ C,

∣∣∣det∇κ (t)
∣∣∣
∞
≤ C.

All estimates also hold for a linear interpolation ηa = aη1 + (1− a) η2, a ∈ [0, 1] of ηi ∈ A
p,l,θ
M,T , i = 1, 2

with constants independent of a.

Proof. Trivially,

w (η (t))
w

≤ 1 +
∥∥∥η (t)∥∥∥ = 1 +

∣∣∣η (t, 0)
∣∣∣+ ∣∣∣∇η (t)∣∣∣

∞

≤ 1 +
∣∣∣ζ (t, 0)

∣∣∣+ ε |Bt|+ 1 +
∣∣∣∇ζ (t)∣∣∣

∞

≤ Cλt.
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The estimates for κ (t) = η−1 (t) follows directly from (6.4). The estimates for Jacobian matrices

follows immediately from (6.6) and (6.5) respectively. �

6.1. Growth Estimates of the Spatial Inverse.

Lemma 6.2. Let p > d, l ≥ 1, θ ∈ (1, d) , σ = θ− d
p .

(i) There exists C > 0 such that for all ζ ∈ Ap,l,θ
M,T and (ω, t) ∈ Ω × [0, T] ,∣∣∣∇κ (t) − I

∣∣∣
∞
≤

1
2d

,∣∣∣κ (t, 0)
∣∣∣ ≤ Cλt.

(ii) There exists C > 0 such that for all ζ ∈ Ap,l,θ
M,T and (ω, t) ∈ Ω × [0, T] ,∣∣∣wσ−1 (∇κ (t) − I)

∣∣∣
p ≤ Cλ|σ−1|

t .

(iii) There exists C > 0 such that for all ζ ∈ Ap,l,θ
M,T , (ω, t) ∈ Ω × [0, T] and 1 ≤ k ≤ l,∣∣∣wkDk
∇κ (t)

∣∣∣
p ≤ Cλpk

t ,∣∣∣wσ+kDk
∇κ (t)

∣∣∣
p ≤ Cλσ+pk

t ,

where pk is defined recursively as pk = k (1 + pk−1) , k ≥ 2, p1 = 1.

Proof. The variable t is mostly dropped throughout the proof since all estimates simply holds for

each t. We resort to tools in differential calculus on norm vector spaces. For a primer on the subject,

an interested reader may consult [19].

(i) The first estimate is simply (6.2). For the second estimate, by (6.3),∣∣∣κ (t, 0)
∣∣∣ ≤ C

∣∣∣η (t, 0)
∣∣∣ ≤ Cλt.

(ii) By changing the variable of integration and Lemma 6.1,∣∣∣wσ−1 (∇κ− I)
∣∣∣
p

≤

∞∑
n=1

∣∣∣wσ−1 (∇ζ (κ))n∣∣∣
p ≤ Cλ|σ−1|

t

∞∑
n=1

∣∣∣(∇ζ)∣∣∣n−1
∞

∣∣∣wσ−1
∇ζ

∣∣∣
p

≤ Cλ|σ−1|
t .

(iii) Our goal now is to obtain the form of derivatives of κ. Let Md×d the set of all d× d matrices and

U be the set of invertible d× d matrices. Then F (A) = A−1, A ∈ U, is smooth and its n−th Frechet

derivative is a continuous multilinear mapping defined as

F(n) (A) · (x1, ..., xn) = (−1)n
∑
σ

A−1xσ(1)A
−1...A−1xσ(n)A

−1.

where the summation is taken over all possible permutations. Clearly, the operator norm of F(n)

satisfies ∥∥∥F(n) (A)
∥∥∥ ≤ C

∣∣∣A−1
∣∣∣n+1

, A ∈ U, n ≥ 0
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for some C > 0 (for more details see [19, Theorem 5.4.3 and relevant exercises].)

Let a ∈ Rd, b = ∇η (a) ∈ U, 1 ≤ n ≤ l, we write the order n Taylor’s expansion of ∇η at a and F at b
as follows:

∇η (a + x) = ∇η (a) +
n∑

i=1

ϕi (x) + r (x)

where ϕi (x) = 1
i!
∑
|γ|=i Dγ

∇η (a) xγ,
∣∣∣r (x)∣∣∣ = o (|x|n) , x ∈ Rd, and

F (b + y) = F (b) +
n∑

j=1

ψ j (y) + s (y)

where ψ j (y) = ψ j (y, y, ..., y) = 1
j! F

( j) (b) · (y, y, ..., y) , s (y) = o
(∣∣∣y∣∣∣n) , y ∈Md×d.

We denote ψ̃ j the multi-linear symmetrical mapping associated with ψ j that is ψ̃ j

(
y1, ..., y j

)
=

1
j!
∑
σ ψ j

(
yσ(1), ..., yσ( j)

)
where the summation is taken over all possible permutations. Next, by the

method outlined in [19, Section 7.5], the homogeneous component of order n in the finite expansion

of h = F ◦ ∇η at a is given by
n∑

j=1

∑
i1+i2+...+i j=n

ψ̃ j

(
ϕi1 (x) ,ϕi2 (x) , ...,ϕi j (x)

)

=
n∑

j=1

∑
i1+i2+...+i j=n

1
j!

∑
σ

ψ j

(
ϕiσ(1) (x) ,ϕiσ(2) (x) , ...,ϕiσ( j)

(x)
)

=
n∑

j=1

1

( j!)2

∑
i1+i2+...+i j=n

∑
σ

F( j) (b) ·
(
ϕiσ(1) (x) ,ϕiσ(2) (x) , ...,ϕiσ( j)

(x)
)

and it is equal to 1
n! h

(n) (a) · (x, ..., x) = 1
n!

∑
|µ|=n Dµh (a) xµ. Due to uniqueness of the coefficient

of xµ for each µ ∈ Nd
0 such that

∣∣∣µ∣∣∣ = n and the explicit form of F( j) as multiplication of matrices,

Dµh (a) must be a linear combination of terms in the form of

F( j) (∇η (a)) · (Dµ1∇η (a) , ..., Dµ j∇η (a))

where j = 1, ..., n and µ1 + µ2 + ... + µ j = µ.

Let γ ∈ Nd
0 such that 1 ≤

∣∣∣γ∣∣∣ = k ≤ l, then wkDγ
∇κ = wkDγ (h (κ)) is a linear combination of terms

in the form of

F( j) (∇η (κ)) ·
(
w|µ1|Dµ1∇η (κ) , ..., w|µ j|Dµ j∇η (κ)

) n∏
i=1

w|αi|−1Dαiκai

where α1 + . . .+ αn = γ, |αi| ≥ 1 for i = 1, ..., n,
∣∣∣µ∣∣∣ = n, 1 ≤ n ≤ k ≤ l, and 1 ≤ ai ≤ d are component

indices.

We note that by (i), ∣∣∣∣(∇η (κ))−1
∣∣∣∣
∞

= |∇κ|∞ ≤ 2.



Int. J. Anal. Appl. (2025), 23:27 19

If k = 1, then by Lemma 6.1,

|wDγ
∇κ|p ≤ C

∣∣∣wD2η (κ)
∣∣∣
p |∇κ|∞

≤ Cλt.

Now for 2 ≤ k ≤ l, we proceed with a strong induction- assuming that the first estimate in (iii)

holds up to 1 ≤ k− 1 ≤ l− 1. We estimate each term in the summation denoting

A = F( j) (∇η (κ)) ·
(
w|µ1|Dµ1∇η (κ) , ..., w|µ j|Dµ j∇η (κ)

) n∏
i=1

w|αi|−1Dαiκai .

If n < l then l−
∣∣∣µi

∣∣∣ ≥ l− n > d
p . By Lemma 6.1 and Sobolev embedding theorem,∣∣∣∣F( j) (∇η (κ)) ·

(
w|µ1|Dµ1∇η (κ) , ..., w|µ j|Dµ j∇η (κ)

)∣∣∣∣
∞

≤ Cλn
t .

Therefore, by Corollary 4.1 with k > d
p and the induction hypothesis,

|A|p ≤ Cλn
t

n∏
i=1,|αi|≥2

∣∣∣w|αi|−1Dαiκai
∣∣∣
Hk−|αi|

p

≤ Cλn
t

n∏
i=1,|αi|≥2

|Dαiκai |
Hk−|αi|

d/p+k−1,p

≤ Cλn
t

∣∣∣D2κai
∣∣∣n
Hk−2

d/p+k−1,p

≤ Cλk
tλ

kpk−1
t = Cλpk

t .

If n = l then |αi| = 1, i = 1, ..., l and thus
∏n

i=1

∣∣∣w|αi|−1Dαiκai
∣∣∣
∞
≤ C.

Hence, due to Lemma 6.1 and Corollary 4.1 ,

|A|p ≤C
∣∣∣∣F( j) (∇η (κ)) ·

(
w|µ1|Dµ1∇η (κ) , ..., w|µ j|Dµ j∇η (κ)

)∣∣∣∣
p

≤Cλk
t

∣∣∣∣∣∣∣
j∏

i=1

w|µi|Dµi∇η

∣∣∣∣∣∣∣
p

≤ Cλpk
t .

Therefore, the first estimate in (iii) holds for k completing the induction. The second estimate

follows from multiplyingA by wσ, replacing w|µ1|Dµ1∇η (κ) with wσ+|µ1|Dµ1∇η (κ) , and applying

the first estimate. �

Next, we derive a growth estimate for Kη,h given by (5.5) with a general h in place of hη.

Lemma 6.3. Let p > d, l > d
p , θ ∈ (1, d) . Then there exist C, r > 0 so that for all ζ ∈ Ap,l,θ

M,T and

h : Ω × [0, T]→ Hl
θ+l,p

(
Rd; Rd

×Rd
)

,∣∣∣Kη,h (t)
∣∣∣
Hl+1
θ+l,p
≤ Cλr

t

∣∣∣h (t)∣∣∣Hl
θ+l,p

, (ω, t) ∈ Ω × [0, T] .

Proof. The variable t is omitted. Now by using Lemma 3.1, Corollary 4.2, Lemma 4.2 and Lemma

6.2 (i, ii, iii) in order, ∣∣∣Kη,h

∣∣∣
Hl+1
θ+l,p

≤ C
∣∣∣φη,h

∣∣∣
Hl
θ+l,p
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≤ C
(
1 + |∇κ− I|Hl

θ+l,p

)2 ∣∣∣h (κ)∣∣∣Hl
θ+l,p

≤ Cλr
t |h|Hl

θ+l,p
.

The proof is complete. �

6.2. Difference Estimates. In this section, we estimate the difference of spatial inverses. We write

for i = 1, 2, ηi (t) = ζi (t) + e + εBt and denote their spatial inverses by κi (t). The exponent of λt

will be generically denoted by r and allowed to grow as needed. Due to its simplicity, Lemma 6.1

will from now be applied without further reference.

Lemma 6.4. Let p > d, l > d
p , θ ∈ (1, d) . Then there exist C, r > 0 such that for all ζ1, ζ2 ∈ A

p,l,θ
M,T ,∣∣∣κ1 (t) − κ2 (t)

∣∣∣
Hl
θ+l−1,p

≤ Cλr
t

∣∣∣ζ1 (t) − ζ2 (t)
∣∣∣
Hl
θ+l−1,p

, (ω, t) ∈ Ω × [0, T] .

Proof. The variable t is omitted. We observe the following identity,

κ1 − κ2 = (κ1 ◦ η2 − κ1 ◦ η1) ◦ κ2

=

[∫ 1

0
∇κ1 (aη2 + (1− a) η1) (η2 − η1) da

]
◦ κ2.

By changing the variable of integration and Lemma 6.2 (i),∣∣∣wσ−1 (κ1 − κ2)
∣∣∣
p

≤Cλ|σ−1|
t |∇κ1|∞

∣∣∣wσ−1 (η2 − η1)
∣∣∣
p ≤ Cλ|σ−1|

t

∣∣∣wσ−1 (η2 − η1)
∣∣∣
p .

Now, we easily check the condition in Corollary 4.3. Owing to Lemma 6.2 (i, iii),∣∣∣det∇η2
∣∣∣
∞
+

∥∥∥η2
∥∥∥+ ‖κ2‖+ |∇κ2|∞ + χl≥2

∣∣∣D2κ2
∣∣∣
Hl−2
θ+l−1,p

≤ Cλr
t .

Therefore, applying Corollary 4.3 with δ = θ− 1 and δ′ = θ,

|κ1 − κ2|Hl
θ+l−1,p

≤ Cλr
t

∫ 1

0

∣∣∣∇κ1 (aη2 + (1− a) η1) (η2 − η1)
∣∣∣
Hl
θ+l−1,p

da.

≤ Cλr
t

∫ 1

0

∣∣∣(∇κ1 (aη2 + (1− a) η1) − I) (η2 − η1)
∣∣∣
Hl
θ+l−1,p

da

+ Cλr
t

∣∣∣η2 − η1

∣∣∣
Hl
θ+l−1,p

= I1 + I2.

Next, we apply Corollary 4.2 with l > d
p , δ = θ− 1, δ1 = θ, δ2 = θ− 1,

I1 ≤Cλr
t

∫ 1

0

∣∣∣∇κ1 (aη2 + (1− a) η1) − I
∣∣∣
Hl
θ+l,p

∣∣∣η2 − η1

∣∣∣
Hl
θ+l−1,p

da.
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Recalling (6.7), we have
∥∥∥∥(aη2 + (1− a) η1)

−1
∥∥∥∥ ≤ Cλt, a ∈ [0, 1] . In addition, from (6.8), we have∣∣∣∣det∇ (aη2 + (1− a) η1)

−1
∣∣∣∣
∞

≤ C. Thus, applying Lemma 4.2 with δ = δ′ = θ,

I1 ≤ Cλr
t |∇κ1 − I|Hl

θ+l,p

∣∣∣η2 − η1

∣∣∣
Hl
θ+l−1,p

.

The statement now follows from Lemma 6.2 (ii, iii). �

Remark 6.1. The estimates
∥∥∥∥(aη2 + (1− a) η1)

−1
∥∥∥∥ ≤ Cλt and

∣∣∣∣det∇ (aη2 + (1− a) η1)
−1

∣∣∣∣
∞

≤ C will be
needed later.

We now provide the Lipschitz continuity of Kη,h with respect to η defined by (5.5) with a general

h in place of hη.

Lemma 6.5. Let p > d, l > 1 + d
p , θ ∈ (1, d) . Then there exist C, r > 0 such that for all ζ1, ζ2 ∈ A

p,l,θ
M,T and

h : Ω × [0, T]→ Hl
θ+l,p

(
Rd; Rd

×Rd
)

,∣∣∣Kη1,h (t) −Kη2,h (t)
∣∣∣
Hl
θ+l−1,p

≤ Cλr
t

∣∣∣h (t)∣∣∣Hl
θ+l,p

∣∣∣ζ1 (t) − ζ2 (t)
∣∣∣
Hl
θ+l−1,p

, (ω, t) ∈ Ω × [0, T] .

Proof. The variable t is omitted. Applying Lemma 3.1,∣∣∣Kη1,h −Kη2,h

∣∣∣
Hl
θ+l−1,p

≤ C
∣∣∣φη1,h −φη2,h

∣∣∣
Hl−1
θ+l−1,p

≤ C
∣∣∣(∇κ1)

∗ h (κ1) (∇κ1 −∇κ2)
∣∣∣
Hl−1
θ+l−1,p

+ C
∣∣∣(∇κ1)

∗ (h (κ1) − h (κ2))∇κ2
∣∣∣
Hl−1
θ+l−1,p

+ C
∣∣∣((∇κ1)

∗
− (∇κ2)

∗) h (κ2)∇κ2
∣∣∣
Hl−1
θ+l−1,p

= I1 + I2 + I3.

We estimate I1 and similarly I3. Applying Corollary 4.2 with l− 1 > d
p , Lemma 4.2 with l− 1 ≥ 0

and δ = δ′ = θ, and finally Lemma 6.2 (i, ii, iii), we derive

I1 ≤ C
(∣∣∣(∇κ1)

∗
− I

∣∣∣
Hl−1
θ+l−1,p

+ 1
) ∣∣∣h (κ1)

∣∣∣
Hl−1
θ+l−1,p

|∇κ1 −∇κ2|Hl−1
θ+l−1,p

≤ Cλr
t |h|Hl−1

θ+l−1,p
|∇κ1 −∇κ2|Hl−1

θ+l−1,p
.

We now proceed to estimate I2. Applying Corollary 4.2 with l− 1 > d
p followed by Lemma 6.2 (ii,

iii),

I2 ≤ C
(
1 +

∣∣∣I − (∇κ1)
∗
∣∣∣
Hl−1
θ+l−1,p

) (
1 + |I −∇κ2|Hl−1

θ+l−1,p

)
×

∫ 1

0

∣∣∣∇h (aκ1 + (1− a) κ2) (κ1 − κ2)
∣∣∣
Hl−1
θ+l−1,p

da

≤ Cλr
t

∫ 1

0

∣∣∣∇h (aκ1 + (1− a) κ2) (κ1 − κ2)
∣∣∣
Hl−1
θ+l−1,p

da.
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Applying Corollary 4.2 with l− 1 > d
p , δ = θ, δ1 = θ+ 1, δ2 = θ− 1,

I2 ≤ Cλr
t

∫ 1

0

∣∣∣∇h (aκ1 + (1− a) κ2)
∣∣∣
Hl−1
θ+l,p
|κ1 − κ2|Hl−1

θ+l−2,p
.

We observe that (6.2) ensures that a∇κ1 + (1− a)∇κ2 is close to the identity matrix. Indeed,∣∣∣a∇κ1 + (1− a)∇κ2 − I
∣∣∣
∞
≤ a |∇κ1 − I|∞ + (1− a) |∇κ2 − I|∞ ≤

1
2d

.

Due to Ostrowski’s lower bound for determinants, det∇ (aκ1 + (1− a) κ2) ≥ c > 0. By the inverse

function theorem, aκ1 + (1− a)κ2 has the spatial inverse denoted by (aκ1 + (1− a)κ2)
−1. By the

same calculation as (6.4) and Lemma 6.2 (i),∥∥∥∥(aκ1 + (1− a) κ2)
−1

∥∥∥∥
≤ (1 + (aκ1 (0) + (1− a) κ2 (0)))

∣∣∣∣∇ (aκ1 + (1− a) κ2)
−1

∣∣∣∣
∞

≤ Cλt, a ∈ [0, 1] .

Finally, applying Lemma 4.2 with l− 1 ≥ 0, δ = θ+ 1, δ′ = θ, and Lemma 6.2 (i, iii)

I2 ≤ Cλr
t |∇h|Hl−1

θ+l,p
|κ1 − κ2|Hl−1

θ+l−2,p
.

The proof is completed by Lemma 6.4. �

The following Lipschitz continuity will also be needed.

Lemma 6.6. Let p > d, l > 1 + d
p , θ ∈ (1, d) , N > 0 and sup(ω,t)∈Ω×[0,T]

∣∣∣G (t)
∣∣∣
Hl+1
θ+l
≤ N. Denote for

i = 1, 2,

hηi (t) =
∫ t

0
(∇ηi (s))

∗
∇G (s, ηi (s)) (∇ηi (s)) ds, (ω, t) ∈ Ω × [0, T] .

Then there exist C, r > 0 such that for all ζ1, ζ2 ∈ A
p,l,θ
M,T ,∣∣∣hη1 (t) − hη2 (t)

∣∣∣
Hl−1
θ+l−1
≤ Ctλr

t |ζ1 − ζ2|∑l
θ+l−1,p(t)

, (ω, t) ∈ Ω × [0, T] .

Proof. We split the difference as follows:∣∣∣hη1 (t) − hη2 (t)
∣∣∣
Hl−1
θ+l−1

≤

∣∣∣∣∣∣
∫ t

0
(∇η1 (s) −∇η2 (s))

∗
∇G (s, η1 (s)) (∇η1 (s)) ds

∣∣∣∣∣∣
Hl−1
θ+l−1

+

∣∣∣∣∣∣
∫ t

0
(∇η2 (s))

∗ (∇G (s, η1 (s)) −∇G (s, η2 (s))) (∇η1 (s)) ds

∣∣∣∣∣∣
Hl−1
θ+l−1

+

∣∣∣∣∣∣
∫ t

0
(∇η2 (s))

∗
∇G (s, η2 (s)) (∇η1 (s) −∇η2 (s)) ds

∣∣∣∣∣∣
Hl−1
θ+l−1

= I1 + I2 + I3.
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We start with I2. Applying Corollary 4.2 with l− 1 > d
p ,

I2 ≤ C
∏
i=1,2

(
1 +

∣∣∣I −∇ηi
∣∣∣∑l−1

θ+l−1,p(t)

) ∣∣∣∣∣∣
∫ t

0
(∇G (s, η1 (s)) −∇G (s, η2 (s))) ds

∣∣∣∣∣∣
Hl−1
θ+l−1,p

≤ C

∣∣∣∣∣∣
∫ t

0
(∇G (s, η1 (s)) −∇G (s, η2 (s))) ds

∣∣∣∣∣∣
Hl−1
θ+l−1,p

.

By the fundamental theorem of calculus followed by Corollary 4.2 with l− 1 > d
p , δ = θ, δ1 = θ+ 1,

δ2 = θ− 1,

I2 ≤ C
∫ t

0

∣∣∣D2G (s, aη1 (s) + (1− a) η2)
∣∣∣
Hl−1
θ+l,p

ds |ζ1 − ζ2|∑l−1
θ+l−2,p(t)

.

Finally, using Lemma 4.2 with l− 1 ≥ 0, δ = θ+ 1, δ′ = θ, and Remark 6.1,

I2 ≤ Ctλr
t

∣∣∣D2G
∣∣∣∑l−1

θ+l,p(t)
|ζ1 − ζ2|∑l−1

θ+l−2,p(t)
.

Now, we now estimate I1 and similarly I3. Applying Corollary 4.2 with l− 1 > d
p ,

I1 ≤ C |∇ζ1 −∇ζ2|∑l−1
θ+l−1,p(t)

∫ t

0

∣∣∣∇G (s, η1 (s))
∣∣∣
Hl−1
θ+l−1,p

ds.

Finally, using Lemma 4.2 with l− 1 ≥ 0, δ = θ, δ′ = θ,

I1 ≤ Ctλr
t |∇ζ1 −∇ζ2|∑l−1

θ+l−1,p(t)
|∇G|∑l−1

θ+l−1,p(t)
.

The proof is complete. �

7. Proof of theMain Theorem

In this section, we construct a solution of the flow equation via iteration. Specifically, we will

show a contraction in an appropriate function space of the mapping η→ Kη,hη given by (5.5).

7.1. Proof of Theorem 5.1. We now prove Theorem 5.1.

Proof. We will show the existence for all ω ∈ Ω and all estimates will be independent of ω. Fixing

0 < T < ∞, we consider the mapping L : ζ→
∫ t

0 EW
s Kη,hη (s, η (s)) ds = ζ̃ (t) , t ∈ [0, T] where

K j
η,hη

(t, x) =
∫

Γi (x− z)
[
φ

ji
η,hη

(t, z) −φi j
η,hη

(t, z)
]

dz,

φη,h (t, x) = (∇κ (t, x))∗ h (t,κ (t, x))∇κ (t, x) ,

and

hη (t, x) = ∇u0 (x) +
∫ t

0
(∇η (s, x))∗ ∇G (s, η (s, x)) (∇η (s, x)) ds,

for all (ω, t, x) ∈ Ω × [0, T] ×Rd.

Recall that ζ ∈ Ap,l,θ
M,T if for all (ω, t) ∈ Ω × [0, T] , ζ (t) is a continuously differentiable and

(i)
∣∣∣∇ζ (t)∣∣∣

∞
≤

1
2d2 ,

∣∣∣ζ (t, 0)
∣∣∣ ≤M,

(ii)
∣∣∣ζ (t)∣∣∣Hl+1

θ+l,p
≤M.
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We mention that by Lemma 6.2 (i),
∥∥∥κ (s)∥∥∥ ≤ Cλs which will be used several times. Applying

Corollary 4.2 and Lemma 4.2 with δ = δ′ = θ,∣∣∣hη (s)∣∣∣Hl
θ+l,p
≤ |∇u0|Hl

θ+l,p
+ Csλr

s |∇G|∑l
θ+l,p(s)

≤ Cλr
s. (7.1)

Therefore, by Lemma 6.3, ∣∣∣Kη,hη (s)
∣∣∣
Hl+1
θ+l,p
≤ Cλr

s

∣∣∣hη (s)∣∣∣Hl
θ+l,p
≤ Cλr

s, (7.2)

and by Corollary 4.3 with l + 1 ≥ 0, δ = θ− 1, δ′ = θ,

EW
s

∣∣∣Kη,hη (s, η (s))
∣∣∣
Hl+1
θ+l,p
≤ CEW

s λ
r
s ≤ C. (7.3)

Hence, ∣∣∣ζ̃ (t)∣∣∣Hl+1
θ+l,p
≤ Ct.

By Sobolev embedding theorem, we have
∣∣∣ζ̃ (t, 0)

∣∣∣ ≤ Ct,
∣∣∣∇ζ̃ (t)∣∣∣

∞
≤ Ct and ζ̃ is continuously

differentiable. We emphasize that C depends on M and T but is independent of ζ. Therefore, fixing

M > 0 and making T smaller i.e., CT ≤ M, then L : ζ→
∫ t

0 EW
s Kη,hη (s, η (s)) ds = ζ̃ (t) mapsAp,l,θ

M,T,l

intoAp,l,θ
M,T,l.

Next, we show the contraction in the weaker
∑l
θ+l−1,p (T) norm. We assume that ζ, ζ̃ ∈ Ap,l,θ

M,T are

FW
−adapted. ∫ t

0

∣∣∣EW
s Kη,hη (s, η (s)) − EW

s Kη̃,hη̃ (s, η̃ (s))
∣∣∣
Hl
θ+l−1,p

ds

≤

∫ t

0
EW

s

∣∣∣Kη,hη (s, η (s)) −Kη,hη (s, η̃ (s))
∣∣∣
Hl
θ+l−1,p

ds

+

∫ t

0
EW

s

∣∣∣Kη,hη (s, η̃ (s)) −Kη̃,hη̃ (s, η̃ (s))
∣∣∣
Hl
θ+l−1,p

ds

=

∫ t

0
I1 (s) ds +

∫ t

0
I2 (s) ds.

Estimate of I1: Applying Corollary 4.2 with δ = θ− 1, δ1 = θ, δ2 = θ− 1,

I1 (s) = EW
s

∣∣∣Kη,hη (s, η (s)) −Kη,hη (s, η̃ (s))
∣∣∣
Hl
θ+l−1,p

≤EW
s

∣∣∣∣∣∣
∫ 1

0
∇Kη,hη (s, aη (s) + (1− a) η̃ (s)) (η (s) − η̃ (s)) da

∣∣∣∣∣∣
Hl
θ+l−1,p

≤C
∫ 1

0
EW

s

∣∣∣∇Kη,hη (s, aη (s) + (1− a) η̃ (s))
∣∣∣
Hl
θ+l,p

da
∣∣∣η (s) − η̃ (s)∣∣∣Hl

θ+l−1,p
.

By Lemma 4.2 with δ = δ′ = θ, (7.2), and Remark 6.1,

I1 (s) ≤ C
∣∣∣ζ(s) − ζ̃ (s)∣∣∣Hl

θ+l−1,p
.

Estimate of I2: By Corollary 4.3 with δ = θ− 1, δ′ = θ,
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I2 (s) = EW
s

∣∣∣∣(Kη,hη (s) −Kη̃,hη̃ (s)
)
◦ η̃ (s)

∣∣∣∣
Hl
θ+l−1,p

≤ EW
s

∣∣∣Kη,hη−hη̃ (s) ◦ η̃ (s)
∣∣∣
Hl
θ+l−1,p

+ EW
s

∣∣∣∣(Kη,hη̃ (s) −Kη̃,hη̃ (s)
)
◦ η̃ (s)

∣∣∣∣
Hl
θ+l−1,p

≤ CEW
s

[
λr

s

∣∣∣Kη,hη−hη̃ (s)
∣∣∣
Hl
θ+l−1,p

]
+ CEW

s

[
λr

s

∣∣∣Kη,hη̃ (s) −Kη̃,hη̃ (s)
∣∣∣
Hl
θ+l−1,p

]
= I21 (s) + I22 (s) .

Applying Lemma 6.3 with l− 1 > d
p ,

I21 (s) ≤ CEW
s

[
λr

s

∣∣∣hη (s) − hη̃ (s)
∣∣∣
Hl−1
θ+l−1,p

]
.

Owing to Lemma 6.6, I21 (s) ≤ C
∣∣∣ζ− ζ̃∣∣∣Σl

θ+l−1,p(s)
.

By Lemma 6.5 and (7.1),

I22 (s) ≤ C
∣∣∣ζ (s) − ζ̃ (s)∣∣∣Hl

θ+l−1,p
.

Combining estimates of I1 and I2, we derive∣∣∣∣L (ζ) −L
(
ζ̃
)∣∣∣∣

Σl
θ+l−1,p(T)

≤ C
∣∣∣ζ− ζ̃∣∣∣Σl

θ+l−1,p(T)
. (7.4)

By a standard successive iteration starting with ζ(0) (t) = 0,

ζ(n+1) (t) =
∫ t

0
EW

s Kη(n),h
η(n)

(
s, η(n) (s)

)
ds, t ∈ [0, T] ,

there exists ζ∗ ∈
∑l
θ+l−1,p (T) such that

ζ∗ (t) =
∫ t

0
EW

s Kη∗,hη∗ (s, η∗ (s)) ds

as an equality in Hl
θ+l−1,p

(
Rd; Rd

)
. Owing to Lemma 8.1, ζ∗ ∈

∑l+1
θ+l,p (T) . Finally, we show that

ζ ∈ C
(
[0, T] , Hl+1

θ+l,p

(
Rd; Rd

))
. Clearly, by passing to the limit, ζ∗ ∈ Ap,l,θ

M,T possibly with a larger M.

Hence, by (7.3), ∣∣∣ζ∗ (t) − ζ∗ (t′)∣∣∣Hl+1
θ+l,p
≤

∫ t

t′
EW

s

∣∣∣∣Kη∗,hη∗ (s, η∗ (s))
∣∣∣∣
Hl+1
θ+l,p

ds

≤ C (t− t′) .

The proof is complete. �

7.2. Proof of Theorem 5.2. We now prove Theorem 5.2.

Proof. We start by checking the assumptions of Lemma 5.2.

(i) By applying Corollary 4.2 and Lemma 4.2,

(∇κ (t))∗ gη (t,κ (t)) ∈ Hl
θ+l,p

(
Rd; Rd

)
, (ω, t) ∈ Ω × [0, T] .

which also justifies condition (i) of Lemma 5.1.
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(ii) follows from differentiability of ζ (t) and Lemma 6.2.

(iii) follows from continuity of
∣∣∣ζ (t)∣∣∣Hl+1

θ+l,p
and Sobolev embedding theorem.

Hence, by (5.4) in Lemma 5.2,

S (∇κ (t))∗ gη (t,κ (t)) = Kη,hη (t) , (ω, t) ∈ Ω × [0, T] .

We let

u (t) = EW
t S (∇κ (t))

∗ gη (t,κ (t)) = EW
t Kη,hη (t) , (ω, t) ∈ Ω × [0, T] .

By (7.2),

sup
(ω,t)∈Ω×[0,T]

∣∣∣u (t)
∣∣∣
Hl+1
θ+l,p
≤ sup

(ω,t)∈Ω×[0,T]
EW

t

∣∣∣Kη,hη (t)
∣∣∣
Hl+1
θ+l,p
≤ N < ∞.

Because l + 1 > 3 + d
p , we have by Sobolev embedding theorem that

sup
(ω,t)∈Ω×[0,T]

∣∣∣u (t)
∣∣∣
C3+α ≤ N < ∞

for some α ∈ (0, 1] . Furthermore, the above inequality also justifies condition (ii) of Lemma 5.1.

Therefore, applying Lemma 5.1, u (t) solves (5.2) as an equality in Hl−2
θ+l−2,p

(
Rd; Rd

)
.

By Corollary 4.2 with δ = θ, δ1 = θ, δ2 = θ− 1,

(∇u (t))∗ u (t) =
1
2
∇

∣∣∣u (t)
∣∣∣2 ∈ Hl

θ+l,p

(
Rd; Rd

)
.

Thus, (∇u (t))∗ u (t) disappears under the Solenoidal projection in Hl−2
θ+l−2,p

(
Rd; Rd

)
. Therefore, u (t)

solves (5.9) as an equality in Hl−2
θ+l−2,p

(
Rd; Rd

)
. �

8. Appendix

8.1. Weaker Norm. We mention a result on convergence of functions in Hl
δ,p

(
Rd; Rd

)
which is

needed for constructing a solution.

Lemma 8.1. Let p > 1, l ≥ 0, δ ≥ 0. If ζn → ζ in Hl
δ,p

(
Rd; Rd

)
and |ζn|Hl+1

δ+1,p
≤ M < ∞ for all n ≥ 1 then

ζ ∈ Hl+1
δ+1,p

(
Rd; Rd

)
.

Proof. Without loss of generality, we assume that ζn, ζ ∈ Hl
δ,p

(
Rd; R

)
instead of Hl

δ,p

(
Rd; Rd

)
. The

idea is to show that wσ∂l+1ζ ∈ Lp
(
Rd

)
where σ = δ+ 1− d

p . Let γ ∈ Nd
0 with

∣∣∣γ∣∣∣ = l and 1 ≤ i ≤ d.

By a standard argument, we take ϕ ∈ C∞0
(
Rd

)
then on some subsequence of {ζn} there exist

f , g ∈ Lp
(
Rd

)
such that ∫

(wσ∂i∂
γζn) (x)ϕ (x) dx→

∫
f (x)ϕ (x) dx∫ (

wσ−1∂iw∂γζn
)
(x)ϕ (x) dx→

∫
g (x)ϕ (x) dx.

On the other hand, using integration by parts,
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−

∫
(wσ∂i∂

γζn) (x)ϕ (x) +
(
σwσ−1∂iw∂γζn

)
(x)ϕ (x) dx

=

∫
(wσ∂γζn) (x) ∂iϕ (x) dx.

Taking limit n→∞,

−

∫
f (x)ϕ (x) dx− σ

∫
g (x)ϕ (x) dx =

∫
(wσ∂γζ) (x) ∂iϕ (x) dx.

Therefore, wσ∂γζ has a weak derivative, namely f + σg ∈ Lp
(
Rd

)
. Now because wσ−1∂γζ ∈ Lp

(
Rd

)
,

we conclude that wσ∂i∂γζ ∈ Lp
(
Rd

)
. Since γ, i are arbitrary, the conclusion follows. �

8.2. Weight Function. Let Br (x) =
{
y ∈ Rd :

∣∣∣x− y
∣∣∣ < r

}
,x ∈ Rd, Br = Br (0) , r > 0. Let p > 1, 1

p +
1
q = 1. We say that a non-negative function w on Rd is of class Ap if(

1
|BR|

∫
BR

w (x + y) dy
) (

1
|BR|

∫
BR

w (x + y)−q/p dy
)p/q

≤ C, x ∈ Rd, R > 0.

We show an important property of the weight function w (x) =
(
1 + |x|2

)1/2
, x ∈ Rd.

Lemma 8.2. Let p > 1, d ≥ 1, α ∈ (−d, d (p− 1)) , then wα
∈ Ap.

Remark 8.1. d− αq
p > 0 is equivalent to α < d (p− 1). Also, for θ ∈ (1, d), α = θ− d

p ∈ (−d, d (p− 1)) .

Proof. For each α ∈ R,

1
|BR|

∫
BR

w (y)α dy ≤ CR−d
∫ R

0
(1 + r)α rd dr

r
≤ C if R ∈ (0, 1] .

If R > 1 then ∫ R

0
(1 + r)α rd dr

r
=

∫ 1

0
(1 + r)α rd dr

r
+

∫ R

1
(1 + r)α rd dr

r

≤ CRd+α if d + α > 0.

Therefore, for R > 1, noting d + α > 0,

1
|BR|

∫
BR

w (y)α dy ≤ CRα. (8.1)

Hence, for R > 1, noting d + α > 0 and d− αq
p > 0,

(
1
|BR|

∫
BR

w (y)α dy
) (

1
|BR|

∫
BR

w (y)−αq/p dy
)p/q

≤ C. (8.2)

Consider now
1∣∣∣BR (x)

∣∣∣
∫

BR(x)
w (y)α dy =

1
|BR|

∫
BR

w (x + y)α dy, x ∈ Rd.

Since
1
2

w (x)w (y)−1
≤ w (x + y) ≤ 2w (x)w (y) , x, y ∈ Rd,
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it follows that
1
|BR|

∫
BR

w (x + y)α dy ≤ 2αw (x)α
1
|BR|

∫
BR

w (y)α dy if α ≥ 0,

and
1
|BR|

∫
BR

w (x + y)α dy ≤ 2−αw (x)α
1
|BR|

∫
BR

w (y)−α dy if α < 0.

Hence, for R ∈ (0, 1], (
1
|BR|

∫
BR

w (x + y)α dy
) (

1
|BR|

∫
BR

w (x + y)−αq/p dy
)p/q

≤ C
(

1
|BR|

∫
BR

w (y)|α| dy
) (

1
|BR|

∫
BR

w (y)|α|q/p dy
)p/q

≤ C. (8.3)

Let R > 1, |x| > 2R. Then with
∣∣∣y∣∣∣ ≤ R we have 2 |x| ≥

∣∣∣y + x
∣∣∣ ≥ 1

2 |x|. Hence for each α ∈ R, there is

C > 0 so that
1
|BR|

∫
BR

w (x + y)α dy ≤ Cw (x)α .

The conclusion follows from (8.2) and (8.3).

Let R > 1, |x| ≤ 2R. By (8.1),

1
|BR|

∫
BR

w (x + y)α dy ≤ C
1
|B3R|

∫
|x+y|≤3R

w (x + y)α dy

≤ CRα.

Hence, (
1
|BR|

∫
BR

w (x + y)α dy
) (

1
|BR|

∫
BR

w (x + y)−αq/p dy
) p

q

≤ C, x ∈ Rd, R > 0.

�

8.3. Newton Potential Estimates. We investigate some fundamental properties of Newton poten-

tial in weighted Sobolev spaces.

Lemma 8.3. Let p > 1, ∆u = 0 and u ∈ H0
δ,p

(
Rd

)
with δ ≥ 0. Then u = 0.

Proof. Let u1, u2 ∈ H0
δ,p

(
Rd

)
be the solutions of ∆u = 0. Let v = u1 − u2 and

vε = v ∗ϕε

with

ϕε (x) = ε−dϕ (x/ε) , x ∈ Rd,

and ϕ ∈ C∞0
(
Rd

)
,ϕ ≥ 0,

∫
ϕ = 1.

As a bounded harmonic function vε = c. By definition, cwδ−d/p
∈ Lp

(
Rd

)
and thus c = 0. �

For f ∈ C∞0
(
Rd

)
we denote N ( f ) the Newton potential of f :

N ( f ) =
∫

Γ (· − y) f (y) dy.
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Lemma 8.4. Let p > 1, d ≥ 2,θ ∈ (1, d). Then there exists C > 0 such that for all f ∈ H0
θ,p

(
Rd

)
and

u = ∇N ( f ), i.e., u (x) =
∫
∇Γ (x− y) f (y) dy, x ∈ Rd,

|u|H1
θ,p(R

d) ≤ C
∣∣∣ f ∣∣∣H0

θ,p
.

Proof. Let f ∈ C∞0
(
Rd

)
,ψ = N ( f ) and

u (x) = ∇ψ (x) =
∫
∇Γ (x− y) f (y) dy, x ∈ Rd.

By the estimate of [20, Theorem 9.9], for each p > 1 there exists C > 0 such that

|∇u|p ≤ C
∣∣∣ f ∣∣∣p .

In particular, |∇u|2 ≤ C
∣∣∣ f ∣∣∣2. Also, it is straightforward to verify that

∣∣∣DαD2Γ (x)
∣∣∣ ≤ |x|−d−α for all

|x| , 0 and |α| ≤ 1. Hence, by Lemma 8.2, [21, Theorem 2, Chapter V.4] and [21, Theorem 1, Chapter

V.3], for each θ ∈ (1, d) and p > 1 there is C > 0 so that∣∣∣wθ−d/p
∇u

∣∣∣
p ≤ C

∣∣∣wθ−d/p f
∣∣∣
p .

We will now apply generalized Hardy-Littlewood inequality (see e.g. [13, Theorem 1.3.5]) to show

that ∣∣∣wθ−d/p−1u
∣∣∣
p ≤ C

∣∣∣wθ−d/p f
∣∣∣
p . (8.4)

Consider, ∣∣∣wθ−d/p−1 (x) u (x)
∣∣∣ = C

∣∣∣∣∣∣∣∣
∫

w (x)θ−d/p−1

w (y)θ−d/p

xi − yi∣∣∣x− y
∣∣∣d w (y)θ−d/p f (y) dy

∣∣∣∣∣∣∣∣
≤ C

∫
w (x)θ−d/p−1

w (y)θ−d/p

∣∣∣x− y
∣∣∣1−d

w (y)θ−d/p ∣∣∣ f (y)
∣∣∣ dy.

Case i. θ− d
p − 1 ≥ 0,

w (x)θ−d/p−1

w (y)θ−d/p
≤ C

(
|x|θ−d/p−1

∣∣∣y∣∣∣−(θ−d/p)
+

∣∣∣y∣∣∣−1
)

.

Case ii. θ− d
p − 1 < 0,

w (x)θ−d/p−1

w (y)θ−d/p
≤ C

(
|x|θ−d/p−1

∣∣∣y∣∣∣−(θ−d/p)
)

.

Because θ ∈ (1, d), the condition of [13, Theorem 1.3.5] is now easily verified and (8.4) is proved.

Therefore,

|u|H1
θ,p
≤ C

∣∣∣ f ∣∣∣H0
θ,p

.

The estimate for general f ∈ H0
θ,p

(
Rd

)
follows by passing to the limit. �

We will need higher order estimates of the Newton potential.

Lemma 8.5. Let p > 1, l ≥ 0, d ≥ 2, θ ∈ (1, d). Then there exists C > 0 so that for all f ∈ Hl
θ+l,p

(
Rd

)
,∣∣∣∇N ( f )

∣∣∣
Hl+1
θ+l,p
≤ C

∣∣∣ f ∣∣∣Hl
θ+l,p

. (8.5)
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Proof. We prove the claim by induction. The case of l = 0 follows from Lemma 8.4. Let ψ =

N ( f ) , f ∈ C∞0
(
Rd

)
. Assume that we proved (8.5) for 0 ≤ l ≤ n and for each p > 1. Consider for a

multi-index β ∈ Nd
0 with

∣∣∣β∣∣∣ = n + 1,

ψβ = Dβψ = N
(

fβ
)

,

where fβ = Dβ f . Then

∆ψβ = fβ, ∆
(
∇ψβ

)
= ∇ fβ in Rd,

and v = wn+1ψβ solves

∆v = F, ∆ (∇v) = ∇F,

where F = wn+1 fβ + ∆
(
wn+1

)
ψβ + 2∇

(
wn+1

)
· ∇ψβ.

By (8.5) for l = n, ∣∣∣wθ−d/p+n−1ψβ
∣∣∣
p +

∣∣∣wθ−d/p+n
∇ψβ

∣∣∣
p ≤

∣∣∣ f ∣∣∣Hn
θ+n,p

. (8.6)

Therefore, ∣∣∣wθ−d/pF
∣∣∣
p ≤ C

[∣∣∣wθ−d/p+n+1 fβ
∣∣∣
p +

∣∣∣wθ−d/p+n−1ψβ
∣∣∣
p +

∣∣∣wθ−d/p+n
∇ψβ

∣∣∣
p

]
(8.7)

≤ C
∣∣∣ f ∣∣∣Hn+1

θ+n+1,p
.

Now,

wθ−d/p−1
∇v = wθ−d/p−1

[
∇

(
wn+1

)
ψβ + wn+1

∇ψβ
]

= (n + 1)wθ−d/p+n−1
∇wψβ + wθ−d/p+n

∇ψβ,

and by (8.6), ∣∣∣wθ−d/p−1
∇v

∣∣∣
p ≤ C

∣∣∣ f ∣∣∣Hn
θ+n,p

.

Clearly, ∇N (F) solves ∆ (∇N (F)) = ∇F. Due to Lemma 8.4 and (8.7),∣∣∣∇N (F)
∣∣∣
H1
θ,p
≤ C |F|H0

θ,p
≤ C

∣∣∣ f ∣∣∣Hn+1
θ+n+1,p

< ∞. (8.8)

Hence, ∣∣∣wθ−d/p−1 (∇v−∇N (F))
∣∣∣
p ≤ C

∣∣∣ f ∣∣∣Hn+1
θ+n+1,p

< ∞.

We conclude by Lemma 8.3 that ∇v = ∇N (F) .

From (8.8) for each p > 1, there is C > 0 so that for all multi-index µ ∈ Nd
0 with

∣∣∣µ∣∣∣ = 1,∣∣∣wθ−d/pDµ
∇v

∣∣∣
p ≤ C

∣∣∣ f ∣∣∣Hn+1
θ+n+1,p

.

We have, recalling that v = wn+1ψβ, ∇v = (n + 1)wn
∇wψβ + wn+1

∇ψβ and

Dµ
∇v = (n + 1)

[
nwn−1Dµw∇w + wnDµ

∇w
]
ψβ

+ (n + 1)wnDµw∇ψβ + wn+1Dµ
∇ψβ

= B + wn+1Dµ
∇ψβ,
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where by (8.6) ∣∣∣wθ−d/pB
∣∣∣
p ≤ C

(∣∣∣wθ−d/p+n−1ψβ
∣∣∣
p +

∣∣∣wθ−d/p+n
∇ψβ

∣∣∣
p

)
≤ C

∣∣∣ f ∣∣∣Hn
θ+n,p

.

Hence, ∣∣∣wθ−d/p+n+1Dµ
∇ψβ

∣∣∣
p ≤ C

∣∣∣ f ∣∣∣Hn+1
θ+n+1,p

and the statement is proved. The estimate for general f ∈ Hl
θ+l,p

(
Rd

)
follows by passing to the

limit. �

Conclusion

We employed the Euler-Lagrangian approach to prove the local existence of the Navier-Stokes

equations in weighted Sobolev spaces on the full domain. This paper is the first to cover general

p > d ≥ 2. In the future, we will expand our approach and prove similar results with stochastic

integrals as the forcing terms.
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