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Abstract. There are many practical applications of functional equations that depend on the Ulam stability. Important
for real-world applications, this stability idea makes sure that slight modifications to the functional equation don’t
cause significant modifications to the solutions. The purpose of this work is to examine the Hyers-Ulam stability of a
finite-dimensional quartic functional equation in 2-Banach spaces and IFN-spaces (Intuitionistic Fuzzy Normed spaces)
by utilizing fixed point and direct approaches. Within the context of this quartic functional equation, as an illustration

of the stability of the equation can be regulated by sums and products of powers of norms, we present several instances.

1. INTRODUCTION

Since Ulam [20] initially posed the issue of the approximate stability of group homomorphisms
in 1940, the notion of stability in functional equations has grown into a significant field of research.

As a result of Hyers [8] in 1941 proof that additive mappings may be stable, the question posed
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by Ulam was promptly answered, and the concept of Hyers-Ulam stability was started. Fuzzy
and intuitionistic fuzzy spaces are the latest extensions of this generalized theory, which has
been applied to metric spaces, Banach spaces, and other functional equations and mathematical
frameworks in recent years. Revelations into the estimated characteristics of solutions in complex
spaces are gained through studying Ulam stability for various functional equations, which is
important for theoretical and applied mathematics.

The result of Hyers is made longer by Aoki [2] by assuming that the Cauchy differences are not
limited. As shown by Rassias [15], the additive mapping. The result of Rassias was summed up
by Gavruta [7].

Many various investigators have looked into the stability problems with various functional
equations, and they have found a lot of novel findings (see [1,12,18,19]).

Numerous researchers have investigated IFN-spaces and IF2N-spaces (Ref. [3], [5], [11]). Nu-
merous scholars have explored the Ulam stability of functional equations in IFN-spaces (see [10],
[16], [17], [21]

Since an example of a functional equation, the quartic functional equation has received a lot
of interest. Since quartic functional equations have applications in dynamical systems and ap-
proximation theory, among others, studying their stability is an important mathematical issue.
Ulam stability of the quartic functional equation in intuitionistic fuzzy normed spaces and 2-
Banach spaces, two frameworks that provide different views on stability, are the main topics of
this research. We can study stability in a broader context by using a 2-Banach space, which is an
extension of the traditional Banach space. In contrast, intuitionistic fuzzy normed spaces build on
the traditional idea of fuzzy spaces with acceptance and rejection levels, offering a more robust
mathematical framework to represent the approximation character of findings. Subsequent to this
groundwork, substantial strides were achieved in proving stability for quartic functional equations
in broader frameworks such as 2-Banach and intuitionistic fuzzy normed spaces.

Introduced by Géhler [6] in 1964, the notion of 2-Banach spaces has offered a framework for
investigating stability in spaces when certain generalised requirements are satisfied by norms.
Since then, stability researchers have turned to 2-Banach spaces for their capacity to capture multi-
dimensional norm structures in a flexible and broad way. 2-Banach spaces were recently shown to
be useful for studying the stability of complicated functional equations, like the quartic functional
equation [9].

Another way that stability theory has grown is through the use of intuitionistic fuzzy normed
spaces. These spaces provide a more complex of stability, especially in domains where approx-
imation and fuzzy logic are important, by adding a new parameter to reflect membership and
non-membership degrees. Jung and Rassias [9] showed how intuitionistic fuzzy normed spaces
may be used to analyse stability for different types of functional equations. These spaces offer a
more robust mathematical framework that can handle the inherent uncertainty and variability in

solution sets.
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In order to demonstrate that functional equations are stable, the fixed point approach has
been utilised extensively. This is due to the fact that Banach’s fixed point theorem offers a solid
framework for determining the convergence of approximate solutions [9]. Fixed point hypotheses
have been shown to be useful in demonstrating Ulam consistency in a variety of mathematical
situations, as proved by a number of research, such as those carried out by Radu [14]. Fixed
point approaches may not be applicable to functional equations, but the direct approach is still an
acceptable alternative. By using functional form-specific inequality and approximation, authors
can derive stability constraints using the direct method.

In conclusion, although the fixed point and direct approaches have both demonstrated their effi-
cacy in analysing the Ulam stability of functional equations, the application of both approaches to
2-Banach and intuitionistic fuzzy normed spaces provides a novel viewpoint on quartic functional
equations for the first time. Through the application of both fixed-point and direct approaches,
the purpose of this study is to contribute to the existing body of research on functional stability in
generalised mathematical spaces. This will be accomplished by conducting a systematic analysis
of the Ulam stability of quartic functional equations in these spaces.

Here, we examine the Hyers-Ulam stability of a finite-dimensional quartic functional equation

Zf[—me'Zm:’vj] = (m-38) Z f(vi+vj+vk—|—vl)
j=Li#]

1<i<j<k<l<m

_ (m2 —12m + 28) Z f(UZ' + 0+ Z)k)

1<i<j<k<m

3 1E2 _
+(m 15m2—|—60m 68) Z f(vi-i-vj)

1<i<j<m
m
+2 Z f(vi — ?J]') + Zf (301')
1<i<j<m im1

m* — 17m3 + 86m? — 148m + 558) =
- f ()
( )

- (1.1)

where m > 5, in 2-Banach spaces and IFN-spaces by using direct and fixed point approaches.
Within the context of this quartic functional equation, we provide examples that illustrate how the
stability of the equation may be controlled by sums and products of powers of norms.

Theorem 1.1. If a mapping f : G — T fulfills the equation (1.1), then the function f : G — T is quartic.

Our notational convenience is ensured by the definition of a mapping f : G — T by use of

Df(v1, 02, ,om) = - Z f

(m—8) Z f(vi+vj+vk+vl)

1<i<j<k<I<m
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—(m*-12m+28) Y f(oi+o;+0)

1<i<j<k<m

3 _ 2 _
+(Wl 15m2—i—60m 68) Z f(vi‘f—v]‘)

1<i<j<m
m
+2 Z f(vi — Z)]') + Zf (301')
1<i<j<m i1

m* —17m3 + 86m? — 148m + 558\
- : )Y

i=1

for every vy, v2,--- , vy € G.

Theorem 1.2. [17] Let (G,d) be a generalized complete metric space and a strictly contractive function
QO : G — Guwith L < 1. Then, for every vy € G, either

d(val,Q’"Hvl) =00, m > mp;

or there is an integer mo > 0 fulfills
(i) d(val,Qm“vl) <00, m>my;
(ii) the sequence {Q)"v1}meN converges to a fixed point v] of ();
(iii) v} is the unique fixed point of QY in G* = {vy € Gld(QY"™v1,v;) < oo};
(iv) d(vy, v]) < ﬁd(ﬂvz, vy), for every vy € G,
where L is a Lipschitz constant.

2. Hyers-Uram StaBirity Resurts IN IFN - spAcEs

Here, we take into consideration that G is a linear space, (Z, N;Xl,az,/\) is a IFN-space, and
(T, Na, 0, A) complete IEN-space.

Definition 2.1. [4] Let a membership degree ay and non-membership degree a of an intuitionistic fuzzy
set from W x (0, +00) to [0,1] such that (a1),(t) + (a2)o(t) < 1 forallv € Wand t > 0. The triple
(W, Nuy 0y, Y) is called as an Intuitionistic Fuzzy Normed - space (briefly, IFN-space) if a vector space W, a
continuous t-representable Y and N, a0, : W X (0, +00) — L* satisfying as: for all v1,vo € Wand t,s > 0,
(IFN1) Na, a, (0110) = 0+,

(IFN2) Ny, a,(v1,t) = 1+ ifand only if v; = 0;

(IFN3) Nay a, (201,1) = Na o, (01, ), for all a # 0;

(IFN4) Ngyap (01 + 02, +5) 21 Y(Nay 05 (01, 1), Nay,ay (02, 5)).-

In this case, Ny, a, is called an intuitionistic fuzzy norm, where, Ny, o, (v1,1) = ((@1)o, (t), (@2)2, (£)).
2.1. Direct Technique.
Theorem 2.1. If a function g : G" — Z with 0 < (%) <1,

Ny, o, (8(30,0,-++,0),€) 21+ Ny o, (¥(0,0,-++,0),€) (2.1)
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and
lim N, o, (831,302, -+ ,3'0m),3%€) = 1
for every v,v1,v2,- -+ , Uy € G and every € > 0. If a function f : G — T fulfills
Noq,az (Df (Ull UZ/ e /Um) /e) ZL* Nlallaz (g(ULUZ/ Tty Um)re) (2'2)

for every v1,v2,- - , vy € G and every € > 0, then the limit

3l
Nayan (Q4(U) - %,e) - 1pras - o
exists and there is only one quartic solution Q4 : G — T fulfilling the equation (1.1) and
Nal,az (g<v) = Q4 (U)/ 6) 2L N(’xl,az (g(v, 0,0,---, 0)1 €(34 - I;b)) (2-3)

for every v € G and every € > 0.

Proof. Fix v € G and every € > 0. Switching (v1,v,v3, -+ ,vp) by (v,0,0,---,0) in (2.2), we arrive

Nayay (f(30) = 3*f(0),€) 21+ N, 4, (8(2,0,0,-++,0),€). (2.4)
Switching v by 3'vin (2.4) with using (IFN3), we obtain
f(3l+1v) € ’
Nuan ( o —f(3lv),(¥) > ND(W2 (g(3lv, 0,0,--- ,O),e). (2.5)
By the inequality (2.1) and (IFN3) in (2.5), we have
f(4+1o) € , €
Nal,az( o —f(3lv),(3—4) > Noq,az g(v, 0,0,--- ’0>’ W ) (2.6)

Clearly, we can show from the inequality (2.6), that

f(8" o) f(B0) [ e ,
Nm,az( 34(1+1) B 34l ’(34(l+1)) 2L Nal,az g(U, 0,0,--- ,0), J (2-7)

Replacing € by ¢'e in (2.7), we get

f(341)  f(@l) [ yle ,
Nam( i~ gu |\ 3 || 2 N (8(2,0,0,0-,0)€). (2.8)
Clearly,
f@) oy fBT) f(E)
34l —flv) = — 34(i+1) 34i (2.9)

Using (2.8) and (2.9), it is evident that

N LR o [ ST (e L)

34(i+1) 34i 7 34(i+1)

2L Ai';l(){Nllxl,az (g(v, OI 0/ Tty O)l €) }

> Ny o, (8(0,0,0,+,0),€) (2.10)
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for every v € G and € > 0. Switching v by 3/v in (2.10) and with the help of (2.1), we arrive

i

-1
f(3l+]v 3]v € €
Nal'az[ 34(1+7) Z 34(i+j) L Ny o, (8(2,0,0,--+,0), E (211)

i=

for every j,I > 0. Switching € by /e in (2.11), we reach

; -1
f@0)  f(3I) & e ,
Noveo | 3y = 357 7 Lu zagy | 2 N (8(v,0,0,---,0),¢€). (2.12)
i=j
Utilizing (IFN3) in (2.12), we get
f(3™0)  f(3/v) :
Nal,az( ) 38 €21 Ny g g(v,0,0,...,o),m (2.13)
i=j 343

forevery j,1 >0. As0 < ¢ <3and ZLO (%)l < oo. Thus, the sequence {f (310)} is Cauchy sequence

34l
[@)
34l

in (T, Ny, a,, /A) is a complete IFN-space, this sequence { } converges in Q4(v) € T. Then, we

can define the mapping Q4 : G — T by

3ly
N“lzaz (Q4(U) - f(34l )) - 1L* as l — 00,
Setting j = 0 in inequality (2.13), we obtain
3ly €
Noya (% - f(v), ) Na] 062 [g(?], 0,0,--,0), Twl] (2.14)
Zizo 3434

Applying the limit as [ — oo in (2.14), we reach

Naya; (f(2) = Qu(0),€) 212 Ny o, (§(2,0,0,-++,0),€(3* - 9)).

After that, we aim to demonstrate that the functional equation (1.1) is satisfied by the function Qy,

replacing (v1,v2,v3,- -+ ,Um) by (3101,317)2, 3lvs, - - ,3lvm) in (2.2) respectively, we have

Nal,az( Df( 304,305,335, -+, 3l ) )>L Na1 - (g(3lvl,3lvz,3103,--- ,3lvm),34le)

24l

for every vy, vy, -+ , v € G and every € > 0. Since

lim Na1 a0 (g(3]vl,3102, 3lvg, - - ,3lvm),34l€) = 1.

>0

Therefore, according to the functional equation (1.1), the function Q4 is valid. Therefore, Q4 is a

quartic function. Lastly, let’s look at another quartic mapping Q; to demonstrate that the function
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Qy is unique.According to the functional equations (1.1) and (2.3), G — T is satisfied. Hence,

ot
Nuyas (Qu(0) ~ Qy(0) €)= Nal,az(Q4(3lv)—Q4<3 ),6)

34! 34
31 31 3l ! 31
=L A{N“wﬂ (Q4?E4l v) B f(34lv)’ g)/Nm,az [f( U) Q4( U) E]}

341 341 )

ZL* Nal,aZ (g (3IU/ 0/ O/ e /O)/ %)

, 3¥e (34 —v)
2L Nal,az (g (010/ O/ /O)/T)

for every v € G and every € > 0. As

‘ 3416(34 _ 4))
lim ——— = oo,
>0 ngl
we obtain
o 343%e(34 - )
lli)n;Nallaz (g(vlolol"'lo)/ 21701 )—1L
Thus,
Nayar (Qa(0) = Q) (0),€) = 11
Therefore, Q4(v) = Q,(v). The uniqueness of the quartic function Q4(v) is thus proven, o
Theorem 2.2. Ifa function g : G™ — Z with 0 < (%) <1,
’ _ ’ 1
ND(1,0(2 (g (3 1’Z)/ O/ 0/ e /0) /6) ZL" NalrUQ (Eg(v, O, 0, R ,0), 6) (215)

and
Lim N, (8(3701,370, -+ ,370),37Ye) = 1.
for every v,v1,v2, -+ , Uy € G and every € > 0. If a function f : G — T fulfills (2.2), then the limit
v
Nay o (Q4(v) —34lf(§),€) — 1 as 1 - o
exists and there is only one quartic function Q4 : G — T fulfilling the equation (1.1) and
Naq,ocz (f(?)) - Q4(U),€) 2L Nz;cl,az (lP(Uz 0, 0/ Ty 0)/346(‘1D - 34)) ’
for every v € g and every € > 0.
Proof. Fix v € G and all € > 0. Setting (v1,v2,03,--- ,0s) by (9,0,0,---,0) in (2.2), we arrive
Naya, (f(30) = 3*f(0),€) 21- N, ,, (§(2,0,0,-+-,0),€) . (2.16)

Switching v by % in (2.16), we get

M1 35(2) 2 Mo 00 )]
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Switching v by 3% in (2.17) and utilizing (IFN3), we have

0

v , v
Nuwas (£ (37) =3 (577 €) 20 N s (757.0.0. 0] (219
By utilizing the inequality (2.15) and condition (IFN3) in (2.18), we arrive

0

0 ,
N (1 (3)-2 (52 ) 2 Mo 000 0r ).

Utilizing the same methodology as Theorem 2.1, the remaining portion of the proof can be estab-

lished. O

Corollary 2.1. Let O be in R™. If a mapping f : G — T such that
Nay o, (Df(v1,02,-++ ,0m),€) 21 N;MC2 (0,¢€)
for every vy, v2,- -+ , vy € G and every € > 0, then there is only one quartic solution Q4 : G — T satisfies
Naya, (f(0) = Q4(v),€) 21 N:X],az (9, |3 — 1|e)

for every v € G and every € > 0.

Proof. Assuming ¢ = 3% and g(vy,v, -+ ,v) = 0O, the demonstration follows from Theorem 2.1

and Theorem 2.2. Considering ¢ = 30 and g(v1,v2,-++ ,vm) = O, the proof follows from Theorem

2.1 and Theorem 2.2. O

Corollary 2.2. Ifa function f : G — T fulfills

m
Noq,az (Df(01102/ Tty Um),e) ZL* N;vl,az (6 Z ”’01”5/ e]
i=1

for every v1,v2,- - , vy € G and every € > O, then there is only one quartic solution Q4 : G — T satisfies
Naya, (f(2) = Qa(0),€) 21 Ny, o, (Olloll%, 13* - 3%le)
for every v € G and every € > 0, where 0 and & are in R™ with & € (0,4) U (4, +0).

Proof. Assuming g = 3¢ and g=0Y", lill¢, the proof follows from Theorem 2.1 and Theorem

2.2. i

Corollary 2.3. Let 0,&,y,7 € RT with m&, mt € (0,4) U (4, +00). If a function f : G — T fulfills
m m
Nayar (D (01,02, ,0m),€) 21 Ny gy [0 ) 0l + [ ol
i=1 i=1

for every v1,v2,- - , vy € G and every € > 0, then there is only one quartic solution Q4 : G — T satisfies

Naya, (f(0) = Qa(0),€) 21 Ny o, (Ol101™, 13* = 3" e)

for every v € G and every € > 0.
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Proof. Assuming 1) = 3" and 6 P o™ + y T, lvill*, the proof follows from Theorem 2.1
and Theorem 2.2.

Corollary 2.4. Let y,7 € R with 0 < mt # 4. If a function f : G — T fulfills

m
ND(],OQ (Df(vll 02/ et /Uﬂ’l)/ €) ZL* N;(LQZ [V H ||Ul||T, 6)
i=1

for every v1,v2,- -+ , vy € G and every € > 0, then the solution f is quartic.

Proof. The proof is valid for Theorem 2.1 and Theorem 2.2 through the setting of g(v1,v2, -+ , V) =
m T
y T2 ol o

2.2. Fixed Point Technique. Before we start, let’s look at a constant f3, that

3,ifi =0,
0i = _
1 ifi=1
and @ is the set such that ® = {#1|t; : G — T,#(0) = 0}.
Theorem 2.3. Let a mapping f : G — T for which there is a mapping g : G™ — Z with

lim Ny (§(3'01,3'02, -+, 3'0),3%€) = 11 (2.19)

and fulfilling the inequality (2.2). If there is L = L(i) such that v — u(v) = 31—4g(§,0, 0, ,0) has the
property

1
Naya, (LEMW)’G) = Ngy 0, (1(0),€), (2.20)
1

then there is only one quartic function Q4 : G — T fulfills the equation (1.1) and
, Ll—i
Naya, (f(0) = Q4(v), €) 21 Nay (m“(v)'e)

for every v € G and every € > 0.

Proof. Consider ¢ be a general metric on ®:

w(h, ) = inf {j € (0,00)INay ap (1 (0) = £2(0),€) 21 Ny o, (jus(0),€), 0 € G, > o}.
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Clearly, (®,¢) is complete. Define a mapping Y : & — ® by Yt (v) = étl(giv), for every v € G.
For t1,t; € ®, we have

¥k, t2)
= Nay,a, (11(0) = 12(0), €)
hew) _ talev) ] oW (ju(énv)le]
)
)
)

<

= Naj,a, ( Q;L

:>N[X1,a2 (Ytl( ) Ytz( ),6

= ¢ (Yt (0), Yta(0)
= I’D(Yh,Ytz

IAN A
~ ~.
= —~
—

~~

<

~

N

N—

Thus, the function Y is strictly contractive on & with L (Lipschitz constant). Replacing
(v1,v2,03,-++ ,vm) by (v,0,0,---,0) in (2.2), we have

Nal,az (f(37)) - 34f( ) ) 2L Nal a; (g(?), 0,0,--- ,0),(—3) . (2-21)
Using (IFN3) in (2.21), we have
3 , 1
Novas (Lo = 0)€) 21 N (55) 000 00).

Utilizing (2.20) for i = 0, that

3 ,
Novas (1552 = F0)€) 210 Ny (0,0
v(Yf,f) < L=L'=L"" (2.22)
Setting v by £ in (2.21), we have
Phhﬂz(fﬁﬁ-—34f(§),e)2L*PﬂhﬂZ(g(g,O,Of--,O),e) (2.23)

for every v € G and every € > 0, using (2.20) for i = 1, that
v ,
N041/012 (f(’()) - 34f (g),e) 2L Na1 ap (”(v>/€)
=y (f,Yf) < 1=L"=L"" (2.24)
We can conclude from (2.22) and (2.24), that

(Y f) <L <o
From the fixed point view, it has a fixed point Q4 of Y in @ that allows it possible for
f(gw)
4l

i

- Q4(U),€] — 1+, veG,e> 0.

lim N, , (
|—>0c0
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Replacing (v1,v2, -+, vm) by (giv1, 0iv2, -+, 0iUm) in (2.2), we obtain

1
Nal,OQ EDf (inlr 0i02,- -, inm) € >L Nal 0ty (#J(inlr 0i02,° -, ijm), ‘_0?6)

i
for every vy, vp,-++ , v, € G and every € > 0. By applying the same method as in Theorem 2.1,
we are able to demonstrate that the function Qy is in accordance with the functional equation
(1.1). Considering that Q4 is a singular fixed point of Y in the context of Theorem 1.2, A = {f €
D|Y(f, Q) < oo}. Therefore, the function Q4 is unique such that

Nayaz (Qa(0) = f(0),€) 21 Ny o, (j (), €), £ > 0.

If we choose the fixed point alternative, we will get at

Q) < —p(fYS)

1-i
S (fQ) < 1

IA

, L1
= Naya, (f(0) = Qa(v),€) 210 Ny g (mu(v%e)
for every v € G and every € > 0. Hence the proof. m|

Corollary 2.5. Let 60 and & are in RY with 0 > 0. If a function f : G — T fulfills

Noq 10%) (6 6)
Nayay (Df (01,02, ,0m) ,€) 212 1N, 4, (6 L1, ol €),
Nl,xllaz (6( =1 ||U] |é + Z -1 ”U] |m5) )/

forall vy, v2,--+ , vy € Gand € > 0, then there is only one quartic function Q4 : G — T satisfies

Niya, (6,13% =1 €)

Nay,a, (f(v) = Qa(v), €) 21- Na1 a (Gllvllm, 3% - 35|€), E<4or 5 > 4;
Noyas (Ol 3% = 3"¢le), &< Lorg>2

011042(

for every v € G and every € > 0.
Proof. Setting

6,
g(vlleI"' Ivm) = 62 ]”U]”
0 (T llojllE + X1y llojll ™).
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Then,

N(,)q,az (6' (Qi)4l 6’) 7 l
, , _o\d
Nu, oy (g (@ﬁvl, oo, -+, Qﬁvm) , Q;UG) = Ny, o (9 Y lojlle, (Qll é) 6) ,

’

. o odl
Ny (O (T o + £ o), (177) e,
— 17+ as | = oo,

= — 11 as [ — oo,

— 1;+ as [ - oo.

Thus, (2.19) is holds. But we have 1(v) = g (%, 0,0,---, 0) has the property

’

1
Nal,ozz (LE‘U(QZ' ) eJ 2L Noq an (y(v),e) ,veG,e>0.
i

Hence,

’ ’

0
Nal,az (H(U),e) = Nal,az (g(zlolol 10)16)

N, .. (6,€),

a1,02

= Na],az (§||U||£/€)/

ja
Niy o (5 ll0l™ €).

Now,

Z

aq,a; ?04,6),
, 1 , !
Nﬂll,az (E#(in)f] = ai, % |le” /€ )
i

o

o
AMJWWMM| e).

(o7

(e

ZZ

Z

o)e),
o)e),

Noyan (6 4#(0),6)'

We are able to verify the following situations for conditions of g; by basing our verification on

aq,a2

’

I
Z

ay,a2

inequality (2.20).
Case:1 L =37*ifi = 0.
: 3~
Nay F(0) = Qa(0),€) 21 Ny 12550(0) €] = Nopoy 6,806,
Case:2 L = 3*ifi = 1.

Nuyas (f(0) = Qu(0),€) 21 Ny (155000, €) = NGy o (0,-80).
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Case:3L =3*foré<4ifi=0.

, 3¢ , .
Naya (f(©) = Qs(v),€) 21 Ny, (1_—35_4y(v),e) =Ny o, (9||v||°», (3% - 35)e).

Casedd L =3*<foré>4ifi=1.

Nuyas (f(0) = Qa(0),€) 21 Ny (15 88(0),€) = Niy oy (011, (3° = 3%)e).

Case:5 L = 3" 4 for & < % ifi =0.

: gmé—4 : .
Ny F0) = Qa(0),€) 21 Ny 180, €) = Ny (6101, 34~ 37)c).

Case:6 L = 3* ¢ for & > % ifi =1.

! 1 ! m m
Nays (F(0) = Qa(0),€) 21 Ny (75 (0),€) = Ny (6™, (37 = 3)e).

3. Hyers-Uram StaBiLiTy Resurts IN 2-BaANAcH SpACEs
Definition 3.1. [13] Let G be a linear space over R with a dimension greater than 1, and consider a
mapping ||-, || : G*> — R that fulfills the subsequent conditions:

(@) llp1, p2ll = O iff p1 and p, are linearly dependent.
(®) llp1, p2ll = lip2, pall,
(© llwpy, p2ll = wl llp1, p2ll,
(d) llpr, p2 + pll < lip1, pall + llp1, psll
for every p1,p2,p3 € Gand w € R.

Therefore, ||-,-|| is referred to as a 2-norm on G, and (G, ||-,-||) is termed a linear 2-normed space. The

space R?, endowed with the 2-norm defined as |p1, p2| = the area of the triangle formed by the vertices 0, p1,
and pa, exemplifies a 2-normed space.

Lemma 3.1. [13] Let (G, ||, -|l) be a linear 2-normed space. If p1 € G and ||p1, p2l| = 0 for every ps € G,
then p1 = 0.

Lemma 3.2. [13] For a convergent sequence {(p1),} in a linear 2-normed space G,
}LTOII(Pl)jzpzll = ||}Lfg(pl)j/P2||
for every ps € G.
In this part, we treat G and T are the normed linear space and the 2-Banach space, respectively.

Theorem 3.1. Let a mapping g : G — [0, +0) fulfills

1 ) . ,
lim —¢(3'01,3%0, -, 30, 5) = 0 (3.1)

i—c0 3
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for every vy,v2,- -+ ,Um, s € G. Suppose that f : G — T is a mapping with f(0) = 0 and satisfies

HDf(ULUZr U3, ,Um), S| < g(v1,02,03,+++ , Um, S) (3.2)

and
X L
8(v,s) =: Z@ @g(?)]Z),0,0,"' ,0,8) < o
j=

exists for every v1,vz,- -+ ,Um,s € G. Then there is only one quartic function Qu : G — T satisfies

o) - Qu(o),s

1
< ﬁg(v,s) (3.3)

forevery v,s € G.

Proof. Setting (v1,v2,v3,-++ ,vm) by (¢,0,0,---,0) in (3.2), we arrive

[F30)-3¢f(0), s

for every v,s € G. Switching v by 3"v in (3.4) and dividing both sides by 3", we attain
1 1 1

||34(n+1)f(3n U) - ﬁf(gnv)/s

for every v,s € G and every positive integer i. Hence,

<g(v,0,0,---,0,s) (3.4)

< ¢(30,0,0,---,0,s)

-1 ‘ 1

- ]—1 = i
= Z H34(j+1)f(3 v) 39 (3/v),s
j=m

“34(}+1)f(3i+17]) - 34me(3'"0),5)

1

1 .
< Z Eg(3jv, 0/ /0/ S) (35)

j=m
for every v,s € G and every positive integers m and i with i > m. Consequently, given (2.2) and
(2.5), the sequence {% f(3'v)}is Cauchy in T for every v € G. Given that T is complete, the sequence

{ % f(3'v)} converges in T for every v € G. Consequently, we may define a mapping Q4 : G — T by

N NPy
Qa(v) := lim —f(3'0) (3.6)
i—so0 3
for every v € G. Then,
L
lim 5 (3°0) = Qa(0), o = 0

for every v,s € G. By setting m = 0 and evaluating a limit as i — oo in equation (3.5), we obtain
equation (3.3). Subsequently, we aim to demonstrate that the function Q4 is of quartic degree.
From inequalities (3.1), (3.2), (3.6), and Lemma 3.2, that

||Df(01,vz,---,vm),s = lim Df(3iv1,3ivz,---,3ivm),s'
1—00
1 . . .
< lim —58(3%1, 802, -+, 30w, 5) = 0

for every vy, vz, - , vy, 5 € G. By Lemma 3.1,

DQu(v1,v2,03,++ ,0m) =0
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for every vy,v2,0v3,-+- , vy € G. Therefore, based on Theorem 1.1, the mapping Q4 : G — T is of
quartic dimension.
To demonstrate the uniqueness of the function Q4, we assume the existence of another quartic
solution Q; : G — T that satisfies (3.3). Subsequently
1 : . . .
_ nm_ﬁpdym—f@wyfﬂym—gdqu

im0 34

|Qs0) - Q)5

N S
< hm@g(?v,s)zo

i—0c0

forall v,s € G. By Lemma 3.1, Q4(v) — Q}(v) = 0 for every v € G. Hence, Q4 = Q. m]

Remark 3.1. A theorem similar to 3.1 can be established, wherein the sequence is defined as follows:

Q4(v) := lim 3‘%‘(%)

i—0o0

is defined using suitable assumptions for g.
Corollary 3.1. Let @ : [0,00) — [0, c0) be a function fulfilling w(0) = 0 and

@) @(pg) < w(p)w(q).
(i) w(p) < p for every p > 4.
If a function f : G — T fulfills

HDf(ULUZ/ o, Um),S|| < i w([lill) + w(lsll)
i=1

for every v1,v2,- -+ , U, s € G, then there is only one quartic solution Q4 : G — T satisfies

w([lvll)
101 - oo < |52

+ a)(IISII)] (3.7)
foreveryv,s € G.

Proof. Setting
801,902,035, ,vm,5) = Y w(loll) + w(llsl)

1<i<m

for every v1,v2,v3,- -+ , Uy, s € G. We can say from (i) that
®(3") < (0(3))*
and

g(3iv1,3ivz,--- ,3ivm,s) < (a)(3))4i[ Z w(l[oill) |+ w(lls]]).

1<i<m

We get (3.7) by using Theorem 3.1. m]

Corollary 3.2. Let q < 4 and a homogeneous function H : [0,00) X [0,00) — [0,00). If a function
f:G — T fulfills

< H (lloal ko2l llosll, -+« lfowmll) + sl

||Df(vllz]2/ 03/ e /Um)/s
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for every v1,v2,v3,- -+ ,Um, s € G, then there is only one quartic function Q4 : G — T fulfills

H ||U||I O/ 0/ T /0 + ”S”
Hf(v) —Qu(v),s | Rl 3 ) (3.8)
for every v,s € G and every g €€ R™.
Proof. Setting
8(v1,v2,03,- -+ ,0m,s) = H ([o1l, llozll, lfvsll, - -, lfomll) + [Isll
for every v1,v2,v3,- -+ , vy, s € G. By utilizing Theorem 3.1, we reach (3.8). m]

Corollary 3.3. Let g < 4 and a homogeneous function H : [0, 00) X [0,00) — [0, 00) with degree q. If a
function f : G — T fulfills

[P (102,05, ou), | < H (ol ol sl ol sl

for every v1,v2,v3, -+ ,Um, S € G, then there is only one quartic solution Q4 : G — T satisfies

H ||U||I 0/ 0/ e 10 ”S”
7o) - Que), of < RO 0 39)
for everyv,s € Gand g € R™.
Proof. Setting
8(v1,v2,03,-+ ,0m,s) = H (lloll, llo2ll, [[o3ll, - - -, llowmll) sl
for every vy, v2,v3,- -+ ,Up, s € G. By utilizing Theorem 3.1, we arrive (3.9). m]

Corollary 3.4. Let p < 4 and a function f : G — T fulfills

m
| < Y i + sl
i=1

for every v1,v2,- -+ , Uy, s € G, then there is only one quartic solution Q4 : G — T satisfies

[[ollP + [ls]|
3-p

||Df(0117)2/ to Ivm)ls

[70) - Qu0). 5] <

for everyv,s € Gand p € R™.

4. CONCLUSION

In this current work, we examined the Hyers-Ulam stability of a finite-dimensional quartic func-
tional equation in IFN-spaces and 2-Banach spaces by utilizing fixed point and direct approaches.
Within the context of this quartic functional equation, as an illustration of the stability of the

equation can be regulated by sums and products of powers of norms, we present several instances.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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