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Abstract. Let Fq be a finite field, where q is an odd prime such that q > 3. Let f (t) = t3
− t ∈ Fq [t] be a polynomial of

degree 3. For λ , 0 in Fq, consider families of elliptic curves {Eλ}λ∈F∗q and {Hλ}λ∈F∗q defined respectively by

v2 = λ f (u) and f (v) = λ f (u).

In this paper, I investigate the relation between the rational points over finite field on
{
Eλ

(
Fq

)}
λ∈F∗q

and
{
Hλ

(
Fq

)}
λ∈F∗q

,

and determine the number of rational points on both of these family of curves.

1. Introduction

The Legendre symbol [5] of a element α ∈ Fq is given as:(
α
q

)
≡ α

q−1
2 modq.

Definition 1.1. [5] Let q be a prime number, an element α ∈ Fq is called quadratic residue if there exists
β ∈ Fq satisfies

β2 = α.

If there is no such β, then α a quadratic non-residue.

The quadratic character of χ : Fq → C for α ∈ Fq, is given as follows:

χ (α) =


0,

+1,

−1,

if α = 0,

if
(
α
q

)
= 1,

otherwise.

Received: Nov. 28, 2024.

2020 Mathematics Subject Classification. 14H52, 14G05, 11L10.

Key words and phrases. elliptic curve; rational points; Jacobsthal sums.

https://doi.org/10.28924/2291-8639-23-2025-32
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-32


2 Int. J. Anal. Appl. (2025), 23:32

Corollary 1.1. [1] Let α, β,γ be integers with an odd prime such that q - α, then

q−1∑
u=0

(
αu2 + βu + γ

q

)
=

 −
(
α
q

)
(q− 1)

(
α
q

)
,

if β2
− 4αc ≡ 0 (modq),

if β2
− 4αc � 0 (modq).

Definition 1.2. [1] If α ∈ Fq, the Jacobsthal sum φn (α) is defined by

φn (α) =
∑
u∈Fq

χ (u)χ(un + α),

where n is a positive integer.

For a smooth projective curve C, the Riemann hypothesis over finite fields says

|N − (q + 1) | ≤ 2g
√

q,

where N is the number of Fq- rational points on C, and g is a genus of C.

Definition 1.3. [7] For an odd prime, the number of solutions (u, v) ∈ Fq ×Fq of quadratic polynomial
f (u) is given by

#
{
(u, v) ∈ Fq ×Fq|v2 = f (u)

}
= q +

q−1∑
u=0

χ ( f (u)) .

Consider the projective curveHλ defined by the equation homogeneous polynomial

F(u, v, z) = zn f
(v

z

)
− λzn f

(u
z

)
, λn , 1 and λ ∈ F∗q.

Theorem 1.1. [2] Let Fq be a finite field of characteristic q such that q does not divide n. The projective
curveHλ is non-singular at infinity.

Definition 1.4. [4] The genus of non-singular algebraic curve defined by a polynomial F(u, v) of degree t
is given by the formula

g =
1
2
[(t− 1) (t− 2)] .

2. Rational Points on a Family of Curves v2 = λ f (u)

Let f (u) = u3
− u be a polynomial of degree 3 such that u ∈ Fq, . Consider the elliptic curve Eλ

which is defined by

F(u, v) = v2
− λ

(
u3
− u

)
, and ,λ ∈ F∗q.

Let Eλ
(
Fq

)
denote the set of Fq−rational points on the affine curve.

Theorem 2.1. For f (u) = u3
− u, the number of rational points on the curve Eλ is given by

#Eλ
(
Fq

)
= (q− 3) + χ (λ)φ(−1) + 3.
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Proof. Let

S =
{
(0, 0), (±1, 0)

}
,

be the set trivial rational points on a curve Eλ. Let #Eλ
(
Fq

)
be the number of rational points

(u, v) ∈ Fq ×Fq of the congruence v2 = λ
(
u3
− u

)
modq and u , 0,±1 which is given as follow,

#Eλ
(
Fq

)
=

∑
u∈F∗q

(1 + χ (λ)χ
(
u3
− u

)
) + #S

=
∑
u∈F∗q

1 +
∑
u∈F∗q

χ (λ)χ
(
u3
− u

)
+ 3

= (q− 3) + χ (λ)φ(−1) + 3.

�

Theorem 2.2. Let {Eλ}λ∈Fq be a family of elliptic curves, then #
{
Eλ

(
Fq

)}
is given by

#{Eλ
(
Fq

)
}λ∈F∗q = (q− 1) (q− 3) + 3.

Proof. Consider the set

E∗λ
(
Fq

)
=

{
(u, v) ∈ Fq ×Fq|v2 = λ

(
u3
− u

)
,λ ∈ F∗q , v , 0

}
,

where E∗λ
(
Fq

)
∩ E∗µ

(
Fq

)
= φ when λ , µ. To prove this, assume E∗λ

(
Fq

)
∩ E∗µ

(
Fq

)
, φ for λ , µ,

then there exists (α, β) that belongs to Eλ
(
Fq

)
and Eλ

(
Fq

)
, so β2 = λ

(
α3
− α

)
and β2 = µ

(
α3
− α

)
,

which implies either µ = λ or α = ±1, a contradiction since λ , µ and β , 0.Let QR
(
Fq

)
be the

collection of elements that are quadratic residues in Fq, while QNR
(
Fq

)
is the the collection of

elements that are quadratic non-residues in Fq.

Consider the family of curves {Eλ
(
Fq

)
}λ∈F∗q , then

{Eλ
(
Fq

)
}λ∈F∗q =

⋃
λ∈F∗q

E∗λ
(
Fq

)
+ S

#{Eλ
(
Fq

)
}λ∈F∗q =

∑
λ∈F∗q

#E∗λ
(
Fq

)
+ #S

=
∑

λ∈QR(Fq)

#E∗λ
(
Fq

)
+

∑
λ∈QR(Fq)

#E∗λ
(
Fq

)
+ #S.

Moreover, by Theorem 2.1.

=
q− 1

2
[(q− 3) + φ(−1)] +

q− 1
2

[(q− 3) −φ(−1)] + 3

=
q− 1

2
[(q− 3) + φ(−1) + (q− 3) −φ(−1)] + 3

= (q− 1) (q− 3) + 3.

�



4 Int. J. Anal. Appl. (2025), 23:32

3. Rational Points of the Curve Hλ

(
Fq

)
Consider the affine Holm curve [6] Hλ defined by F(u, v) = f (v) − λ f (u)

Hλ : f (v) = λ f (u) , λ ∈ F∗q,

Hλ : v3
− v = λ(u3

− u), λ ∈ F∗q,

and its projective model

Hλ : v3
− vz2 = λ(u3

− uz2), λ ∈ F∗q,

By Theorem 1.1.,Hλ has no singularity at infinity. In addition, by solving the system of equation

Fu = Fv = Fz = F = 0, I obtain Hλ is non-singular curve, Moreover, by Definition 1.4., the genus

of Hλ is one.

The following set

T =
{
(0, 0) , (±1, 0), (0,±1), (±1,±1)

}
,

of trivial points of cardinality 9 contained in the following set

Hλ

(
Fq

)
=

{
(u, v) ∈ Fq ×Fq : v3

− v = λ
(
u3
− u

)}
,

for each λ ∈ F∗q . Let #Hλ

(
Fq

)
be the number of Fq-rational points on the affine curve Hλ. Then by

the Riemann Hypothesis over finite fields, I get∣∣∣∣∣∣∣
q−1∑
u=0

χ ( f (u))

∣∣∣∣∣∣∣ ≤ 2
√

q.

Proposition 3.1. For each λ ∈ F∗q,

(1) #Hλ

(
Fq

)
= #Hµ

(
Fq

)
, where λ is an additive inverse of λ.

(2) #Hλ

(
Fq

)
= #Hµ

(
Fq

)
, where λ is an multiplicative inverse of λ.

(3) #H1

(
Fq

)
=

 2q + 1

2q− 1

q ≡ 1, 11(mod12),

q ≡ 5, 7(mod12).
.

Proof. (1) Observe the map

G : Hλ

(
Fq

)
→ Hλ

(
Fq

)
,

defined as (α, β)→ (−α, β) is a bijective map. Hence, #Hλ

(
Fq

)
= #Hµ

(
Fq

)
.

(2) Observe the map

G : Hλ

(
Fq

)
→ Hλ

(
Fq

)
,

defined as (α, β)→ (β,α) is a bijective map. Hence, #Hλ

(
Fq

)
= #Hµ

(
Fq

)
.

(3) The curve H1

(
Fq

)
is defined by the equation

v3
− v−

(
u3
− u

)
= 0,

(v− u)
(
v2 + uv + u2

)
− (v− u) = 0,

(v− u)(v2 + uv + u2
− 1) = 0,
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if (v− u) = 0, then #
{
(u, v) : u = v

}
= q. Otherwise, if v2 + uv + u2

− 1 = 0, this leaves two

cases:

Case 1: Let u = v, then 3u2 = 1, if χ(3) = +1 this implies
(
−1
√

3
, −1
√

3

)
and

(
1
√

3
, 1
√

3

)
belong to{

(u, v) : u = v
}

;

moreover, χ(3) = +1 when q ≡ 1, 11(mod12). Therefore,

#
{
(u, v) ; v2 + uv + u2 = 1, u = v

}
=

 2

0

q ≡ 1, 11(mod12),

q ≡ 5, 7(mod12).

Case 2: Let v , u. Dividing by v and putting β = 1
v and α = u

v ,

{(α, β) ∈ Fq ×Fq : β2 = α2 + α+ 1},

then by Corollary 1.1.

#{(α, β) ∈ Fq ×Fq : β2 = α2 + α+ 1} = q− 1.

Now, If q ≡ 1, 11(mod12), then
{
(u, v) : u = v

}
∩

{
(u, v) ; v2 + uv + u2 = 1

}
= 2, therefore

{
(u, v) ; v2 + uv + u2 = 1

}
=

 q− 3

q− 1

q ≡ 1, 11(mod12),

q ≡ 5, 7(cmod12).

Therefore, I conclude

#H1

(
Fq

)
=

 2q− 3

2q− 1

q ≡ 1, 11(mod12),

q ≡ 5, 7(mod12).
�

4. Arithmetic Relation between {Eλ}λ∈F∗q and {Hλ}λ∈F∗q

Throughout this section, I study the arithmetic relation between elliptic curves {Eλ}λ∈F∗q and

{Hλ}λ∈F∗q . Consider

Eλ
(
Fq

)
:

{
(u, v) ∈ Fq ×Fq, v2 = λ f (u),λ ∈ F∗q

}
,

E∗λ
(
Fq

)
:

{
(u, v) ∈ Fq ×Fq, v2 = λ f (u), f (u) , 0,λ ∈ F∗q

}
.

And consider the sets

Π =
{
(q1, q2) ∈ E∗λ × E∗µ : q1 = (u1, v1) , q2 = (u2, v2) , v2

1 = v2
2,λ , µ

}
,

H∗λ
(
Fq

)
=

{
(u, v) ∈ Fq ×Fq : f (v) = λ f (u), f (v) , 0, f (u) , 0,λ ∈ F∗q

}
.

Moreover, since f (u) , 0, u3
− u , 0, then u , 0,±1, which leads to v , 0,±1. Now consider

Π∗ = Π −
{
(q1, q2) ∈ E∗λ × E∗µ : q1 = (u1,±1) , q2 = (u2,±1)

}
.

Theorem 4.1. The arithmetic relation between two family of elliptic curves {Hλ

(
Fq

)
}λ∈F∗q and {Eλ

(
Fq

)
}λ∈λ∈F∗q

is given as follows

G : Π∗ → Hλ

(
Fq

)
(q1,q2) 7→(u1,u2)

.
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Proof. Let (q1, q2) ∈ Π∗, such that q1 = (α1, β1) ∈ E∗λ, q2 = (α2, β2) ∈ E∗µ where λ , µ, I have proved

that when λ , µ, E∗λ ∩ E∗µ = φ, then

β2
1 = λ

(
α3

1 − α1

)
, β2

2 = µ
(
α3

2 − α2

)
, and β2

1 = β2
1,

then the rational point (α1,α2) would be lying on the following curve(
α3

1 − α1

)
= ρ

(
α3

2 − α2

)
, where ρ =

µ

λ
.

Conversely: suppose that (α1,α2) ∈ Hλ

(
Fq

)
, then(

α3
1 − α1

)
= λ

(
α3

2 − α2

)
,

this leaves two cases:

Case 1: If the curve
(
α3

1 − α1

)
= λ

(
α3

2 − α2

)
is a quadratic equation, then there exists β ∈ F∗q such

that (
α3

1 − α1

)
= λ

(
α3

2 − α2

)
= β2,

then, (α1,±β) ∈ E∗1
(
Fq

)
,and (α2,±β) ∈ E∗µ

(
Fq

)
.

Case 2: If the curve
(
α3

1 − α1

)
= λ

(
α3

2 − α2

)
is not a quadratic equation, then there exists ρ ∈

F∗q

(
Fq

)
such that

ρ
(
α3

1 − α1

)
= ρλ

(
α3

2 − α2

)
= β2.

Let ρλ = µ then, (α1,±β) ∈ E∗ρ
(
Fq

)
and (α2,±β) ∈ E∗µ

(
Fq

)
. �

Theorem 4.2. Let {Hλ}λ∈F∗q be a family of elliptic curves, then #{Hλ

(
Fq

)
}λ∈F∗q is given as follows

#{Hλ

(
Fq

)
}λ∈F∗q = (q− 3)2 + 9.

Proof. Consider the set

Hλ

(
Fq

)
=

{
(u, v) ∈ Fq ×Fq : v3

− v = λ
(
u3
− u

)
,λ ∈ F∗q

}
,

H∗λ
(
Fq

)
=

{
(u, v) ∈ Fq ×Fq : v3

− v = λ
(
u3
− u

)
,λ ∈ F∗q

}
− T,

where H∗λ
(
Fq

)
∩H∗λ

(
Fq

)
= φ when λ , µ. since f (v) , 0 and f (u) , 0, which implies v , ±1

{H∗λ
(
Fq

)
}λ∈Fq =

⋃
λ∈Fq

H∗λ
(
Fq

)
#{H∗λ

(
Fq

)
}λ∈Fq =

∑
λ∈Fq

#H∗λ
(
Fq

)
= #π∗ − #

{
(u, v) ∈ Fq ×Fq|v2 = λ f (u), v = ±1

}
.

For a given u0 ∈ F∗q and u0 , ±1, there are two points (u, v) on Eλ
(
Fq

)
with u−coordinate u0; if

λ f (u0) non-square in Fq,

#{(u0, v) : (u0, v) ∈ Eλ
(
Fq

)
} = 1 + χ (λ f (u0))

= 1 + χ (λ)φ(−1).



Int. J. Anal. Appl. (2025), 23:32 7

The number of (u0, v) on {E∗λ
(
Fq

)
}λ∈F∗q

#{(u0, v) : (u0, v) ∈ {E∗λ
(
Fq

)
}λ∈F∗q} =

∑
λ∈F∗q

1 +
∑
λ∈F∗q

χ (λ)φ(−1)

=
∑
λ∈F∗q

1 + φ(−1)
∑
λ∈F∗q

χ (λ)

= (q− 1) + φ(−1)(0)

= q− 1.

So, there are q − 1 of distinct rational points (u0, v) for a given u0. Now, for all over u ∈ F∗q and

u , ±1,

#π∗ = (q− 3) (q− 1) .

Let C be the elliptic curve such that v2 = 1, then λ
(
u3
− u

)
= 1, so there are at most two points

(u,±1) ∈ E∗λ
(
Fq

)
for each λ ∈ F∗q. By theorem 2.2 #{E∗λ

(
Fq

)
}λ∈F∗q = (q− 1) (q− 3) , then

#
{
(u, v) ∈ Fq ×Fq,λ

(
u3
− u

)
= 1,λ ∈ F∗q

}
= 2

[
(q− 1) (q− 3)

(q− 1)

]
= 2 (q− 3) .

Therefore,

#{H∗λ
(
Fq

)
}λ∈F∗q = #π∗ − #

{
(u, v) ∈ Fq ×Fq|v2 = λ f (u), v = ±1

}
#{H∗λ

(
Fq

)
}λ∈F∗q = (q− 3) (q− 1) − 2 (q− 3)

= (q− 3)2 .

Moreover,

#{Hλ

(
Fq

)
}λ∈Fq = (q− 3)2 + 9.

�

5. Conclusion

In this paper, I have proved there is an arithmetic relation between families of elliptic curves

{Eλ}λ∈Fq and {Hλ}λ∈Fq and calculated the number of rational points on each of {Eλ}λ∈Fq and {Hλ}λ∈Fq .
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