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CONVERGENCE TO COMMON FIXED POINT FOR NEARLY

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH

SPACES

G. S. SALUJA

Abstract. The purpose of this paper is to study modified S-iteration process

to converge to common fixed point for two nearly asymptotically nonexpansive
mappings in the framework of Banach spaces. Also we establish some strong

convergence theorems and a weak convergence theorem for said mappings and

iteration scheme under appropriate conditions.

1. Introduction

Let C be a nonempty subset of a Banach space E and T : C → C a nonlinear
mapping. We denote the set of all fixed points of T by F (T ). The set of common
fixed points of two mappings S and T will be denoted by F = F (S) ∩ F (T ). The
mapping T is said to be Lipschitzian [1, 16] if for each n ∈ N, there exists a constant
kn > 0 such that

‖Tnx− Tny‖ ≤ kn ‖x− y‖

for all x, y ∈ C.

A Lipschitzian mapping T is said to be uniformly k-Lipschitzian if kn = k
for all n ∈ N and asymptotically nonexpansive [4] if kn ≥ 1 for all n ∈ N with
limn→∞ kn = 1.

It is easy to observe that every nonexpansive mapping T (i.e., ‖Tx − Ty‖ ≤
‖x − y‖ for all x, y ∈ C) is asymptotically nonexpansive with constant sequence
{1} and every asymptotically nonexpansive mapping is uniformly k-Lipschitzian
with k = supn∈N kn.

The asymptotic fixed point theory has a fundamental role in nonlinear func-
tional analysis (see, [2]). The theory has been studied by many authors (see, e.g.,
[6], [7], [10], [12], [21]) for various classes of nonlinear mappings (e.g., Lipschitzian,
uniformly k-Lipschitzian and non-Lipschitzian mappings). A branch of this theo-
ry related to asymptotically nonexpansive mappings has been developed by many
authors (see, e.g., [4], [5], [9], [11], [12], [14], [15], [17]-[19]) in Banach spaces with
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suitable geometrical structure.

Fix a sequence {an} ⊂ [0,∞) with limn→∞ an = 0, then according to Agarwal
et al. [1], T is said to be nearly Lipschitzian with respect to {an} if for each n ∈ N,
there exist constants kn ≥ 0 such that ‖Tnx − Tny‖ ≤ kn(‖x − y‖ + an) for all
x, y ∈ C. The infimum of constants kn for which the above inequality holds is
denoted by η(Tn) and is called nearly Lipschitz constant.

A nearly Lipschitzian mapping T with sequence {an, η(Tn)} is said to be nearly
asymptotically nonexpansive if η(Tn) ≥ 1 for all n ∈ N and limn→∞ η(Tn) = 1 and
nearly uniformly k-Lipschitzian if η(Tn) ≤ k for all n ∈ N.

In 2007, Agarwal et al. [1] introduced the following iteration process:

x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1(1.1)

where {αn} and {βn} are sequences in (0, 1). They showed that this process con-
verge at a rate same as that of Picard iteration and faster than Mann for con-
tractions and also they established some weak convergence theorems using suitable
conditions in the framework of uniformly convex Banach space.

We modify iteration scheme (1.1) for two nonlinear mappings.

Let C be a nonempty subset of a Banach space E and S, T : C → C be two
nearly asymptotically nonexpansive mappings. For given x1 = x ∈ C, the iterative
sequence {xn} defined as follows:

x1 = x ∈ C,
xn+1 = (1− αn)Tnxn + αnS

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1(1.2)

where {αn} and {βn} are sequences in (0, 1). The iteration scheme (1.2) is called
modified S-iteration scheme for two nonlinear mappings.

If we put S = T , then iteration scheme (1.2) reduces to S-iteration scheme (1.1).

The aim of this paper is to establish some strong convergence theorems and
a weak convergence theorem of modified S-iteration scheme (1.2) for two nearly
asymptotically nonexpansive mappings in the framework of Banach spaces.

2. Preliminaries

For the sake of convenience, we restate the following concepts.

A mapping T : C → C is said to be demiclosed at zero, if for any sequence {xn}
in C, the condition xn converges weakly to x ∈ C and Txn converges strongly to 0
imply Tx = 0.
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A mapping T : C → C is said to be semi-compact [3] if for any bounded sequence
{xn} in C such that ‖xn − Txn‖ → 0 as n → ∞, then there exists a subsequence
{xnk

} ⊂ {xn} such that xnk
→ x∗ ∈ C strongly.

We say that a Banach space E satisfies the Opial’s condition [13] if for each
sequence {xn} in E weakly convergent to a point x and for all y 6= x

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

The examples of Banach spaces which satisfy the Opial’s condition are Hilbert
spaces and all Lp[0, 2π] with 1 < p 6= 2 fail to satisfy Opial’s condition [13].

Now, we state the following useful lemma to prove our main results.

Lemma 2.1. (See [20]) Let {αn}∞n=1, {βn}∞n=1 and {rn}∞n=1 be sequences of
nonnegative numbers satisfying the inequality

αn+1 ≤ (1 + βn)αn + rn, ∀n ≥ 1.

If
∑∞

n=1 βn <∞ and
∑∞

n=1 rn <∞, then limn→∞ αn exists.

3. Main Results

In this section, we prove some strong convergence theorems and a weak conver-
gence theorem for two nearly asymptotically nonexpansive mappings in the frame-
work of Banach spaces.

Theorem 3.1. Let E be a Banach space and C be a nonempty closed convex
subset of E. Let S, T : C → C be two nearly asymptotically nonexpansive map-
pings with sequences {a′n, η(Sn)}, {a′′n, η(Tn)} and F = F (S) ∩ F (T ) 6= ∅ is closed

such that
∑∞

n=1 an <∞ and
∑∞

n=1

(
η(Sn)η(Tn)− 1

)
<∞. Let {xn} be the mod-

ified S-iteration scheme defined by (1.2). Then {xn} converges to a common fixed
point of the mappings S and T if and only if lim infn→∞ d(xn, F ) = 0.

Proof. The necessity is obvious. Thus we only prove the sufficiency. Let q ∈ F .
For the sake of convenience, set

Anx = (1− βn)x+ βnT
nx

and

Gnx = (1− αn)Tnx+ αnS
nAnx.

Then yn = Anxn and xn+1 = Gnxn. Moreover, it is clear that q is a fixed point of
Gn for all n. Let η = supn∈N η(Sn) ∨ supn∈N η(Tn) and an = max{a′n, a′′n} for all
n.
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Consider

‖Anx−Any‖ = ‖((1− βn)x+ βnT
nx)− ((1− βn)y + βnT

ny)‖
= ‖(1− βn)(x− y) + βn(Tnx− Tny)‖
≤ (1− βn)‖x− y‖+ βnη(Tn)(‖x− y‖+ a′′n)

≤ (1− βn)‖x− y‖+ βnη(Tn)‖x− y‖+ βnanη(Tn)

≤ (1− βn)η(Tn)‖x− y‖+ βnη(Tn)‖x− y‖
+βnanη(Tn)

≤ η(Tn)‖x− y‖+ anη(Tn).(3.1)

Choosing x = xn and y = q, we get

‖yn − q‖ ≤ η(Tn)‖xn − q‖+ anη(Tn).(3.2)

Now, consider

‖Gnx−Gny‖ = ‖((1− αn)Tnx+ αnS
nAnx)− ((1− αn)Tny + αnS

nAny)‖
= ‖(1− αn)(Tnx− Tny) + αn(SnAnx− SnAny)‖
≤ (1− αn)η(Tn)(‖x− y‖+ a′′n) + αnη(Sn)(‖Anx−Any‖+ a′n)

≤ (1− αn)η(Tn)(‖x− y‖+ an) + αnη(Sn)(‖Anx−Any‖+ an)

≤ (1− αn)η(Tn)‖x− y‖+ αnη(Sn)‖Anx−Any‖
+(1− αn)anη(Tn) + αnanη(Sn).(3.3)

Now using (3.1) in (3.3), we get

‖Gnx−Gny‖ ≤ (1− αn)η(Tn)‖x− y‖+ αnη(Sn)[η(Tn)‖x− y‖
+anη(Tn)] + (1− αn)anη(Tn) + αnanη(Sn)

≤ (1− αn)η(Tn)η(Sn)‖x− y‖+ αnη(Tn)η(Sn)‖x− y‖
+(1− αn + 2αn)anη(Tn)η(Sn)

≤ η(Tn)η(Sn)‖x− y‖+ 2anη(Tn)η(Sn)

≤
[
1 +

(
η(Tn)η(Sn)− 1

)]
‖x− y‖+ 2anη

2

= (1 + Pn)‖x− y‖+Qn,(3.4)

where Pn =
(
η(Tn)η(Sn)−1

)
andQn = 2anη

2. Since by hypothesis
∑∞

n=1

(
η(Sn)η(Tn)−

1
)
<∞ and

∑∞
n=1 an <∞. It follows that

∑∞
n=1 Pn <∞ and

∑∞
n=1Qn <∞.

Choosing x = xn and y = q in (3.4), we get

‖xn+1 − q‖ = ‖Gnxn − q‖ ≤ (1 + Pn)‖xn − q‖+Qn.(3.5)

Applying Lemma 2.1 in (3.5), we have limn→∞ ‖xn − q‖ exists.
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Next, we shall prove that {xn} is a Cauchy sequence. Since 1+x ≤ ex for x ≥ 0,
therefore, for any m,n ≥ 1 and for given q ∈ F , from (3.5), we have

‖xn+m − q‖ ≤ (1 + Pn+m−1)‖xn+m−1 − q‖+Qn+m−1

≤ ePn+m−1‖xn+m−1 − q‖+Qn+m−1

≤ ePn+m−1 [ePn+m−2‖xn+m−2 − q‖+Qn+m−2] +Qn+m−1

≤ e(Pn+m−1+Pn+m−2)‖xn+m−2 − q‖
+e(Pn+m−1+Pn+m−2)[Qn+m−2 +Qn+m−1]

≤ . . .

≤ e

(∑n+m−1
k=n Pk

)
‖xn − q‖+ e

(∑n+m−1
k=n Pk

)
n+m−1∑
k=n

Qk

≤ e

(∑∞
n=1 Pn

)
‖xn − q‖+ e

(∑∞
n=1 Pn

)
n+m−1∑
k=n

Qk

= K ‖xn − q‖+K

n+m−1∑
k=n

Qk(3.6)

where K = e

(∑∞
n=1 Pn

)
<∞. Since

lim
n→∞

d(xn, F ) = 0,

∞∑
n=1

Qn <∞(3.7)

for any given ε > 0, there exists a positive integer n1 such that

d(xn, F ) <
ε

4(K + 1)
,

n+m−1∑
k=n

Qk <
ε

2K
∀n ≥ n1.(3.8)

Hence, there exists q1 ∈ F such that

‖xn − q1‖ <
ε

2(K + 1)
∀n ≥ n1.(3.9)

Consequently, for any n ≥ n1 and m ≥ 1, from (3.6), we have

‖xn+m − xn‖ ≤ ‖xn+m − q1‖+ ‖xn − q1‖

≤ K ‖xn − q1‖+K

n+m−1∑
k=n

Qk + ‖xn − q1‖

≤ (K + 1)‖xn − q1‖+K

n+m−1∑
k=n

Qk

< (K + 1)
ε

2(K + 1)
+K

ε

2K
= ε.(3.10)

This implies that {xn} is a Cauchy sequence in E and so is convergent since E is
complete. Assume that limn→∞ xn = q∗. Since C is closed, therefore q∗ ∈ C. Next,
we show that q∗ ∈ F . Now limn→∞ d(xn, F ) = 0 gives that d(q∗, F ) = 0. Since F
is closed, q∗ ∈ F . Thus {xn} converges strongly to a common fixed point of the
mappings S and T . This completes the proof.
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Theorem 3.2. Let E be a Banach space and C be a nonempty closed convex
subset of E. Let S, T : C → C be two nearly asymptotically nonexpansive map-
pings with sequences {a′n, η(Sn)}, {a′′n, η(Tn)} and F = F (S) ∩ F (T ) 6= ∅ is closed

such that
∑∞

n=1 an < ∞ and
∑∞

n=1

(
η(Sn)η(Tn) − 1

)
< ∞. Let {αn} and {βn}

be sequences in [δ, 1− δ] for some δ ∈ (0, 1). Let {xn} be the modified S-iteration
scheme defined by (1.2). If either S is semi-compact and limn→∞ ‖xn−Sxn‖ = 0 or
T is semi-compact and limn→∞ ‖xn − Txn‖ = 0, then the sequence {xn} converge
strongly to a point of F .

proof. Suppose that T is semi-compact and limn→∞ ‖xn − Txn‖ = 0. Then
there exists a subsequence {xnj

} of {xn} such that xnj
→ q ∈ C. Also, we have

limj→∞ ‖xnj
−Txnj

‖ = 0 and we make use of the fact that every nearly asymptot-
ically nonexpansive mapping is nearly k-Lipschitzian. Hence, we have

‖q − Tq‖ ≤ ‖q − xnj
‖+ ‖xnj

− Txnj
‖+ ‖Txnj

− Tq‖
≤ (1 + k)‖q − xnj

‖+ ‖xnj
− Txnj

‖ → 0.

Thus q ∈ F . By (3.5),

‖xn+1 − q‖ ≤ (1 + Pn)‖xn − q‖+Qn.

Since by hypothesis
∑∞

n=1 Pn <∞ and
∑∞

n=1Qn <∞, by Lemma 2.2, limn→∞ ‖xn−
q‖ exists and xnj → q ∈ F gives that xn → q ∈ F . This shows that {xn} converges
strongly to a point of F . This completes the proof.

As an application of Theorem 3.1, we establish another strong convergence result
as follows.

Theorem 3.3. Let E be a Banach space and C be a nonempty closed convex
subset of E. Let S, T : C → C be two nearly asymptotically nonexpansive map-
pings with sequences {a′n, η(Sn)}, {a′′n, η(Tn)} and F = F (S) ∩ F (T ) 6= ∅ is closed

such that
∑∞

n=1 an < ∞ and
∑∞

n=1

(
η(Sn)η(Tn) − 1

)
< ∞. Let {αn} and {βn}

be sequences in [δ, 1− δ] for some δ ∈ (0, 1). Let {xn} be the modified S-iteration
scheme defined by (1.2). If S and T satisfy the following conditions:

(i) limn→∞ ‖xn − Sxn‖ = 0 and limn→∞ ‖xn − Txn‖ = 0.

(ii) There exists a constant A > 0 such that[
a1‖xn − Sxn‖+ a2‖xn − Txn‖

]
≥ Ad(xn, F )

where a1 and a2 are two non-negative real numbers such that a1 + a2 = 1.

Then the sequence {xn} converge strongly to a point of F .

proof. From conditions (i) and (ii), we have limn→∞ d(xn, F ) = 0, it follows as
in the proof of Theorem 3.1, that {xn} must converge strongly to a point of F .
This completes the proof.
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Theorem 3.4. Let E be a Banach space satisfying Opial’s condition and C be a
nonempty closed convex subset of E. Let S, T : C → C be two nearly asymptotical-
ly nonexpansive mappings with sequences {a′n, η(Sn)}, {a′′n, η(Tn)} and F = F (S)∩
F (T ) 6= ∅ is closed such that

∑∞
n=1 an <∞ and

∑∞
n=1

(
η(Sn)η(Tn)−1

)
<∞. Let

{αn} and {βn} be sequences in [δ, 1− δ] for some δ ∈ (0, 1). Let {xn} be the mod-
ified S-iteration scheme defined by (1.2). Suppose that S and T have a common
fixed point, I − S and I − T are demiclosed at zero and {xn} is an approximating
common fixed point sequence for S and T , that is, limn→∞ ‖xn − Sxn‖ = 0 and
limn→∞ ‖xn − Txn‖ = 0. Then {xn} converges weakly to a common fixed point of
S and T .

Proof: Let q be a common fixed point of S and T . Then limn→∞ ‖xn−q‖ exists
as proved in Theorem 3.1. We prove that {xn} has a unique weak subsequential
limit in F = F (S) ∩ F (T ). For, let u and v be weak limits of the subsequences
{xni} and {xnj} of {xn}, respectively. By hypothesis of the theorem, we know
that limn→∞ ‖xn − Sxn‖ = 0 and I − S is demiclosed at zero, therefore we obtain
Su = u. Similarly, Tu = u. Thus u ∈ F = F (S)∩F (T ). Again in the same fashion,
we can prove that v ∈ F = F (S) ∩ F (T ). Next, we prove the uniqueness. To this
end, if u and v are distinct then by Opial’s condition,

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni
− u‖

< lim
ni→∞

‖xni
− v‖

= lim
n→∞

‖xn − v‖

= lim
nj→∞

‖xnj
− v‖

< lim
nj→∞

‖xni
− u‖

= lim
n→∞

‖xn − u‖.

This is a contradiction. Hence u = v ∈ F . Thus {xn} converges weakly to a com-
mon fixed point of the mappings S and T . This completes the proof.

Remark 3.1. Our results extend and generalize the corresponding results of
[8], [14], [15], [17], [18], [20] and many others from the existing literature to the
case of modified S-iteration scheme and more general class of nonexpansive and
asymptotically nonexpansive mappings considered in this paper.
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