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ABSTRACT. This research aims to model and predict greenhouse gas (GHG) emissions in Saudi Arabia by examining 

their association with crucial socio-economic and environmental factors. Utilizing annual data from 1980 to 2023, the 

study focuses on three emission variables as dependent variables: carbon dioxide (CO₂) emissions from the power 

sector, methane (CH₄) emissions from the power sector, and nitrous oxide (N₂O) emissions from industrial activities. 

The independent variables include agricultural land area, urban population, GDP growth, exports, trade openness, 

foreign direct investment, and manufacturing output. A comparative assessment of various modeling approaches 

Ordinary Least Squares (OLS), Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Elastic 

Net (Enet), Random Forest (RF), and a new hybrid method that merges Elastic Net and Random Forest (ENRF) was 

performed. The performance of the models was evaluated based on Mean Squared Error (MSE) and Root Mean Squared 

Error (RMSE). The results indicated that the ENRF model consistently surpassed both traditional and machine learning 
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techniques, achieving the lowest MSE and RMSE values. The outcomes underscore the efficacy of hybrid statistical and 

machine learning models in reliably predicting emissions and informing environmental policy in complex, big data 

contexts. 

1. Introduction 

Air pollution has become a critical global issue due to its significant effects on human 

health, environmental conditions, and climate change. The rapid growth of cities, industrial 

activities, and vehicle emissions has resulted in dangerously poor air quality in numerous urban 

areas, especially in developing countries like China. Fine particulate matter (PM2.5) and trace 

gases such as nitrogen dioxide (NO₂), carbon monoxide (CO), and sulfur dioxide (SO₂) are 

strongly linked to respiratory and heart diseases, highlighting the urgent need for effective 

forecasting systems. 

Koçak [1] carried out an in-depth assessment of five different machine learning models 

aimed at forecasting hourly levels of particulate matter (PM). By utilizing real-world data that 

included pollutant concentrations and meteorological factors, the research effectively captured 

short-term air pollution trends. The Ridge Regression model attained a moderate R² of 0.44 for 

PM₂.₅ and a strong R² of 0.91 for PM₁₀. Support Vector Regression demonstrated superior 

performance in predicting PM₂.₅ (R² = 0.83) but was less successful with PM₁₀. The Random Forest 

and Extra Trees Regression models showed strong performance, especially for PM₁₀ (R² = 0.75). 

Extreme Gradient Boosting also produced competitive outcomes for both PM₂.₅ and PM₁₀, 

achieving R² values of 0.80 and 0.81, respectively. Additionally, the study employed the AirQ+ 

model to evaluate the health impacts of PM₂.₅ exposure, indicating an average attributable 

proportion of 10.2% (with a range from 6.5% to 13.2%) in long-term mortality rates. These results 

underscore the necessity for customized strategies in air quality management and safeguarding 

public health. 

In their thorough review, [2] examined the efficacy and theoretical foundations of 

penalized regression and machine learning methods for high-dimensional data, highlighting 

standard techniques such as Ridge, LASSO, and Elastic Net, while emphasizing their importance 

in addressing multicollinearity and selecting variables. They also explored machine learning 

techniques, including random forests, support vector machines, and neural networks, showcasing 

their ability to model complex non-linear interactions. A crucial element of their research was the 

introduction of two hybrid methods, LASSOPBRF and EnetRARTEN, which skillfully combined 
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statistical regularization with ensemble learning to enhance model accuracy and variable 

identification. Similarly, [3] presented these two innovative hybrid estimation methods—

LASSOPBRF, which integrates LASSO with post-selection boosting of random forest trees, and 

EnetRARTEN, which utilizes elastic net to refine and consolidate random forest trees—

demonstrating through Monte Carlo simulations and a case study on air quality that these models 

outperform traditional techniques in terms of MSE and RMSE, particularly in cases involving 

multicollinearity and outliers. Despite these advancements, challenges remain, such as 

inconsistent evaluations of hybrid models across different urban datasets, insufficient 

consideration of the temporal and spatial variations in pollutant levels, and limited 

interpretability for policy-related decisions. To address these issues, the current study proposes 

an enhanced hybrid model that merges elastic net with random forest to improve predictions of 

urban air quality. [4] provides a detailed examination of air pollution in China, outlining its 

complex origins, health impacts, and governmental responses. The authors highlight that China 

experiences both traditional and photochemical smog due to a combination of industrial 

emissions, dependence on coal for energy, rapid growth in vehicle usage, and the widespread 

adoption of solid fuels in households. Exposure to fine particulate matter (PM₂.₅) has led to severe 

health consequences, with an estimated 1.5 million premature deaths reported in 2015 alone. 

Although there have been slight improvements in recent years, particularly in reducing sulfur 

dioxide and nitrogen oxides emissions, pollution levels in urban areas still exceed both national 

and international health standards. The study emphasizes significant regional disparities and 

warns that rural communities relying on biomass and coal remain particularly vulnerable. 

Despite ongoing challenges, the authors note that national policies, technological advancements, 

and growing public awareness have initiated a gradual shift towards improved air quality and 

environmental governance. 

In 2020, [5] a significant achievement occurred, marking an extraordinary moment in 

Singgih’s path. Comprehensive research has revealed a strong connection between exposure to 

air pollutants—such as nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), sulfur dioxide 

(SO₂), and particulate matter (PM)—and the onset of heart and lung diseases. In response, many 

local governments have implemented real-time air quality monitoring systems to inform public 

health initiatives, while global institutions like Peking University, Christchurch, and Los Angeles 

have effectively utilized data collection and analysis tools to understand and disseminate air 
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quality information. To enhance the Post-Selection Boosting Random Forest (PBRF) algorithm, [6] 

proposed a new method called "Reducing and Aggregating Random Forest Trees Using an Elastic 

Net" (RARTEN), which integrates penalized regression techniques into a three-step approach: 

prediction with a random forest, optimization through elastic net regularization to minimize the 

number of trees, and aggregation of the selected trees. Simulations and validations with actual 

data demonstrated RARTEN’s effectiveness, achieving improvements of 7%, 5%, and 8.5% in 

linear, nonlinear, and noisy models, respectively, along with an approximate 16% reduction in 

error, exceeding traditional random forest and established penalized regression models. 

Meanwhile, [7] unveiled a groundbreaking ensemble learning framework designed to predict the 

binding strength and kinetic behavior of small molecules interacting with the HIV-1 TAR RNA 

structure. By generating a training dataset from small molecules tested against the RNA construct 

and employing surface plasmon resonance for binding assessment, they developed the first 

validated 2D QSAR model for RNA-ligand interactions. This innovation provides a crucial basis 

for developing RNA-targeted ligands with less reliance on high-resolution structural data. In a 

separate study, [8] addressed the inverse problem in geophysics using Random Forest Regression 

(RFR) to infer subsurface physical properties from synthetic magnetotelluric (MT) and DC 

resistivity data. By crafting multiple decision trees from equal subsets of data and avoiding 

iterative forward modeling, RFR produced predictions that closely aligned with the actual model 

parameters and outperformed other methods like Particle Swarm Optimization (PSO), Genetic 

Algorithms (GA), Ridge Regression (RR), and Grey Wolf Optimization (GWO). Lastly, [9] 

developed a machine learning model based on crystallographic protein-ligand complexes to 

predict binding affinity, using energy terms derived from MolDock and PLANTS scoring systems 

and integrating IC50 data. The resulting polynomial scoring functions demonstrated superior 

predictive accuracy compared to traditional scoring methods, including AutoDock4, AutoDock 

Vina, MolDock, and PLANTS, particularly in predicting CDK2 binding affinities. Monitoring and 

anticipating air quality have grown increasingly crucial due to the rising health risks linked to 

fine particulate matter (PM2.5) and trace gases in urban settings. [10] examined long-term 

emission forecasts and their impact on PM2.5 pollution levels in India between 2015 and 2050, 

highlighting the importance of source-targeted strategies to mitigate air pollution. Aside from 

standard environmental modeling, advancements in technology have enabled real-time and 

localized air quality assessments. [11] introduced a mobile microscopy system combined with 
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machine learning for easy air quality evaluation, while [12] employed Internet of Things (IoT) 

networks for continuous monitoring and forecasting through mobile and stationary sensors. A 

comparative study conducted by [13] underscored regional variations by analyzing trace gases 

and particulate matter in Delhi and Beijing, stressing the need for customized air pollution 

management strategies. 

Both the industrial and agricultural sectors play significant roles in contributing to 

greenhouse gas (GHG) emissions in Saudi Arabia, posing a major challenge to the nation’s 

sustainability objectives. [14] conducted an in-depth study of the Industrial Processes and Product 

Use (IPPU) sector, revealing that the cement, petrochemical, and iron and steel industries are the 

main contributors to CO₂ emissions, which together account for more than 80% of the sector's 

total emissions. Projections suggest that, without intervention, IPPU emissions could rise to 

between 199 and 426 MtCO₂eq by the year 2050, highlighting the urgent need for mitigation 

strategies such as enhancing energy and material efficiency, implementing carbon capture 

technologies, and promoting recycling. In addition, [15] explored the long-term relationship 

between CO₂ emissions and economic indicators using ARDL and FMOLS models, finding that 

the expansion of agricultural land, energy usage, and economic growth all have significant 

positive impacts on CO₂ emissions. These results emphasize the necessity of aligning both 

industrial and agricultural advancement with the objectives of Saudi Vision 2030 and the Saudi 

Green Initiative to realize a low-carbon, sustainable future. 

There are other studies that have studied the different factors that affect air quality and 

GHG emissions, such as [16, 17]. 

The main aim of this study is to evaluate the effectiveness of hybrid modeling techniques 

in predicting greenhouse gas (GHG) emissions in Saudi Arabia, using actual national-level data 

from 1980 to 2023. In particular, the research analyzes the efficacy of a proposed hybrid model 

that combines Elastic Net (Enet) with Random Forest (RF) to forecast three dependent variables: 

carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O) emissions. These forecasts are 

compared with those generated by traditional statistical models, such as Ordinary Least Squares 

(OLS), Ridge, LASSO, as well as isolated machine learning methods like RF. Furthermore, the 

study aims to pinpoint the most significant socio-economic and environmental factors influencing 

emission levels for various emission types. 
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This research is driven by three key questions. Firstly, how does the proposed ENRF 

hybrid model stack up against traditional statistical and machine learning models in terms of 

accuracy and reliability for emission predictions? Our results reveal that the hybrid model 

surpasses the performance of individual methods by capitalizing on the advantages of both 

regularization and ensemble learning. Secondly, how effectively do these models tackle the 

difficulties posed by high dimensional data, multicollinearity, and dataset variability? The ENRF 

model exhibits a greater ability to address these challenges by employing feature selection, 

penalized regression, and tree-based interactions. Lastly, which independent variables such as 

urban population growth, agricultural land area, foreign direct investment, and manufacturing 

output have the most significant impact on each type of emission?  

In order to answer these questions, we employed a 44-year panel dataset for Saudi Arabia, 

which included various economic, demographic, and environmental metrics. Following the 

application of preprocessing methods and selection of variables, we developed six different 

models: OLS, Ridge, LASSO, Enet, RF, and the newly proposed ENRF hybrid. We assessed model 

performance through Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and 

goodness-of-fit metrics. The ENRF model consistently demonstrated the lowest MSE and RMSE 

figures, highlighting its exceptional predictive ability and robustness against data imperfections 

in long-term emission forecasting. 

The subsequent sections of this paper are organized as follows: Section 2 describes the 

materials and methods employed in this research, detailing the proposed hybrid approach. 

Section 3 thoroughly examines the results and explores their significance. Lastly, Section 4 

summarizes the key findings of our research. 

 

2. Material and methods 

This section describes the materials, data sources, experimental design, and analysis 

techniques used to meet the goals of this research. The chosen methodology guarantees the 

reliability and accuracy of the findings. 

2.1 Data Sources and Description 

This study employed a longitudinal dataset that included 44 annual observations from 

1980 to 2023, encompassing essential environmental, economic, and demographic indicators 

pertinent to greenhouse gas (GHG) emissions in Saudi Arabia. The main goal was to forecast the 
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levels of three dependent emission variables carbon dioxide (CO₂), methane (CH₄), and nitrous 

oxide (N₂O) by utilizing a variety of socio-economic and industrial predictors. These predictors 

consist of agricultural land area, urban population size, GDP growth rate, trade openness, 

manufacturing value added, exports of goods and services, and foreign direct investment 

outflows. All variables were represented as continuous numeric data, and the initial 

preprocessing steps involved eliminating redundant or incomplete features to maintain data 

quality and consistency throughout the models. This well-structured dataset formed the basis for 

training and assessing various statistical and machine learning models designed to enhance the 

accuracy of national emission predictions.  

The dataset for CO₂, CH₄, and N₂O emissions was provided by the International Energy 

Agency (https://www.iea.org/data-and-statistics), while other variables were provided through 

the official World Bank database (https://data.worldbank.org/). 

2.2  Methodological Framework 

The research evaluated various statistical and machine learning approaches, along with 

the suggested method. 

2.2.1 Ordinary Least Squares (OLS) 

OLS estimators are utilized to obtain or approximate numerical values, model a data set, 

and describe the statistical characteristics of the estimates. The least-squares estimator is 

expressed by 

                                                �̂�𝑂𝐿𝑆 = (𝑿′𝑿)−1𝑿′𝑌                                                             (1) 

Where  

�̂�𝑂𝐿𝑆: The vector of estimated coefficients using OLS. 

𝑋: Matrix where each row is an observation, and each column is an independent variable  

𝑋′: The transpose of 𝑋. 

(𝑋′𝑋)−1: The inverse of (𝑋′𝑋) 

(𝑋′𝑋) : The non-singular matrix. 

𝑌: The vector of observed dependent variable values. 
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2.2.2 Ridge Regression  

Ridge regression decreases the magnitude of the regression coefficients by applying a 

penalty. The coefficients from ridge regression aim to minimize a residual sum of squares that 

includes this penalty [18]. 

   �̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗
𝑃
𝑗=1 𝛽𝑗)

2
+ 𝜆 ∑ 𝛽𝑗

2𝑃
𝑗=1

𝑛
𝑖=1 }                                 (2) 

Where  

𝑦𝑖: The dependent variable for observation 𝑖. 

𝑥𝑖𝑗: The value of the 𝑗𝑡ℎ independent variable for observation 𝑖. 

𝛽0: The intercept term. 

𝛽𝑗: The coefficient for independent variable 𝑗. 

𝜆: The regularization parameter since 𝜆 > 0 

2.2.3 Least Absolute Shrinkage and Selection Operator (LASSO) 

When p exceeds n, the ordinary least squares estimator lacks uniqueness and tends to 

overfit the data significantly. Therefore, it is essential to implement some form of complexity 

regularization. This discussion will center around regularization using the 𝐿1 -penalty. The 

LASSO estimator is [19]:                                   

                                       �̂�(𝜆) = arg 𝑚𝑖𝑛
𝛽

(
‖𝑌−𝑿𝛽‖2

2

2𝑛
+ 𝜆‖𝛽‖1)                                              (3) 

where ‖𝑌 − 𝑿𝛽‖2
2=∑ (𝑦𝑖 − (𝑿𝛽)𝑖)2,𝑛

𝑖=1  ‖𝛽‖1 = ∑ |𝛽𝑗|
𝑝
𝑗=1  and where 𝜆 > 0 is make the estimator has 

the proper makes does variable selection in the sense that �̂�(𝜆) = 0 for some j’s (depending on the 

choice of 𝜆) and �̂�𝑗(𝜆)can be through it cans a shrunken least squares estimator; hence, the name 

Least Absolute Shrinkage and Selection Operator (LASSO 

2.2.4 Naive Elastic Net 

[20] presented the Elastic Net as an innovative method for regularization and variable 

selection in linear regression, which has significantly impacted the field. The Elastic Net is a 

mathematical framework that combines 𝐿1 and 𝐿2 regularization techniques in a linear fashion, 

effectively overcoming some limitations associated with Lasso and Ridge regression methods. 

This approach provides distinct advantages in situations where the number of predictors (p) far 
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exceeds the number of observations (n), a context where the Lasso method is not suitable. Results 

from simulation studies showed that the Elastic Net algorithm consistently outperformed the 

Lasso algorithm while achieving a similar degree of sparsity. Furthermore, the use of Elastic Net 

regularization leads to a phenomenon known as the "grouping effect," where strongly correlated 

variables are likely to be included or excluded from the model together. The authors of this study 

introduced an algorithm called LARS-EN to efficiently compute the regularization paths for the 

Elastic Net. 

Suppose the data set has 𝑛  observations with p predictors. Let 𝑦 = (𝑦1, ⋯ , 𝑦𝑛)𝑇 be the 

response and 𝑋 = [𝑋1| ⋯ |𝑋𝑛] be the model matrix, where 𝑥𝑗 = (𝑥1𝑗, ⋯ , 𝑥𝑛𝑗)
𝑇

, 𝑗 =  1, . . . , 𝑝 are the 

predictors. After a location and scale transformation, we can assume the response is centered and 

the predictors are standardized, 

                          ∑ 𝑦𝑖 = 0,𝑛
𝑖=1       ∑ 𝑥𝑖𝑗 = 0,𝑛

𝑖=1  and  ∑ 𝑥𝑖𝑗
2 = 1,𝑛

𝑖=1  for , 𝑗 =  1, . . . , 𝑝                       (4) 

For any fixed non-negative 𝜆1 and 𝜆2, we define the naive elastic net criterion 
 

                              𝐿(𝜆1, 𝜆2, 𝛽) = |𝑦 − 𝑋𝛽|2 + 𝜆2|𝛽|2 + 𝜆1|𝛽|1,                                       (5) 
Where 
 

                         |𝛽|2 = ∑ 𝛽𝑗
2,

𝑝
𝑗=1  and |𝛽|1 = ∑ |𝛽𝑗|

𝑝
𝑗=1                                                    (6) 

The naive elastic net estimator �̂� is the minimizer of (3): 

                                               �̂� = arg min 𝐿(𝜆1, 𝜆2, 𝛽)                                                                                (7) 

The above procedure can be viewed as a penalized least-squares method.  Let 𝛼 =
𝜆2

𝜆1+,𝜆2
 , then 

solving �̂� in (3) is equivalent to the optimization problem: 

�̂� = arg min 𝐿(𝜆1, 𝜆2, 𝛽), subject to (1 − 𝛼)|𝛽|1 +  𝛼|𝛽|2 ≤ 𝑡  for some t.                (8) 

The Elastic Net penalty function is represented as (1 − 𝛼)|𝛽|1 +  𝛼|𝛽|2  ,. In this 

framework, the parameter α determines the distribution of penalties between Lasso and Ridge 

regression. The choice of α impacts the balance between 𝐿1 and 𝐿2  regularization. When α is equal 

to 1, the Elastic Net method effectively becomes Ridge regression, while setting α to 0 transforms 

the approach into Lasso regression. 

The previously mentioned phenomenon can be demonstrated through a contour plot that 

represents two dimensions. In Figure 1, the outer contour of this plot outlines the shape of the 

Ridge penalty, whereas the diamond-shaped curve represents the Lasso penalty. Furthermore, 

the red solid curve indicates the use of the Elastic Net penalty, with the coefficient α assigned a 
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value of 0.5. The contour plot illustrates a considerable level of convexity along its edges, with the 

degree of convexity varying according to the parameter α. In this investigation, the researchers 

employed the "glmnet" package in R version 4.0.0 to implement the Elastic Net approach [21]. 

 

 

                  Fig 1: The geometric characteristics of the elastic net penalty 

 

2.2.5 Breiman’s random forest mechanism (RF) 

The Random Forest technique is highly esteemed in the realm of machine learning and 

has proven effective in tackling a range of real-world problems. Its applications span areas such 

as predicting air quality, cheminformatics, ecology, 3D object recognition, and bioinformatics, 

among others. Introduced by [22], this technique is classified as an ensemble learning method that 

utilizes numerous randomized decision trees and amalgamates their predictions through 

averaging. This approach is especially beneficial in scenarios where the number of variables 

surpasses the number of available data points.  

The Random Forest algorithm is recognized as a powerful computational tool for 

addressing both regression and classification tasks. Ensemble methods involve the merging of 

various machine learning strategies to improve prediction accuracy.  

The Random Forest strategy involves creating a collection of decision trees, with the entire 

dataset divided into subsets to assist in making predictions. Each subgroup results in the 

formation of a unique decision tree within the forest. In the field of machine learning, it is 

acknowledged that each individual decision tree produces a specific output. Therefore, within a 
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random forest model, the ultimate decision is reached by selecting the most common results from 

the individual decision trees. For the current study, the authors utilized the Random Forest 

package in R version 4.0.0 to implement the random forest methodology [23]. 

 

Algorithm 1 outlines the process for the Random Forest algorithm mentioned in [24]:   

Step 1: Start by building M decision trees.   

Step 2: Use the data from the root node as the initial point.   

Step 3: Select an attribute and create a logical condition based on that attribute.   

Step 4: Direct each outcome of the test to its corresponding child node by passing a subset of 

examples that satisfy the criteria.   

Step 5: Investigate every node within the child structures.   

Step 6: Continue this process until the leaf nodes are considered 'pure.'   

Step 7: Make the final decision based on the majority vote from the Decision Trees.   

 

Fig 2: Random Forest applied to regression analysis. 

Figure 2 illustrates the functioning of the Random Forest Regressor (RFR), which involves 

partitioning the training dataset into several subsets in a uniform and random manner. Each 

subset is subsequently processed by a decision tree that analyzes the data and generates its own 

prediction. The Random Forest Regression (RFR) algorithm aggregates the predictions from all 

the individual decision trees and ultimately derives a final outcome by averaging these forecasts. 
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2.2.6 Proposed Method  

In this section, we present a hybrid estimator referred to as Elastic-Net Random Forest 

(ENRF), which integrates the variable-selection strengths of Elastic Net (ENet) with the non-linear 

predictive capabilities of Random Forests (RF). This method is akin to the approach adopted by 

[25], who merged LASSO with neural networks and also combined RF with neural networks to 

harness the complementary strengths of conventional regularization methods and machine-

learning techniques [26].   

Elastic Net is particularly advantageous in high-dimensional contexts where the predictor count 

(p) greatly exceeds the number of observations (n). Its combined ℓ₁–ℓ₂ penalty creates a grouping 

effect: highly correlated predictors tend to enter or exit the model together, leading to more stable 

and interpretable coefficient patterns than those achieved with LASSO or Ridge used separately. 

In contrast, RF improves the performance of individual decision trees by aggregating numerous 

uncorrelated trees, which enhances predictive accuracy and provides a natural defense against 

overfitting, even when working with smaller sample sizes. During each split, RF randomly 

chooses a subset of available variables, further minimizing variance and preventing a small 

number of influential predictors from dominating the model.   

By integrating these two components, we expect that ENRF will outshine conventional statistical 

methods (Enet) and independent machine-learning algorithms (RF) in both predictive accuracy 

and stability.   

Algorithm 2 outlines the steps for the proposed Elastic Net RF (ENRF) method:   

Step 1: The analysis kicks off by implementing an Elastic Net model.   

Step 2: The goal is to pinpoint and choose the most relevant variables based on the Elastic Net 

model.   

Step 3: The identified variables are then to be input into the Random Forest algorithm. 

2.3 Software and Implementation   

This research utilized a variety of supervised statistical and machine learning methods, 

including Ordinary Least Squares (OLS), Ridge regression, LASSO, Elastic Net (Enet), Random 

Forest (RF), and a newly proposed hybrid model that combines Enet and RF (ENRF), to estimate 

greenhouse gas (GHG) emissions levels specifically CO₂, CH₄, and N₂O. The dataset was divided 

using a standard 80/20 train-test ratio, and hyperparameter optimization was performed through 

10-fold cross-validation as part of the model tuning process. The efficacy of the models was 
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assessed using conventional error metrics such as Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE), Additionally, the importance of various features was examined to 

determine the key socio-economic factors influencing emission fluctuations. All computational 

tasks were carried out using R and Python, which facilitated robust and reproducible modeling 

processes.                  

3. Results and Discussions 

This study employs a nationally consolidated dataset that includes 44 annual records from 

Saudi Arabia, covering the years from 1980 to 2023. The dataset features three dependent 

variables that denote greenhouse gas emissions: carbon dioxide (CO₂) emissions from the power 

sector, methane (CH₄) emissions from the power industry, and nitrous oxide (N₂O) emissions 

from industrial activities. These emissions significantly contribute to environmental degradation 

and are integral to discussions surrounding global climate change. 

Alongside the emission variables, the dataset includes an extensive array of 

macroeconomic and environmental metrics. These encompass agricultural land area (in square 

kilometers), urban population, GDP growth rate, trade as a percentage of GDP, manufacturing 

value added, net outflows of foreign direct investment (FDI), and total exports of goods and 

services. These variables were chosen based on their expected relevance to emissions patterns and 

sensitivity to policy changes. All variables underwent numerical encoding, and preprocessing 

measures were taken to eliminate multicollinear or redundant predictors, thus enhancing the 

robustness of the modeling process. 

Even though the dataset is temporal, rather than spatial, it reflects long-term trends and 

the effects of policies, allowing for the examination of national patterns in emission generation 

and management. Its annual frequency supports macro-level forecasting, providing valuable 

insights for climate policy, industrial planning, and assessments of sustainability in the context of 

Saudi Arabia. 

The main aim of this research is to assess the forecasting ability of independent variables 

in predicting GHG emission levels and to compare the efficacy of various predictive models. To 

tackle potential issues such as multicollinearity and outliers, the study employs several advanced 

modeling techniques, including OLS, Ridge Regression, LASSO, Elastic Net (Enet), Random 

Forest (RF), and the newly proposed hybrid model Elastic Net Random Forest (ENRF). The 
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findings indicate that the ENRF model stands out as the most precise and dependable method, 

effectively capturing the intricate interactions among variables while minimizing prediction 

error. 

Table 1 presents a description of 10 key variables used in this research to model and 

predict greenhouse gas (GHG) emissions in Saudi Arabia. These variables were chosen for their 

significance in economic, environmental, and policy contexts, along with their possible impact on 

emissions patterns. The dependent variables carbon dioxide (CO₂), methane (CH₄), and nitrous 

oxide (N₂O) account for crucial aspects of industrial and energy-related emissions within the 

nation. The other independent variables comprise agricultural land area, urban population, GDP 

growth rate, trade as a fraction of GDP, exports, foreign direct investment (FDI) outflows, and 

manufacturing value added. These indicators represent the macroeconomic framework and 

industrial activities of the country, which are tightly linked to emissions production. Altogether, 

this collection of 10 variables offers a solid foundation for analyzing and predicting emission 

trends at the national level in Saudi Arabia. 

Table 2 provides a summary of descriptive statistics for the three main greenhouse gas 

(GHG) emission variables analyzed in this research, based on 44 annual data points. The mean 

carbon dioxide (CO₂) emissions from the power sector are roughly 153.26 Mt CO₂e, with a 

standard deviation of 103.88, indicating significant fluctuations over the years. Methane (CH₄) 

emissions from the power industry show a lower average at 0.19 Mt CO₂e, while nitrous oxide 

(N₂O) emissions from industrial activities average 2.19 Mt CO₂e. For all the emission variables, 

the median values are quite similar to their respective means, signifying approximately 

symmetrical distributions. The interquartile ranges (IQRs) reflect moderate variation, and there 

are no extreme outliers that could skew the analysis. These descriptive statistics provide essential 

insights into emission trends throughout the study period and affirm the reliability of the dataset 

for predictive modeling. 

Table 3 displays the Variance Inflation Factor (VIF) values for the seven independent 

variables utilized in this research to forecast greenhouse gas emissions in Saudi Arabia. The 

analysis reveals notable multicollinearity issues [27-31], especially for X₂ and X₇, which show VIF 

values of 28.62 and 14.49, respectively—significantly exceeding the typical threshold of 10. Such 

values indicate strong linear correlations with other variables, which could misrepresent 

coefficient estimates in ordinary least squares regression. Furthermore, X₄ has a VIF of 10.84, 
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indicating a moderate level of multicollinearity that could also affect the performance of the 

model. Conversely, X₁, X₃, X₅, and X₆ have VIF values below 6, reflecting acceptable levels of 

correlation. To mitigate these multicollinearity challenges, this research adopts penalized 

regression techniques like Ridge and Elastic Net, which are ideal for high-dimensional contexts 

with correlated predictors. 

Figure 3 depicts the procedural workflow for projecting greenhouse gas (GHG) emissions 

in Saudi Arabia through the use of statistical and machine learning techniques. The process 

initiates with a dataset of national-level emissions, which is subjected to extensive preprocessing. 

This step includes addressing missing values, identifying and rectifying outliers, and ensuring 

data quality by removing any anomalies or NaN entries. Following this, the data undergoes 

normalization, and exploratory analysis is conducted—such as calculating statistical correlations 

and evaluating skewness among the variables—to improve the interpretability and stability of 

the models. The cleaned dataset is subsequently divided into training and testing subsets. 

Predictive models, such as Ordinary Least Squares (OLS), Ridge, LASSO, Elastic Net (Enet), 

Random Forest (RF), and the proposed hybrid Elastic Net–Random Forest (ENRF), are trained 

using the training set and assessed with the testing set. The final phase consists of forecasting 

emissions of CO₂, CH₄, and N₂O and carrying out a comparative analysis of model performance 

utilizing MSE, and RMSE to determine the most effective prediction approach. 

Figure 4 illustrates the correlation matrix among greenhouse gas (GHG) emission 

variables (CO₂, CH₄, N₂O) alongside the socioeconomic and environmental predictors utilized in 

this study. The most substantial correlations are evident between the emission variables 

themselves (Y₁, Y₂, Y₃), with coefficients surpassing 0.99, indicating a high degree of mutual 

variability and parallel movements over time. Among the predictors, X₂ and X₇ demonstrate 

strong positive correlations with all emission variables (r = 0.88), suggesting that they are likely 

to have a significant influence on emission forecasting models. X₄ and X₆ also present moderately 

strong positive correlations (r =0.57) with emissions. 

These results indicate that while certain predictors are strongly connected possibly 

leading to multicollinearity, others remain mostly independent. This supports the use of 

regularization techniques like Ridge and Elastic Net, which can adeptly manage collinear 

relationships while retaining important predictors for the development of robust models. 
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Table 1: Variables description 

Variable  Description Type 

𝒀𝟏 Carbon dioxide (CO2) emissions from Power Industry (Energy) 
(Mt CO2e) 

Dependent 

𝒀𝟐 Methane (CH4) emissions from Power Industry (Energy) (Mt 
CO2e) 

Dependent 

𝒀𝟑 Nitrous oxide (N2O) emissions from Industrial Processes (Mt 
CO2e) 

Dependent 

𝑿𝟏 Agricultural land (sq. km) Independent 

𝑿𝟐 Urban population Independent 

𝑿𝟑 GDP growth (annual %) Independent 

𝑿𝟒 Exports of goods and services (current US$) Independent 

𝑿𝟓 Trade (% of GDP) Independent 

𝑿𝟔 Foreign direct investment, net outflows (% of GDP) Independent 

𝑿𝟕 Manufacturing, value added (% of GDP) Independent 

 

                                               Table 2: Descriptive statistics of each variable 

Variable  Sample 
Size (n) 

Min Max Mean Q2 
(Median) 

Q3 (75%) 

𝒀𝟏 44 24.727 262.369 129.241 106.000 213.319 

𝒀𝟐 44 0.033 0.342 0.163 0.133 0.267 

𝒀𝟑 44 1.013 3.827 2.446 2.266 3.454 

𝑿𝟏 44 869620 1737980 1495978.24 1733970 1736370 

𝑿𝟐 44 3983211 28258016 15148543.16 14014708 21909933.25 

𝑿𝟑 44 -16.109 10.99376 2.122 2.726 5.159 

𝑿𝟒 44 2.32E+10 4.46E+11 1.59794E+11 1.01683E+11 2.52447E+11 

𝑿𝟓 44 49.7135 96.103 72.31186411 68.835 82.103 

𝑿𝟔 44 -0.543 2.8226 0.562 0.208 0.756 

𝑿𝟕 44 3.985 14.788 9.735 9.665 10.693 

 

Table 3: VIF values of each independent variable 

Variable VIF 

𝑿𝟏 5.413028 

𝑿𝟐 28.61843 

𝑿𝟑 1.445944 

𝑿𝟒 10.83749 

𝑿𝟓 4.220568 

𝑿𝟔 2.757556 

𝑿𝟕 14.49032 



Int. J. Anal. Appl. (2025), 23:183 17 

 

 

Fig 3: Flowchart of proposed methods 

 

Fig 4: Correlation Matrix 
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3.4  Discussion 

The analysis conducted in this study included the following steps: 

1. Outlier Detection   

The dataset's anomalies were carefully examined through statistical summaries. The 

analysis showed that the variables display approximately symmetric distributions with uniform 

ranges, and no significant outliers were identified. Consequently, no observations were discarded 

or altered due to extreme values. 

2. Multicollinearity Assessment   

An assessment of multicollinearity among the independent variables was performed 

utilizing both a correlation matrix and Variance Inflation Factor (VIF) analysis. The findings 

indicated that multicollinearity was not a major issue within the dataset. The majority of the 

variables had VIF values significantly lower than the usual threshold of 10, suggesting a minor 

level of linear dependency. While a couple of predictors, specifically X2  ,X4  and X7 , showed 

somewhat higher VIF values, these levels were not critical enough to necessitate the exclusion of 

any variables. Consequently, all predictors were kept for model development. This choice is 

further supported by the application of penalized regression methods (e.g., Ridge and Elastic 

Net), which are specifically intended to reduce the effects of multicollinearity in predictive 

modeling. 

3. Missing Value Analysis   

A completeness assessment revealed that the dataset had no missing or null values across 

any of the variables. Therefore, there was no need for imputation or removal processes, 

maintaining the dataset's integrity and temporal consistency. 

4. Data Partitioning   

For the purpose of model development and evaluation, the dataset was randomly split 

into two groups: a training set consisting of 50% of the observations, and a testing set that 

included the remaining 50%. This division ensures model performance can be evaluated on 

unseen data while still having enough observations to train robust models. 

5. Comparative Model Evaluation   

A comparative assessment was conducted across various modeling techniques, including 

Ordinary Least Squares (OLS), Ridge Regression, LASSO, Elastic Net (Enet), Random Forest (RF), 

and the proposed hybrid Elastic Net–Random Forest (ENRF). The performance of each model 
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was evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). Among all tested models, the ENRF consistently yielded the 

lowest error metrics, confirming its superior predictive ability for estimating CO₂, CH₄, and N₂O 

emissions. 

           Table 4: Goodness of fit measures for methods applied to Y₁, Y₂ and Y₃ 

Response Criteria OLS Ridge Enet LASSO RF ENRF 

Y₁ 

MSE 108.160 195.440 84.824 84.456 219.632 21.437 

RMSE 10.40 13.98 9.21 9.19 14.82 4.63 

#SV 7 7 6 6 7 6 

Y₂ 

MSE 0.0185 0.0149 0.0004 0.0002 0.0005 0.0001 

RMSE 0.136 0.122 0.020 0.0128 0.0224 0.011 

#SV 7 7 3 5 7 5 

Y₃ 

MSE 0.0231 0.0182 0.0144 0.0151 0.0256 0.0032 

RMSE 0.152 0.135 0.120 0.123 0.160 0.057 

#SV 7 7 4 4 7 4 

 

Table 4 clearly illustrates that the hybrid method of ENRF (Elastic Net and Random Forest) 

surpasses all other techniques across the three response variables: Y₁, Y₂ and Y₃. In particular, 

ENRF consistently recorded the lowest Mean Squared Error (MSE) and Root Mean Squared Error 

(RMSE) values, showcasing its exceptional predictive accuracy and reliability. Moreover, ENRF 

employed either fewer or the same number of selected variables (#SV) as the other methods, 

highlighting its capability in variable selection while maintaining model sparsity. Conversely, 

both OLS and RF displayed the poorest results especially for Y₁ demonstrating their limited ability 

to handle complex data structures without the advantages of regularization or ensemble 

techniques. Although traditional penalized regression methods like Enet and LASSO exhibited 

some improvements over OLS and Ridge, they were consistently outperformed by the ENRF 

model. These results emphasize the importance of combining penalized regression with ensemble 

approaches to improve model generalization and minimize overfitting, particularly in scenarios 

involving high-dimensional and complex data. 
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4. Conclusion 

Assessing and predicting greenhouse gas (GHG) emissions poses significant yet intricate 

challenges owing to the evolving interactions among environmental, economic, and industrial 

factors over time. This study aimed to forecast CO₂, CH₄, and N₂O emissions in Saudi Arabia over 

a span of forty years by utilizing an integrated modeling framework that merges statistical and 

machine learning approaches. After conducting thorough data preprocessing, which included 

cleaning, and identifying outliers, several models were applied, such as Ordinary Least Squares 

(OLS), Ridge Regression, Elastic Net, Random Forest (RF), and an innovative hybrid model: 

Elastic Net Random Forest (ENRF). The results confirmed the presence of multicollinearity 

among certain predictors but no significant outliers. These challenges were effectively addressed 

using the proposed hybrid ENRF (Elastic Net–Random Forest) method. This approach 

demonstrated superior predictive performance across multiple metrics, including Mean Squared 

Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), outperforming 

traditional statistical and standalone machine learning models. The findings highlight the 

robustness of hybrid models in managing high-dimensional and noisy environmental data. By 

combining the variable selection strength of Elastic Net with the nonlinear learning capabilities 

of Random Forests, the ENRF model achieved improved accuracy and model stability. 

This modeling framework holds significant potential for use by environmental agencies 

and policymakers in Saudi Arabia, particularly for national-level emissions monitoring and 

forecasting. Its adaptability makes it well-suited for integration into sustainable development and 

climate strategy planning. However, this study does present certain limitations. The analysis is 

geographically restricted to Saudi Arabia and may not generalize directly to other regions with 

different emission sources, policy landscapes, or climatic conditions. 

Future investigations can expand on this research in various significant ways. Firstly, 

enhancing the temporal resolution of the dataset such as utilizing quarterly or monthly emissions 

data would enable the analysis of seasonal and short-term emission trends that are frequently 

overlooked in yearly summaries. Secondly, integrating supplementary data sources like satellite-

based remote sensing, sector-specific emission inventories, and real-time industrial output could 

augment both the spatial and temporal details of emission estimates. Testing the ENRF model in 

different geographic areas, especially within the Middle East and North Africa (MENA) region, 

would also be beneficial for assessing its applicability across diverse environmental and economic 
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scenarios. Additionally, incorporating IoT-enabled real-time monitoring systems and advanced 

deep learning models (e.g., LSTM, CNN) could further improve forecasting accuracy and 

adaptability. These improvements would render the hybrid modeling framework more resilient 

and versatile for implementation in national emission monitoring systems and intelligent 

environmental infrastructure.  
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