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ABSTRACT. This study investigates the stochastic fractional Zakharov-Kuznetsov equation (SFZKE) influenced by space-

time white noise, utilizing the conformable fractional derivative (CFD). The primary objective is to employ the Tanh-

Coth method to derive soliton, wave, and periodic solutions for SFZKE under varying conditions of space-time white 

noise and fractional order. A broader spectrum of exact analytical solutions for the SFZKE has been achieved. Graphical 

representations are provided to highlight the physical properties of the obtained solutions. The Tanh-Coth method is 

demonstrated to be a reliable and effective approach for solving stochastic fractional partial differential equations. 

 

 

1. Introduction 

Stochastic partial differential equations (SPDEs) are extensively applicable across diverse 

scientific disciplines, including pure and applied mathematics, physics, biology, and engineering 

(see, for example, [1], [2], [3], [4], [5]). The Zakharov-Kuznetsov equation (ZKE), originally 

proposed by Zakharov and Kuznetsov [6], characterizes the behavior of nonlinear ion-acoustic 

waves in a highly magnetized, lossless plasma within a two-dimensional context. Numerous 

researchers have employed various numerical methods to achieve exact solutions for nonlinear 
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SPDEs (NLSPDEs) and nonlinear stochastic FPDEs (NLSFPDEs). Notably, these methodologies 

include the Homotopy Perturbation Method [7], the Improved Fractional Sub-Equation Method 

[8], iterative approaches [9], the Modified Kudryashov Method [10], the Galerkin Spectral Method 

[11], He's semi-inverse method, the Riccati-Bernoulli sub-ODE method [12], and Difference 

Methods [13]. Recent years have seen a surge in research focused on solving stochastic FPDEs 

(SFPDEs), employing techniques such as conformable fractional derivatives and Caputo 

fractional derivatives, among others ([14] – [20]). 

The space-time Fractional ZKE (FZKE) is defined as follows [21]: 

                       𝐷𝑡
𝛼𝑀+ 𝜆𝑀𝐷𝑥

𝜅𝑀+𝛽𝐷𝑥
𝜅(𝐷𝑥

𝜅𝜅𝑀+𝐷𝑦
𝜐𝜐𝑀) = 0.                                                                (1)                                                                         

Here, 𝑀 is a function in 𝑥, 𝑦 and 𝑡, and 𝐷𝑥
𝛼,  𝐷𝑦

𝜅 , 𝐷𝑡
𝜈 for (0 < 𝛼, 𝜅, 𝜈 ≤ 1) represent first 

conformable fractional derivatives with respect to space and time, 𝐷𝑥
𝜅𝜅(𝑀)and 𝐷𝑦

𝜐𝜐𝑀 = 𝐷𝑦
𝜐(𝐷𝑦

𝜐𝑀) are the 

second conformable fractional derivatives for 𝑥and 𝑦, 𝜆 and 𝛽 are constants. If 𝛼 =  𝜅 =  𝜈 = 1, 

Eq. (1) reduces to the standard ZKE. Consequently, the stochastic fractional ZKE (SFZKE) is 

described as follows [22]: 

               𝐷𝑡
𝛼𝑀+ 𝜆𝑀𝐷𝑥

𝛼𝑀+ 𝛽𝐷𝑥
𝛼(𝐷𝑥

𝛼𝛼𝑀+𝐷𝑦
𝛼𝛼𝑀) = 𝜎𝑀𝑑𝑊(𝑡).                                                (2)                                                            

In this context, 𝑊(𝑡) is a random variable known as standard Brownian motion (SBM), and 𝜎 

represents the noise strength. SBM introduced by Norbert Wiener [23], has played a critical role 

in developing stochastic process theory. It is characterized by the following conditions: 

𝑊(0) = 0. 

𝑊(𝑡) is continuous function of 𝑡. 

𝑊(𝑡) has independent increments. 

𝑊(𝑡) - 𝑊(𝜏)~𝑁(0, 𝑡 − 𝜏) for 0 ≤ 𝜏 ≤ 𝑡. 

In this context, 𝑁(0, 𝑡 − 𝜏) is normal distribution with expect 0 and variance 𝑡 − 𝜏. 

This research seeks to address Eq. (2) utilizing the conformable fractional derivative (CFD) 

introduced by Khalil et al. [16]. The CFD marks a significant innovation in fractional calculus. Its 

derivative possesses essential characteristics that have broad applications in numerous scientific 

fields. Defined by an order 𝛼, where 0 <  𝛼 ≤  1, the CFD is articulated in terms of the 

independent variables. The mathematical representation can be denoted as: 

𝐷𝛼𝑀(𝑠) = 𝑙𝑖𝑚
𝜏→0

𝑀(𝑠+𝜏𝑠1−𝛼)−𝑀(𝑠)

𝜀𝜏
∀𝑡 > 0, 𝛼 ∈ (0,1]. 

𝑀(𝛼)(0) = 𝑙𝑖𝑚
𝑠→0+

𝑀(𝛼)(𝑠). 
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When 𝛼 is set to 1 in the previous equations, the non-integer differential transforms into the 

widely recognized integer differential. The characteristics of CFD are detailed in Khalil et al. [16]. 

In light of the benefits offered by CFD, this study utilizes the Tanh-coth method (Malfliet [24]) to 

derive traveling wave solutions relevant to Eq. (2). 

The Tanh-coth method is extensively employed to construct solutions for various NPDEs ([25]-

[29]. However, its application to the SFZKE has not been adequately investigated. Therefore, this 

study's novelty lies in applying the Tanh-coth method to the SFZKE, given its limited use in 

relation to this specific equation. The primary objective is to employ the Tanh-Coth method to 

derive soliton, wave, and periodic solutions for SFZKE under varying conditions of space-time 

white noise and fractional orders. A more comprehensive range of exact analytical solutions for 

the SFZKE equation has been obtained. Graphical illustrations are included to elucidate the 

physical characteristics of the acquired solutions, demonstrating the effects fractional order and 

stochastic term. The structure of this paper is organized as follows: Section 1 presents the 

introduction to the study. Section 2 details the Tanh-Coth method. Section 3 explores the 

application of the SFZKE. Section 4 illustrates the physical characteristics of the SFZKE solutions 

with corresponding graphs. Lastly, Section 5 concludes with a summary of the findings. 

 

2. Description of the Tanh-coth Method 

This study utilizes the tanh-coth method as structured by Malfliet [24] and Wazwaz [30]. The 

method assumes that traveling wave solutions can be represented via the tanh function and 

involves the following primary steps. 

Step 1: Consider the nonlinear fractional partial differential equation as shown 

𝑃(𝑀,𝐷𝑡
𝛼𝑀,𝐷𝑥

𝛼𝑀,𝐷𝑦
𝛼𝑀,𝐷𝑥

𝛼(𝐷𝑦
𝛼𝑢), 𝐷𝑥

𝛼𝛼𝑀,𝐷𝑦
𝛼𝛼𝑀, . . . ) = 0,                                                                             (3)                                                                                       

where 𝑀(𝑥, , y, 𝑡) is a function of the spatial variable 𝑥, 𝑦  and time variable 𝑡. 

Step 2: Solutions to Eq. (3) are obtained using the traveling wave transformation by setting 

𝑀(𝑥, 𝑦) = 𝑁(), with  𝜉 =
1

𝛼
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼), which transforms Eq. (3) into ordinary differential 

equation (ODE) 

                                         𝑄(𝑁,𝑁′, 𝑁′′, N′′′, … ) = 0,                                                                                     (4)                                                                                                            

where primes denote derivatives with respect to 𝜉. 

Step 3: Introduce a new independent variable 

                                                            𝑋 = 𝑡𝑎𝑛ℎ(𝜇 𝜉),                                                                                                         (5) 
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that leads to the transformation of derivatives 

𝑑

𝑑𝜉
= 𝜇(1 − 𝑋2)

𝑑

𝑑𝑋
,

𝑑2

𝑑𝜉2
= −2𝜇2(1 − 𝑋2)

𝑑

𝑑𝑋
+ 𝜇2(1 − 𝑋2)2

𝑑2

𝑑𝑋
,

𝑑3

𝑑𝜉3
= −2𝜇3(1 − 𝑋2)(3𝑋2 − 1)

𝑑

𝑑𝑋
− 6𝜇3(1 − 𝑋2)2

𝑑2

𝑑𝑋2
+ 𝜇3(1 − 𝑋2)3

𝑑3

𝑑𝑋3
.

⋮

                                                   (6)                                                             

Other derivatives can be derived similarly. 

Step 4: Subsequently, propose the function 𝑁(𝑥, y, 𝑡) through an expansion given by: 

        𝑁( 𝜉) = 𝑆(𝑋) = ∑ 𝜌𝑘𝑋
𝑘 +  𝑚

𝑘=0 ∑ 𝜌−𝑘𝑋
−𝑘 𝑚

𝑘=1 .                                                                                                           (7) 

To determine the parameter 𝑚, where 𝑚 is a positive integer, we typically align the highest-order 

linear terms in Eq. (4) with the highest-power nonlinear terms. 

Step 5: Once m has been determined, substitute Eq. (7) into Eq. (4). The resulting ODE expressed 

in powers of 𝑋 will yield coefficients that must be set to zero. This leads to a system of algebraic 

equations involving the parameters 𝜌𝑘(k = 0,±1,±2,⋯ ,𝑚) and 𝜇. By solving for these 

parameters and utilizing Eq. (7), we obtain the analytic solution. 

3. Application of Eq. (2) 

Now, the Tanh-coth method is employed to derive wave solutions for Eq. (2). 

𝐷𝑡
𝛼𝑀+ 𝜆𝑀𝐷𝑥

𝛼𝑀+𝛽𝐷𝑥
𝛼(𝐷𝑥

𝛼𝛼𝑀+𝐷𝑦
𝛼𝛼𝑀) = 𝜎𝑀𝑑𝑊(𝑡). 

Consider the following traveling wave transformation 

𝑀(𝑥, 𝑦, 𝑡) = 𝑁(𝜉)𝑒
(𝜎𝑊(𝑡)−

1

2
𝜎2𝑡)

, 𝜉 =
1

𝛼
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼),                                                                           (8) 

where 𝑁 is a deterministic real function, and 𝑎, 𝑏, 𝑐 are nonzero constants. Utilizing the definition 

of CFD, the traveling wave transformation, and properties of SBM, we obtain 

𝐷𝑡
𝛼𝑀 = (−𝑐𝑁′ + 𝜎𝑁 𝑑𝑊(𝑡))𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                               (9)                                                                                                                                     

   𝐷𝑥
𝛼𝑀 =  𝑎𝑁′𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                                                                                     (10) 

𝐷𝑥
2𝛼𝑀 =  𝑎2𝑁′′𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                                                                                (11) 

 𝐷𝑥
3𝛼𝑀 =  𝑎3𝑁′′′𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                                                                            (12) 

𝐷𝑦
𝛼𝑀 = 𝑏𝑁′𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                                                                                              (13) 

𝐷𝑦
2𝛼𝑀 = 𝑏2𝑁′′𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                                                                                           (14) 

 𝐷𝑥
𝛼(𝐷𝑦

𝛼𝛼𝑀) =  𝑎𝑏2𝑁′′𝑒
(𝜎𝑊(𝑡)−

1

2
𝜎2𝑡)

.                                                                                                                                     (15) 



Int. J. Anal. Appl. (2025), 23:38 5 

 

By substituting equations (9), (10), (11), (12), (13), (14), and (15) into Eq. (2), we have 

   −𝑐 𝑁′ + 𝑎𝜆𝑁𝑁′𝑒
(𝜎𝑊(𝑡)−

1

2
𝜎2𝑡)

+ 𝑘 𝛽𝑁′′′ = 0,                                                                                            (16)                                                         

where the constant 𝑘 is defined as: 𝑘 = 𝑎3 + 𝑎𝑏2. 

By taking the expectation on both sides of Eq. (16),  𝐸[𝑒𝜎𝑊(𝑡)] = 𝑒
(
1

2
𝜎2𝑡)

and integrating with a zero 

constant, we obtain: 

             −𝑐 𝑁 +
1

2
𝑎𝜆𝑁2 + 𝜅 𝛽𝑁′′ = 0.                                                                                                       (17) 

Balancing the nonlinear term 𝑁2 with the highest order derivative 𝑁′′, we find that 𝑚 = 2. 

Consequently, 

                      𝑁(𝜉) = 𝜌−2𝑋
−2 + 𝜌−1𝑋

−1 + 𝜌0 + 𝜌1𝑋 + 𝜌2𝑋
2.                                                                   (18) 

Substitute Eq. (18) into Eq. (17), collect the terms involving powers of 𝑋, equate each power to 

zero, and use Maple to solve the resulting system of algebraic equations to determine the 

solutions. 

Case 1: 

 𝜌0 = −
𝑐

𝑎𝜆
, 𝜌1 = 0, 𝜌2 =

3𝑐

𝑎𝜆
, 𝜌−1 = 0, 𝜌−2 = 0, 𝜇 =

1

2
√

𝑐

𝛽 𝑘
.                                                                (19)                                                                                            

Case 2: 

 𝜌0 =
𝑐

2𝑎𝜆
, 𝜌1 = 0, 𝜌2 =

3𝑐

4𝑎𝜆
, 𝜌−1 = 0, 𝜌−2 =

3𝑐

4𝑎𝜆
, 𝜇 =

1

4
√

𝑐

𝛽 𝑘
.                                                                   (20)                                                          

Case 3: 

 𝜌0 = −
𝑐

𝑎𝜆
, 𝜌1 = 0, 𝜌2 = 0, 𝜌−1 = 0, 𝜌−2 =

3𝑐

𝑎𝜆
, 𝜇 =

1

2
√

𝑐

𝛽 𝑘
 .                                                                  (21)                                                                                      

Case 4: 

 𝜌0 =
3𝑐

𝑎𝜆
, 𝜌1 = 0, 𝜌2 = 0, 𝜌−1 = 0, 𝜌−2 = −

3𝑐

𝑎𝜆
, 𝜇 =

1

2
√−

𝑐

𝛽 𝑘
 .                                                                  (22)                                                                              

Case 5: 

 𝜌0 =
3𝑐

𝑎𝜆
, 𝜌1 = 0, 𝜌2 = −

3𝑐

𝑎𝜆
, 𝜌−1 = 0, 𝜌−2 = 0, 𝜇 =

1

2
√−

𝑐

𝛽 𝑘
 .                                                                 (23)                                                                                 

Case 6: 

 𝜌0 =
3𝑐

2𝑎𝜆
, 𝜌1 = 0, 𝜌2 = −

3𝑐

4𝑎𝜆
, 𝜌−1 = 0, 𝜌−2 = −

3𝑐

4𝑎𝜆
, 𝜇 =

1

4
√−

𝑐

𝛽 𝑘
 .                                                (24)                                                                  

For 
c

𝛽𝑘
> 0, by substituting equations (19), (20), or (21) into Eq. (18), and subsequently integrating 

the resulting equation into Eq. (8), we derive the soliton solution 
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𝑀1(𝑥, 𝑦, 𝑡) = −
𝑐

𝑎𝜆
[1 − 3tanh2 (

1

2𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                             (25)                                                                    

and travelling wave solution is then given by 

𝑀2(𝑥, 𝑦, 𝑡) =

{
 
 

 
 𝑐

4𝑎𝜆
[𝟐 + 3𝑡𝑎𝑛ℎ2 (

1

4𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + 𝑏𝑦𝛼 − 𝑐𝑡𝛼))

+3𝑐𝑜𝑡ℎ2 (
1

4𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                                        (26)                                                                               

and 

𝑀3(𝑥, 𝑦, 𝑡) = −
𝑐

𝑎𝜆
[1 − 3coth2 (

1

2𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                           (27)                                                                    

With respect to 
c

𝛽𝑘
< 0, by substituting any of the equations (19), (20), or (21) into Eq. (18), and 

subsequently substituting the resulting equation into Eq. (8) respectively, we obtain the periodic 

solution: 

𝑀4(𝑥, 𝑦, 𝑡) = −
𝑐

𝑎𝜆
[1 + 3tan2 (

1

2𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                               (28)                                                     

and  

𝑀5(𝑥, 𝑦, 𝑡) =

{
 
 

 
 𝑐

4𝑎𝜆
[𝟐 − 3𝑡𝑎𝑛2 (

1

4𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + 𝑏𝑦𝛼 − 𝑐𝑡𝛼))

−3𝑐𝑜𝑡2 (
1

4𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                                      (29)                                                                                  

and  

  𝑀6(𝑥, 𝑦, 𝑡) = −
𝑐

𝑎𝜆
[1 + 3cot2 (

1

2𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                          (30)                

Concerning 
c

𝛽𝑘
> 0, by inserting any of the equations (22), (23), or (24) into Eq. (18), and then 

substituting the resulting equation into Eq. (8) respectively, we derive the periodic solution 

𝑀7(𝑥, 𝑦, 𝑡) =
3𝑐

𝑎𝜆
[1 + cot2 (

1

2𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                               (31)                                                                                 

and 

𝑀8(𝑥, 𝑦, 𝑡) =
3𝑐

𝑎𝜆
[1 + tan2 (

1

2𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

,                                                 (32)                                                                                 

and 
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𝑀9(𝑥, 𝑦, 𝑡) =

{
 
 

 
 3𝑐

4𝑎𝜆
[𝟐 − 𝑡𝑎𝑛2 (

1

4𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + 𝑏𝑦𝛼 − 𝑐𝑡𝛼))

+𝑐𝑜𝑡2 (
1

4𝛼
√

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                                   (33)                                                                                                                                        

In terms of 
c

𝛽𝑘
< 0, by substituting any of the equations (22), (23), or (24) into Eq. (18) and 

subsequently incorporating the resultant equation into Eq. (8), respectively, we derive the 

traveling wave solution: 

𝑀10(𝑥, 𝑦, 𝑡) =
3𝑐

𝑎𝜆
[1 − coth2 (

1

2𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                                (34)                                                                           

and soliton solution 

𝑀11(𝑥, 𝑦, 𝑡) =
3𝑐

𝑎𝜆
[1 − tanh2 (

1

2𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                                               (35)                                                             

Additionally, the traveling wave solution is given by 

𝑀12(𝑥, 𝑦, 𝑡) =

{
 
 

 
 3𝑐

4𝑎𝜆
[𝟐 − 𝑡𝑎𝑛ℎ2 (

1

4𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + 𝑏𝑦𝛼 − 𝑐𝑡𝛼))

−𝑐𝑜𝑡ℎ2 (
1

4𝛼
√−

𝑐

𝛽 𝑘
(𝑎𝑥𝛼 + by𝛼 − 𝑐𝑡𝛼))] 𝑒

(𝜎𝑊(𝑡)−
1

2
𝜎2𝑡)

.                               (36)                                                               

4. Discussion of the Graphical Representation 

Visual representations of the derived solutions were created using Maple software to showcase 

their behaviors and characteristics. By manipulating the free parameters' values, we can modulate 

these solutions' behaviors, thereby altering the resulting graphs' nature. To illustrate the impact 

of the stochastic term and the fractional order on the graphical representation, we will fix the 

following parameters: 𝑎 = 1, b = 1, 𝑐 = 1, 𝜆 = 1, 𝛽 = 1, 𝑘 = 2, 𝑦 = 3, with 𝑥 ∈ [−10,10] and 𝑡 ∈

[0,10]. It is crucial to note that the Brownian process, being a Gaussian process, can be represented 

as a linear combination of independent normal random variables. 

4.1 Examination of stochastic term impact 

The 3D graphs presented in Figures 1 and 2 illustrate various types of solutions, including 

soliton, wave, and periodic solutions, under different values of the noise term 𝜎. Specifically,  

solutions are depicted for 𝜎 = 0, 𝜎 = 0.5, 𝜎 = 1 and 𝜎 = 2. As the visualizations demonstrate, the 

noise term significantly affects SFZKE solutions, leading to their instability around zero when 

increasing the noise term. By adjusting the noise term, it is possible to tune the nature and stability 

of the solutions effectively. 
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Figure 1. For 𝑀1(𝑥, 𝑦, 𝑡), (a–d) with 𝑎 = 1, b = 1, 𝑐 = 1, 𝜆 = 1, 𝛼 = 1 , 𝛽 = 1, 𝑘 = 2, y = 3 , 𝑥 ∈ [−10,10] 𝑡 ∈

[0,10] and 3D graphs (a) 𝜎 = 0 (b)  𝜎 = 0.5  (c)   𝜎 = 1 (d) 𝜎 = 2. 

 

 

Figure 2. For 𝑀9(𝑥, 𝑦, 𝑡), (a–d) with 𝑎 = 1, b = 1, 𝑐 = 1, 𝜆 = 1, 𝛼 = 1, 𝛽 = 1, 𝑘 = 2, y = 3, 𝑥 ∈ [−10,10] 𝑡 ∈

[0,10] and 3D graphs (a) 𝜎 = 0 (b)  𝜎 = 0.5  (c)   𝜎 = 1 (d) 𝜎 = 2. 
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4.2 Examination of fractional order impact 

The 3D graphs presented in Figures 3 and 4 illustrate the behavior of the fractional order when 

different values are assigned, specifically when 𝛼 = 1, 𝜎 = 0.9 and 𝜎 = 0.8. Notably, as the 

fractional order decreases, the solutions of the SFZKE demonstrate a distinct rightward shift. This 

shift highlights the sensitivity of the SFZKE solutions to changes in fractional order, providing 

valuable insights into the dynamics of the system under varying conditions. 

 

 

Figure 3. For 𝑀1(𝑥, 𝑦, 𝑡), (a-c) with 𝑎 = 1, b = 1, 𝑐 = 1, 𝜆 = 1, σ = 0 , 𝛽 = 1, 𝑘 = 2, y = 3  , 𝑥 ∈ [−10,10] 𝑡 ∈

[0,10] and 3D graphs (a) 𝛼 = 1  (b)  𝛼 = 0.9  (c)   𝜎 = 0.8 and (d) denotes the 2D plot with t = 2. 
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Figure 4. For 𝑀9(𝑥, 𝑦, 𝑡), (a-c) with 𝑎 = 1, b = 1, 𝑐 = 1, 𝜆 = 1, σ = 0 , 𝛽 = 1, 𝑘 = 2, y = 3  , 𝑥 ∈ [−10,10] 𝑡 ∈

[0,10] and 3D graphs (a) 𝛼 = 1 (b)  𝛼 = 0.9  (c)   𝜎 = 0.8 and (d) denotes the 2D plot with t = 2. 

 

5. Conclusion 

This study successfully derived numerous analytical solutions of the fractional stochastic 

Zakharov-Kuznetsov equation (SFZKE) using the tanh-coth method with the conformable 

fractional derivative (CFD). The obtained solutions, including soliton, wave, and periodic forms, 

are crucial for comprehending various phenomena within the SFZKE framework. Our analysis 

demonstrated that the noise term significantly influences the SFZKE solutions, introducing 

instability around zero when the fractional order is constant. As the visualizations demonstrate, 

the noise term significantly affects SFZKE solutions, leading to their instability around zero. By 

adjusting the noise term, it is possible to tune the nature and stability of the solutions effectively. 

Additionally, as the fractional order decreases, a rightward shift in the SFZKE solutions is 

observed in the absence of the noise term. The physical characteristics and behaviors of these 

solutions were effectively illustrated through graphical representations. All computations were 

performed using MAPLE software, underscoring the tanh-coth method's efficacy in resolving the 
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SFZKE equation. These findings contribute valuable insights into the dynamics of fractional-

order systems and their response to noise and order variations. 
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