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Abstract: Energy and mass transfer play a major role in several engineering and technological processes, such as air 

conditioning, mechanical power collectors, food processing, refrigeration, and heat exchangers. This research aims to 

investigate the radiative flow of an incompressible hydromagnetic micropolar nanofluid by incorporating Soret and 

Dufour effects. The flow partial differential equations of this study are developed using the boundary layer 

approximation. The modeled equations are then transformed into nonlinear ordinary differential equations by 

applying the appropriate transformation. The MATLAB package that comes with BVP4C is used to establish the 

numerical solutions for this investigation. In addition, a comparison of the outcomes is presented with previously 

published material. The comparison shows that, in a particular case, our current results resemble the previous results 

very well. It is observed that temperature distribution shows an increasing behavior against the increment in Soret and 

Dufour impacts.  

 

1. Introduction 

Nanofluids have gained popularity with the development of nanotechnology. Nanofluid 

has almost better stability than the microfluid because here nanometer-sized particles are 

suspended in the base fluid. Its convective heat transmission ratio and thermophysical 

characteristics are better than those of the base liquid alone. Because of this, scientists have used 

this particular heat transfer fluid in practical applications. 
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Nanofluid are utilized in various practical applications including solar collectors, solar 

thermal energy storage, heat pipes vehicle radiators, refrigeration systems, electronics cooling 

etc. The main aim of nanofluid technology is to improve the heat transmission rate and thermal 

properties of the regular liquid. The small size of the nano particles permits them to persevere in 

liquid phases for months or even for years without sedimentation. 

According to Choi [1], a mixture base fluid with nanoparticles is characterized as a 

"nanofluid." Bouchireb et al., [2] investigated the energy transmission of nanoliquid flow between 

a convergent divergent channel analytically and numerically. Recently Rafique et al., [3] 

numerically investigated the nanofluid flow on a rotatory disk by incorporating chemical reaction 

impact.  Furthermore, Ali et al., [4] discussed thermal analysis of nanoliquid flow over a sphere 

by incorporating Newtonian heating. They concluded that the magnetic impact reduces the flow 

speed of the liquid.  Alotaibi et al., [5] investigated the nanoliquid flow between two discs with 

the impact of magnetic field numerically. 

In addition, Lemouedda et al., [6] considered ternary nanoparticles in the numerical 

treatment of hybrid nanoliquid rotatory flow. The effect of nanofluid stability on thermal 

efficiency has been investigated by Cacua et al. [7]. Al Faqih et al., [8] studied the micro-rotational 

effects on the flow of nanoliquid through a numerical technique by considering inclination 

impact. Prasad et al. [9] studied energy and mass transfer analysis for the MHD flow of nanofluid 

with radiations effect.  

In energy and mass transmission phenomenon Soret and Dufour impacts play a key role 

because of their practical applications viewpoint. The Soret effect, also referred to as thermal 

diffusion, happens when a mass flux is caused by temperature differences. Whereas the Dufour 

effect, also referred to as the diffusion thermal effect, develops when variations in concentration 

result in an energy flux. Many applications of the Soret and Dufour effects are present such as the 

separation of isotopes, heat transfer and chemical separation, petroleum reservoirs, geothermal 

energy and industrial/chemical processes where they affect mass transfer and heat processes. 

The impact of the Soret and Dufour effects on MHD flow over an exponential stretching 

sheet has been studied by Seema Tinker et al., [10]. Soret and Dufour’s influences on mass and 

heat transfer for magnetohydrodynamic boundary layer flow across a vertical sheet has been 

explored by Srinivasa et al., [11]. The two-dimensional flow of magnetohydrodynamics over a 

vertical permeable sheet with Soret and Dufour effect investigated by Vedavathi et al., [12].  

Soret and Dufour effects controlling the flow of a nanofluid across a horizontal extending 

sheet has been investigated by Rasool et al., [13]. The impacts of Soret and Dufour on MHD mixed 

convection over non-linear stretching/shrinking surfaces were studied by Pal et al. [14]. Rafique 

et al., [15] calculated the effects of thermophoretic diffusion and Brownian movement on 

micropolar nanofluid flow with Soret and Dufour impacts through a sloped surface. The impacts 
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of Soret and Dufour on a flow across an infinite vertical plate in a permeable medium have been 

investigated by Kumar et al., [16].  

Magnetohydrodynamics (MHD) is a fundamental theory that describes the interaction 

between electrically conducting fluids and magnetic fields. MHD is a combination of 

electromagnetic and fluid mechanics concepts that are used to explain the movement of these 

conducting fluids and the relationships between their magnetic and electric fields. Numerous 

fields have found use for it, such as astrophysics, fusion energy, geophysics, space weather, 

plasma physics, and material processing etc. MHD plays a vital role in advancing our knowledge 

of plasmas and their behavior in different environments. 

The word MHD was first presented by Alfvén [17]. MHD Mixed Convection Flow in 

Hybrid Nanofluid at Three-Dimensional Stagnation Point has been studied by Nurul Amira 

Zainal et al. [18]. Investigation on the magnetohydrodynamics flow of a micropolar liquid at the 

stagnation point on a vertical surface has been observed by Ishak et al. [19]. A study on the effects 

of mass movement and heat generation on magnetohydrodynamics flow over an inclined vertical 

surface was proposed by Reddy [20]. Magnetohydrodynamics micropolar fluid flow with 

chemical reaction to a stagnation point over a vertical plate has been numerically studied by Baag 

et al. [21].  

The prime objective of this research is to analyze the hydromagnetic micropolar 

nanoliquid flow on an extending/contracting surface by utilizing Buongiorno model. In view of 

the available literature no study has been conducted on the magnetohydrodynamics boundary 

layer flow on a vertical stretching/shrinking surface under the impacts of Soret and Dufour. To 

fill this lack of knowledge, the current study has been conducted.  

Additionally, studying the Soret and Dufour impacts could find uses in cooling electronic 

devices, plastic sheet production, nuclear reactors, polymer manufacture and ceramics. In 

addition, radiation impacts play a vital role in many technological systems need high 

temperatures, such as the design of solar power devices, spaceship engines and exploration of 

space missions. Stability analysis has been carried out to find a stable and feasible solution.  

 

2. Problem Formulation 

A steady 2-D boundary layer flow of Micropolar nanofluid flow over a non-linear 

vertical stretching/shrinking surface along with the impacts of Soret and Dufour are 

considered. The stretching/shrinking sheet is assumed to have non-linear velocity in the form 

of 𝑢𝑤(𝑥) = 𝑎𝑥𝑚,  a variable surface temperature 𝑇𝑤(𝑥) = 𝑇∞ + 𝑏𝑥2𝑚−1, and concentration 

𝐶𝑤(𝑥) = 𝐶∞ + 𝑐𝑥2𝑚−1,  where 𝑎, 𝑏, 𝑐 are constants. The temperature 𝑇 and concentration 𝐶 at the 

wall take constant values 𝑇𝑤 and 𝐶𝑤. As 𝑦 tends to infinity, the temperature and concentration 

reach their ambient values 𝑇∞ and 𝐶∞. The set of boundary equations for micropolar nanofluid 
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flow can be expressed in the following way by applying the boundary layer estimates and the 

previously stated suppositions. 

 

 
                               

Figure 1: Flow structure with coordinate system 
 

The flow equations for the study under investigation in view of [22-23] are: 
 

𝜕𝑢

𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
= 0              (1)  

(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = (𝜇 + 𝑘)

𝜕2𝑢

𝜕𝑦2 + 𝑘
𝜕𝑁

𝜕𝑦
− 𝜎𝐵2𝑢 + 𝜌𝑔[ 𝛽𝑇(𝑇 − 𝑇∞) +  𝛽𝐶(𝐶 − 𝐶∞)]             (2) 

𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=  

1

𝜌𝑗
[ 𝛾

𝜕2𝑁

𝜕𝑦2 − 𝑘 (2𝑁 +  
𝜕𝑢

𝜕𝑦
)]        (3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= (𝛼 +

16𝜎∗𝑇∞
3

3𝑘∗𝜌𝐶𝑝
)

𝜕2𝑇

𝜕𝑦2 + 𝜏𝑤 [𝐷𝐵
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+  

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2
] −

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
 
𝜕2𝐶

𝜕𝑦2    (4) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=  𝐷𝐵

𝜕2𝐶

𝜕𝑦2 + 
𝐷𝑇

𝑇∞
 
𝜕2𝑇

𝜕𝑦2 + 
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2        (5) 

 

Subject to boundary conditions 
 

𝑣 = 𝑣𝑤  ; 𝑢 = 𝜆𝑢𝑤(𝑥) ; 𝑁 =  −𝑛
𝜕𝑢

𝜕𝑦
 ; 𝑇 =  𝑇𝑤; 𝐶 =  𝐶𝑤       𝑎𝑡 𝑦 = 0  

𝑢 → 0; 𝑣 → 0 ; 𝑁 → 0 ; 𝑇 → 𝑇∞ ; 𝐶 → 𝐶∞                        𝑎𝑠 𝑦 → ∞     (6) 
 

Where 𝑢 and 𝑣 represents the velocity coefficients along the x-axis and y-axis, respectively. While, 

𝜌, 𝑘, 𝑗, 𝑁, 𝜈, 𝛾 are density, vortex viscosity, micro-inertia density, angular velocity, kinematic 

viscosity, spin gradient viscosity, respectively. 𝐾∗, 𝜎∗ are mean absorption factor, and Stefan-

Boltzmann constant respectively. 𝐷𝑚, 𝐷𝐵, 𝐷𝑇 , 𝑇𝑚, 𝐾𝑇 shows the mass diffusivity, Brownian motion, 

thermophoresis diffusion, fluid mean temperature, thermal diffusion ratio parameter. 𝑢𝑤(𝑥) =

𝑎𝑥𝑚 is a non-linear stretching/shrinking velocity of surface and 𝜆 is stretching/shrinking factor 

where 𝜆 < 0 denotes a surface that is shrinking while 𝜆 > 0 denotes a surface that is expanding 
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and 𝛽 is the velocity slip factor. Similarity solutions can be identified by applying the following 

similarity variables. 

𝑢 = 𝑎𝑥𝑚𝑓′,        𝑣 =  −√
(𝑚 + 1)𝜈𝑎

2𝑥𝑚+1
 𝑥𝑚𝑓 − 𝑦𝑓′  

𝑎𝑥𝑚−1

2
(𝑚 − 1),        𝜂 = 𝑦√

(𝑚 + 1)𝑎𝑥𝑚−1

2𝜈
 

𝑁 =   𝑎𝑥𝑚√
𝑎(𝑚+1)𝑥𝑚−1

2𝜈
  ℎ(𝜂) ,          𝜃(𝜂) =

(𝑇−𝑇∞)

(𝑇𝑤−𝑇∞)
,                            (7) 

The following ordinary differential equations are generated by applying similarity 

transformation to equations (1) – (5).  

(1 + 𝐾)𝑓′′′ + 𝐾ℎ′ + 𝑓𝑓′′ + (
2

𝑚+1
) (𝐺𝑟 𝜃 + 𝐺𝑐 𝜙) − (

2𝑚

𝑚+1
) 𝑓′2

− (
2𝑀

𝑚+1
) 𝑓′ = 0   (8) 

(1 +
𝐾

2
) ℎ′′ + 𝑓ℎ′ − (

3𝑚−1

𝑚+1
) ℎ𝑓′ − (

2𝐾

𝑚+1
) (2ℎ + 𝑓′′) = 0     (9) 

1

𝑃𝑟
(1 +

4

3
𝑅𝑑) 𝜃′′ +  𝑁𝑏 𝜃′𝜙′ + 𝑁𝑡 𝜃′2

+ 𝜃′𝑓 − 𝐷𝑓 𝜙′′ = 0     (10) 

𝜙′′ +
𝑁𝑡

𝑁𝑏
𝜃′′ + 𝑆𝑟 𝑆𝑐 𝜃′′ + 𝜙′𝑓 𝑆𝑐 = 0         (11) 

Here primes represents the differentiation with respect to 𝜂. 𝛼 =  
𝑘

𝜌𝐶𝑝
 depicts thermal diffusivity 

parameter. 𝐾 =
𝑘

𝜈
 is a micropolar material parameter. 𝑃𝑟 =

𝜈

𝑎
 denotes a Prandtl number,  𝑆𝑐 =

𝜈

𝐷𝐵
 

represents Schmidt number.  

Table 1:  General factors and their values 

 Magnetic factor 
𝑀 =  

𝜎𝐵0
2

𝜌𝑎
 

 Brownian motion factor 
𝑁𝑏 =

𝜏𝑤𝐷𝐵(𝐶𝑤 − 𝐶∞)

𝜈
 

 Thermophoresis diffusion factor 
𝑁𝑡 =

𝜏𝑤𝐷𝑇(𝑇𝑤 − 𝑇∞)

𝜈𝑇∞
 

 Thermal radiation factor 
𝑅𝑑 =

4𝜎∗𝑇∞
3

𝑘𝐾∗
 

 Soret factor 
𝑆𝑟 =  

𝐷𝑚𝐾𝑇

𝑇𝑚𝜈

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)
 

 Dufour factor 
𝐷𝑓 =  

𝐷𝑚𝐾𝑇

𝜈𝐶𝑠𝐶𝑝

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)
 

 Buoyancy parameter, 
𝐺𝑟 =

𝐺𝑟𝑥 

𝑅𝑒𝑥
2 

 Solutal buoyancy parameter 
𝐺𝑐 =

𝐺𝑐𝑥 

𝑅𝑒𝑥
2 

                       

The associative boundary conditions are changed into: 

𝑓(0) = 𝑓𝑤 ,  𝑓′(0) = 𝜆, ℎ(𝜂) = −𝑛𝑓′′(𝜂), 𝜃(𝜂) = 1, 𝜙(𝜂) = 1;      

𝑓′(𝜂) → 0 ,       ℎ(𝜂) → 0 ,          𝜃(0) → 0 ,      𝜙(0) → 0          𝑎𝑠 𝜂 → ∞                                (12) 
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In which 𝑣𝑤 = −√
𝑎𝜈(𝑚+1)

2
 𝑥(

𝑚−1

2
) is the suction factor, 𝑓𝑤 > 0 for suction.  

For the current problem, Nusselt, Sherwood number, and skin friction are given as follows:  

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
, 𝐶𝑓 =  

𝜏𝑤

𝑢𝑤2𝜌
                       (13) 

where,  

𝑞𝑤 =  − (𝑘 +
16𝜎∗𝑇∞

3

3𝑘∗ )
𝜕𝑇

𝜕𝑦
,      𝑞𝑚 =  −𝐷𝐵

𝜕𝐶

𝜕𝑦
,      and       𝜏𝑤 = (𝜇 + 𝑘)

𝜕𝑢

𝜕𝑦
+ 𝑘𝑁       (14) 

 

The relevant skin friction factor value is 𝐶𝑓𝑥 = (1 + (1 − 𝑚)𝐾)𝑓′′(0), decreased Nusselt 

number −𝜃′(0), and the decreased Sherwood number is −𝜙′ are described as  

−𝜃′(0) =  
𝑁𝑢𝑥

(1+
4

3
 𝑅𝑑)√

𝑚+1

2
𝑅𝑒𝑥

,    − 𝜙′(0) =  
𝑆ℎ𝑥

√
𝑚+1

2
𝑅𝑒𝑥

,   𝐶𝑓𝑥(0) =  𝐶𝑓  √
2

𝑚+1
𝑅𝑒𝑥  ,   and   𝑅𝑒𝑥 =

𝑢𝑤𝑥

𝜈
         (15) 

 

3. Stability Analysis 

Stability analysis is an established method used to generate several solutions. The existence of 

triple solutions is shown by the computational analysis of equations (8) – (11) with boundary 

conditions (12). To identify the stable and practically possible solution, a stability analysis 

must be carried out. The first solution to first satisfy the boundary condition is always verified 

as the feasible and stable solution by performing the stability analysis. Firstly, a new time 

dependent variable 𝜏 must be introduced in order to transform governing equations (2) – (5) into 

an unsteady form.  
 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = (𝜇 + 𝑘)

𝜕2𝑢

𝜕𝑦2 + 𝑘
𝜕𝑁

𝜕𝑦
− 𝜎𝐵2𝑢 + 𝜌𝑔[ 𝛽𝑇(𝑇 − 𝑇∞) +  𝛽𝐶(𝐶 − 𝐶∞)]       (16)      

(
𝜕𝑁

𝜕𝑡
+ 𝑢

𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
) =  

1

𝜌𝑗
[ 𝛾

𝜕2𝑁

𝜕𝑦2 − 𝑘 (2𝑁 +  
𝜕𝑢

𝜕𝑦
)]                                 (17) 

(
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = (𝛼 +

16𝜎∗𝑇∞
3

3𝑘∗𝜌𝐶𝑝
)

𝜕2𝑇

𝜕𝑦2 +  𝜏𝑤 [𝐷𝐵
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+  

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2
] −

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
 
𝜕2𝐶

𝜕𝑦2                 (18) 

(
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
) =  𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +  
𝐷𝑇

𝑇∞
 
𝜕2𝑇

𝜕𝑦2 +  
𝐷𝑚𝐾𝑇

𝑇𝑚
 
𝜕2𝑇

𝜕𝑦2                                                                (19) 

 

The following are the new similar parameters that have been presented: 

𝑢 = 𝑎𝑥𝑚 𝜕𝑓(𝜂,𝜏)

𝜕𝜂
,     𝑣 =  −√

(𝑚+1)𝜈𝑎

2𝑥𝑚+1  𝑥𝑚𝑓(𝜂, 𝜏) − 𝑦
𝜕𝑓(𝜂,𝜏)

𝜕𝜂
 
𝑎𝑥𝑚−1

2
(𝑚 − 1),  𝜂 = 𝑦√

(𝑚+1)𝑎𝑥𝑚−1

2𝜈
 

 

  𝜏 = 𝑎𝑥𝑚−1𝑡, 𝑁 =  𝑎𝑥𝑚√
𝑎(𝑚+1)𝑥𝑚−1

2𝜈
  ℎ(𝜂, 𝜏) ,    𝜃(𝜂, 𝜏) =

(𝑇−𝑇∞)

(𝑇𝑤−𝑇∞)
 ,    𝜙(𝜂, 𝜏) =

(𝐶− 𝐶∞)

(𝐶𝑤− 𝐶∞)
          (20) 

            

Equations (16) - (19) are used to obtain it by using equation (20). 
 

(1 + 𝐾)
𝜕3𝑓

𝜕𝜂3 + 𝐾
𝜕ℎ

𝜕𝜂
+ 𝑓

𝜕2𝑓

𝜕𝜂2 +
2

𝑚+1
(𝐺𝑟 𝜃 + 𝐺𝑐 𝜙) −

2

𝑚+1
 

𝜕2𝑓

𝜕𝜂𝜕𝜏
−

2𝑚

𝑚+1
 (

𝜕𝑓

𝜕𝜂
)2 −

2𝑀

𝑚+1
 
𝜕𝑓

𝜕𝜂
= 0        (21) 

(1 +
𝐾

2
)

𝜕2ℎ

𝜕𝜂2 + 𝑓
𝜕ℎ

𝜕𝜏
− (

3𝑚−1

𝑚+1
) ℎ

𝜕𝑓

𝜕𝜂
−

2𝐾

𝑚+1
(2ℎ +

𝜕2𝑓

𝜕𝜂2) −
2

𝑚+1

𝜕ℎ

𝜕𝜏
= 0                                    (22)    
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1

𝑃𝑟
(1 +

4

3
 𝑅𝑑)

𝜕2𝜃

𝜕𝜂2 + 𝑁𝑏
𝜕𝜃

𝜕𝜂

𝜕𝜙

𝜕𝜂
+ 𝑁𝑡(

𝜕𝜃

𝜕𝜂
)2 −

2

(𝑚+1)

𝜕𝜃

𝜕𝜏
+ 𝑓

𝜕𝜃

𝜕𝜂
− 𝐷𝑓

𝜕2𝜙

𝜕𝜂2 = 0                            (23) 

𝜕2𝜙

𝜕𝜂2 +
𝜕𝜙

𝜕𝜂
𝑓 𝑆𝑐 +

𝑁𝑡

𝑁𝑏
 
𝜕2𝜃

𝜕𝜂2 −
2

𝑚+1

𝜕𝜙

𝜕𝜏
𝑆𝑐 + 𝑆𝑟 𝑆𝑐 

𝜕2𝜃

𝜕𝜂2 = 0                                                            (24) 

 

Subjected to boundary conditions  

𝑓(0, 𝜏 ) = 𝑓𝑤 ,
𝜕𝑓(0,𝜏)

𝜕𝜂
= 𝜆, ℎ(0, 𝜏) = −𝑛

𝜕2𝑓(0,𝜏)

𝜕𝜂2 , 𝜃(0, 𝜏) = 1, 𝜙(0, 𝜏) = 1  

𝜕𝑓(𝜂,𝜏)

𝜕𝜂
→ 0 , ℎ(𝜂, 𝜏) → 0 , 𝜃(𝜂, 𝜏) → 0 , 𝜙(𝜂, 𝜏) → 0        𝑎𝑠 𝜂 → ∞                                        (25) 

 

The perturbation function's goal is to investigate any possible disturbances in the solutions.  
 

𝑓(𝜂) = 𝑓0(𝜂), ℎ(𝜂) = ℎ0(𝜂), 𝜃(𝜂) = 𝜃0(𝜂), 𝜙(𝜂) =  𝜙0(𝜂)   

𝑓(𝜂, 𝜏) =  𝑓0(𝜂) +  𝑒−𝜀𝜏𝐹(𝜂)         

ℎ(𝜂, 𝜏) =  ℎ0(𝜂) +  𝑒−𝜀𝜏𝐻(𝜂)          

𝜃(𝜂, 𝜏) =  𝜃0(𝜂) + 𝑒−𝜀𝜏𝐺(𝜂)   

𝜙(𝜂, 𝜏) =  𝜙0(𝜂) +  𝑒−𝜀𝜏𝑆(𝜂)                                                                                                    (26) 
 

Where the smallest eigenvalue is 𝜀 and 𝐹(𝜂) , 𝐻(𝜂, 𝐺(𝜂), 𝑆(𝜂)  are small relative to 𝑓0(𝜂),  ℎ0(𝜂), 

 𝜃0(𝜂), 𝜙0(𝜂) respectively. Equation (26) is used to create the linearized eigenvalue equations for 

equations (21) – (24), which generate the following: 

(1 + 𝐾)𝐹0
′′′ + 𝐾𝐻0

′ − (
2

(𝑚+1)
) 𝐹0

′ [𝑀 − 𝜀 − 2𝑚𝑓0
′] + (

2

(𝑚+1)
) [𝐺𝑟𝐺0 + 𝐺𝑐 𝑆0] + 𝑓0𝐹0

′′ + 𝐹𝑓0
′′ = 0     (27) 

(1 +
𝐾

2
) 𝐻0

′′ −
2

(𝑚+1)
𝐻0(2𝐾 − 𝜀) −

2𝐾

(𝑚+1)
𝐹0

′′ + 𝑓0𝐻0
′ + 𝐹0ℎ0

′ − (
3𝑚−1

𝑚+1
) [𝐻0𝑓0

′ + ℎ0𝐹0
′] = 0         (28)  

1

𝑃𝑟
(1 +

4

3
𝑅𝑑) 𝐺0

′′ + 𝜃0
′ [𝑁𝑏 𝑆0

′ + 𝑁𝑡 2𝐺0
′ + 𝐹0] + 𝐺0

′ [𝑁𝑏 𝜙0
′ + 𝑓0] + (

2

(𝑚+1)
) 𝜀𝐺0 − 𝐷𝑓 𝑆0

′′ = 0   (29)   

𝑆0
′′ + 𝐺0

′′ [
𝑁𝑡

𝑁𝑏
+ 𝑆𝑟 𝑆𝑐] + (

2

(𝑚+1)
) 𝑆𝑐 𝜀𝑆0 + 𝜙0

′ 𝐹0 + 𝑆0
′ 𝑓0 = 0                                               (30) 

With boundary conditions: 

𝐹0(0) = 0, 𝐹0
′(0) = 0, 𝐻0(0) = −𝑛𝐹0

′′(0), 𝐺0(0) = 0, 𝑆0(0) =   0        

𝐹0(𝜂) → 0 , 𝐻0(𝜂) → 0 , 𝐺0(0) → 0 , 𝑆0(0) → 0        𝑎𝑠 𝜂 → ∞                          (31) 
 

As stated by Harris et al. [24], variables 𝐻0
′ = 1 is used in place of the boundary conditions 

𝐻0
 (𝜂) → 0 as 𝜂 → ∞ to make sure that the least nonzero eigenvalues are produced accordingly.  

 

4. Results and discussions 

The effects of thermal radiation, Soret and Dufour on magnetohydrodynamics micropolar 

nanofluid flow over a non-linear vertical stretching/shrinking surface have been examined 

in this study. The governing equations of micropolar nanofluid flow (8) – (11), according to 

the boundary conditions (12), are numerically solved to investigate the flow and heat transfer 

properties. The outcomes of various flow properties are analyzed and illustrated with 

graphs. Table 1 presents a comparison between the current results and those obtained by 
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Hayat et al. [25]. It has been discovered that the current results are reliable and precise. 

Additionally, triple solutions are found in the micropolar nanofluid flow problem of all 

profiles, according to the computational results.  
 

Table 2: Comparison of (𝑪𝒇(𝑹𝒆𝒙)
𝟏

𝟐) for several of 𝑲 and 𝒏 = 𝟎, 𝟎. 𝟓  for 𝝀 =  𝟏.  

                                                                𝒏 = 𝟎                                                       𝒏 = 𝟎. 𝟓 

𝐾 Hayat et al., [25] Present Hayat et al., [25] Present 

0 

1 

2 

4 

−1.00000 

−1.367870 

  −1.621222 

−2.004129 

-1.00000 

-1.367870 

-1.621222 

-2.004129 

−1.00000 

−1.224739 

−1.414214 

−1.732047 

-1.00000 

-1.224739 

-1.414214 

-1.732047 

 

Stability analysis was conducted in this research work because to the presence of multiple 

solutions. Equations (27)-(30) have a minimal eigenvalue, which is concluded using the bvp4c 

MATLAB solver. In view of Lund et al., [26] state that an unstable flow with an initial 

development of disturbance is implied by a negative lowest eigenvalue, whereas a positive 

smallest eigenvalue denotes a stable flow with an initial decrease of disturbance. The first solution 

is found to have 𝜺 > 𝟎, but the second and third solutions have 𝜺 < 𝟎, according to the data shown 

in Table 3. As a result, it can be said that the first solution to this problem is both physically 

significant and stable. As a result, the decisions taken in this part will be dependent on the 

outcomes of the initial solution. However, there is still mathematical significance in the second 

and third answers. 
 

Table 3. Various values of 𝑲 and 𝑺 for smallest eigenvalue.𝜺 

𝐾 𝑆 1st Solution 2nd Solution 3rd Solution 

0 

0 

0 

1 

1 

2 

      3 

         2.5 

  2 

  3 

  2.5 

  3 

0.45222 

0.37321 

0.02526 

0.37826 

0.12261 

0.24073 

-1.03491 

-0.67641 

-0.11150 

-0.76105 

-0.44501 

-0.49360 

-1.03212 

-0.65741 

-0.11340 

-0.65104 

-0.29670 

-0.42360 

 

Figure 2 shows the triple solutions of the velocity distribution for different values of  𝑀. 

It is essential that these triple solutions fulfill the boundary conditions. In the first solution, the 

velocity drops as the magnetic field increases due to a rise in Lorentz force. On the basis of science, 

the Lorentz force’s produces a high resistance is the reason for a decrease in the momentum 
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boundary layer thickness. In the second and third solutions, the dimensionless velocity rises as 

the magnetic field’s effect increases.  

Figure 3 shows the variations in the velocity profile for different values of 𝑛. The 

investigation indicates that in first, second and third solutions, when the variable 𝑛 grows, the 

boundary layer and the micropolar nanofluid flow velocity both increases.  

 
Figure 2:  Velocity profile variations for various 𝑴 values.                      Figure 3: Velocity profile variations for various 𝒏 values. 

 

Figure 4 displays various values of buoyancy parameter 𝐺𝑟 on the behaviour of velocity profile. 

The ratio of buoyancy to viscous forces in the movement of fluid is expressed by the buoyancy 

variable 𝐺𝑟. The velocity profile in the micropolar nanofluids gets improved by rise in the 

buoyancy variable 𝐺𝑟, according to three solutions. While Figure 5 demonstrates the effect of 

micropolar material factor 𝐾 on the microrotation profile. When the numerical value of the 

micropolar material factor 𝐾 grow in the first solution, the dimensionless microrotation profile 

and microrotation boundary layer are reduced. As 𝐾 gets higher in the second and third solutions, 

the boundary layer and microrotation profile increases.  
 

 
Figure 4: Velocity profile variations for various 𝑮𝒓 values.          Figure 5: Microrotation profile variations for various 𝑲 values. 
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Figure 6 indicates the impact of different values of thermal radiation 𝑅𝑑 on temperature profile. 

The rate of heat transfer and the thermal boundary layer are decreased on temperature profile in 

the first, second and third solutions by increasing the thermal radiation. Figure 7 shows how the 

effect of Brownian motion factor 𝑁𝑏 on temperature distribution. It is observed that as the 

Brownian motion factor 𝑁𝑏 increases, the temperature of the micropolar nanofluid decreases 

consistently across first, second and third solutions.  
 

 
Figure 6: Temperature profile variations for various 𝑹𝒅 values.       Figure 7: Temperature profile variations for various 𝑵𝒃 values. 

 

Figure 8 illustrates the influence of the thermophoresis factor 𝑁𝑡 on temperature distribution. It 

is clear from every result that the temperature distribution and the thermal boundary layer 

thickness both rise with an increase in the thermophoresis factor 𝑁𝑡. Figure 9 represents the 

behaviour of the temperature distribution for various values of the Prandtl number 𝑃𝑟. The first, 

second and third solutions indicate that increasing 𝑃𝑟 reduces the temperature profile, leading to 

a thinner thermal boundary layer.  
 

 

 
Figure 8: Temperature profile variations for various 𝑵𝒕 values.       Figure 9: Temperature profile variations for various 𝑷𝒓 values. 
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Figure 10 illustrates how Brownian motion impacts concentration profiles. It is clear from the 

first, second, and third solutions that the concentration profile and the boundary layer thickness 

drop with a rise in the Brownian motion factor 𝑁𝑏. Figure 11 indicates how the concentration 

profile is affected by the thermophoresis factor. When the thermophoresis factor 𝑁𝑡  is increased, 

the concentration profile expands, along with an increase in its boundary thickness across all 

solutions.  

 
Fig. 10: Concentration profile variations for various 𝑵𝒃 values         Fig. 11: Concentration profile variations for various 𝑵𝒕 values 

 

Figure 12 illustrates that the temperature profile with increasing Dufour factor 𝐷𝑓 values. It 

shows a rise in the Dufour factor enhanced the temperature profile in each solution, which 

increased the rate at which mass diffusion proceeded. The temperature profile rises as a result of 

the enhanced mass diffusion-induced more effective energy transfer. Therefore, when 𝐷𝑓 values 

increase, the temperature profile gets more apparent.  Figure 13 shows the impact of the Soret 

number 𝑆𝑟 on the concentration profile. It shows that in first, second and third solutions, a rise in 

the Soret number corresponds to a rise in the concentration distribution. As a result, the Soret 

number rises, the concentration profile becomes clearer.  

 
Fig 12: Temperature profile variations for various 𝑫𝒇 values.  Fig 13: Concentration profile variations for various 𝑺𝒓 values 
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Conclusion 

In the current research, a numerical analysis is conducted on the magnetohydrodynamics 

flow of micropolar nanofluid over a vertical stretching/shrinking surface with the impacts of 

Soret and Dufour factors. The computational task is done by employing the bvp4c solver. The 

accuracy of the results is verified by the already published literature. In this investigation it is 

revealed that increasing the Soret effect raises the temperature of the nanoparticles near the 

vertical surface. 

These are the main conclusions of this research: 

1. The velocity distribution of the liquid shows decreasing behavior with the growth of the 

magnetic effect. 

2. The concentration of nanoparticles decreases as 𝑁𝑏 rises, and the concentration profile 

increases as 𝑁𝑡 grows.  

3. Temperature profile increases in the first, second and third solutions by increasing 

the impact of the Dufour number 𝐷𝑓. 

4. Concentration distribution increases in each solution by growing the impact of the 

Soret number 𝑆𝑟. 
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