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ABSTRACT. Tungro virus is one of the most important diseases that affect the rice plant, as it is known as cancer because 

of the severe damage it causes both in quantity and quality in production. This disease is transmitted by the green 

leafhoppers (Nephotettix virescens), which are the most responsible vector for the disease's transmission. In this paper, 

we consider a mathematical model that describes the transmission dynamics of vector-borne rice tungro disease (RTD), 

which represents the predator-prey interaction between insect vectors and biological agents. Moreover, we 

incorporated two control efforts to formulate the optimal control model (OCM) in order to examine the best strategy 

for reducing the infection of RTD. The description of the two implementing controls is quarantine control (u1) such as 

uprooting and burning infected plants and chemical control (u2) such as using insecticides, respectively.  The 

Hamiltonian and necessary optimality conditions (NOCs) are presented based on Pontryagin’s maximum principle 

(PMP). We show numerical simulations in some figures by using the forward-backward sweep method (FBSM) to 

investigate the suggested control strategies.  The results demonstrate that each integrated strategy can reduce infection 

transmission, but the combination of the two controls is the best strategy for the others. 

 

1. Introduction 

           Rice is the main crop in Asia, especially in China, it is playing an important role in Chinese 

life and most of them are depending on rice as a staple food with high productivity and nutritive 
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value. Therefore, the government of Chinese increased the funding more than 2.5 times compared 

with maize and used a genetic improvement to increase [1]. But rice is susceptible to infection by 

more than forty types of diseases. Crop diseases reduce production so we must predict disease in 

the early stage to protect more crops [2]. In traditional ways to identify disease, we can use the 

visual symptoms caused by pathogens or identification of pathogens in the laboratory [3]. In our 

paper we focus on the tungro disease, which has the potential to do more damage, there are two 

types of tungro viruses rice tungro Bacilliform Virus (RTBV) and rice tungro spherical virus 

(RTSV), these viruses are transmitted by the green leafhoppers. The most common control 

strategies are by spraying insecticides which means it will reduce the number of green 

leafhoppers vector.  

Mathematical modelling (MM) plays an important role in studying, analyzing and 

controlling the spread of diseases to protect susceptible plants population from infection and 

reduce the number of infected vectors population based on ordinary differential equations to 

describe infectious diseases [4,5]. The aim of MM is to provide an answer for all phenomena [6] 

Moreover, it is concerned with learning significant recommendations to achieve the objective of 

generating a model of a problem situation that clears the behavior of variables involved and how 

they tie in the phenomena [7]. The application of mathematics is evident in almost every aspect 

that we could think of when we budget our monthly income, manage our time, and even in the 

infrastructures we see outside so some countries like the Philippines put mathematics at the top 

of their education system [8]. Using the MM, we can discuss the dynamical model of tungro and 

the effectiveness of insecticide [9]. There are some papers in the literature that have discussed 

tungro disease (see e.g., [10-16]). 

 Optimal control theory (OCT) determines state trajectories and controls at a period of time 

in the presence of constraints represented in a dynamic system to maximize or minimize the 

objective function. The importance of OCT is to translate problems into mathematical models 

involving some suggested controls to be optimal control problems (OCP) and through it can 

understand the spreading mechanism of epidemic diseases to predict the future behavior of the 

transmission by using some control strategies to reduce the spread of these diseases [17]. The 

OCP is applied to many real-life problems in different fields for example, in [18] authors proposed 

a model of pine wilt disease with three optimal controls vaccination, cutting of infected trees and 

spraying with insecticide to reduce the number of infected trees.  
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In the system of breast cancer model [19], the aim is to control the spreading of cancer by using 

two controls chemotherapy and a ketogenic diet which have an effective role to control this 

disease. In [20], the model of cholera has been considered, the aim of this research is to control 

the spreading of cholera by using three controls vaccination, therapeutic treatment (including 

hydration therapy, antibiotics, etc.), and water sanitation. In [21], the system of COVID-19 has 

presented and divided the population into susceptible, exposed, asymptomatic, symptomatic, 

hospitalized, and vaccinated then they add one control which is non-pharmaceutical 

interventions.  

Our contribution to this research work is to modify RTD mathematical model and formulate OCP 

by adding two control efforts namely quarantine control (𝑢1) such as uprooting and burning of 

infected plants and chemical control (𝑢2) such as the use of insecticides. Moreover, we improve 

the FBSM scheme to solve NOCs numerically to present some different control strategies that 

reduce the transmission dynamic of tungro virus to protect the rice plant from this disease. The 

simulation of each strategy is displayed graphically by some figures.  

We organized this work as follows: Section 2 describes the mathematical model of RTD. In Section 

3, we formulate the OCP based on the mathematical model of RTD, and we present the 

Hamiltonian and NOCs by using Pontryagin’s maximum principle [22]. In Section 4, the 

numerical simulation results for three strategies are illustrated to show the best effective strategy. 

In Section 5, we present our brief conclusion. 

 

2. A Mathematical Model of RTD 

  Here, we develop the mathematical model for RTD in [4] by considering predators, 

quarantine, implementing roguing mechanisms (uprooting and burning of infected plants) and 

insecticide spraying. So, in constructing the model of the spread of RTD, there are some 

assumptions used, including: 

1) The rate of replanting of rice plants 𝛬𝑅 and leafhoppers vector birth 𝛬𝑇 is constant. 

2) The population of rice plants is divided into two classes, susceptible rice plants (𝑅𝑆), infected 

rice plants (𝑅𝐼). 

3) The insect vector population is split into two classes, susceptible (𝑇𝑆) and infected (𝑇𝐼). 

4) The transmission of disease can happen if the susceptible rice plants interact with infected 

insect vector and the susceptible insect vector interact with infected rice plants. 
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5) The infected plants and insect vectors cannot recover and 𝑃 is biological agents as predators 

of vectors. 

The schematic compartment diagram of the tungro disease transmission in rice plants flows 

linked with vector and predator-prey in Figure (1) and other variables and parameters used can 

be seen in Table (1). 

 

 

 

Parameter Definition Value Refs 

𝛬𝑅 The rate of replanting of rice plants 8 [4] 

ΛT The rate of leafhoppers vector birth 10 [4] 

𝜂1 The transmission rate from    𝑇𝐼 to 𝑅𝑆 0.15 [4] 

η2 The transmission rate from    𝑅𝐼 to 𝑇𝑆 0.25 [4] 

𝑁𝑅 The total population of rice plant 400 [4] 

NT The total population of the green leafhopper insects 300 [4] 

Np The total population of the biological agent 50 [4] 

𝑑 The per capita death rate of the host 0.025 [4] 

𝛿 The suction rate of the vector 0.8 [4] 

𝛽1 The death rate of 𝑁𝑅 0.05 [4] 

β2 The death rate of NT 0.1 [4] 

μ1 The mortality ratio of vectors is caused by insecticide 4 [4] 

𝜇2 The death ratio of predators is caused by insecticide 4 [4] 

γ The rate of predation 0 & 0.02 [4] 

𝑟 The recruitment rate of biological agent 1 [4] 

 

 

Figure 1. The diagram for RTD transmission dynamic. 

Table 1. The definition and values for variables and parameters of RTD model. 
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The system of differential equations that describe RTD mathematical model can be considered as 

the following: 

 

𝑑𝑅𝑆

ⅆ𝑡
= 𝛬𝑅 −

𝜂1𝛿

𝑁𝑅
𝑅𝑠𝑇𝐼 − 𝛽1𝑅𝑠, 

ⅆ𝑅𝐼

ⅆ𝑡
=

𝜂1𝛿

𝑁𝑅
𝑅𝑠𝑇𝐼 − (𝛽1 + 𝑑 + 𝑢1)𝑅𝐼 ,           

ⅆ𝑇𝑆

ⅆ𝑡
= 𝛬𝑇 −

𝜂2𝛿

𝑁𝑇
𝑇𝑠𝑅𝐼 − (𝛽2 + 𝜇1𝑢2)𝑇𝑠 − 𝛾𝑃𝑇𝑠                                                                                (2.1) 

ⅆ𝑇𝐼

ⅆ𝑡
=

𝜂2𝛿

𝑁𝑇
𝑇𝑠𝑅𝐼 − (𝛽2 + 𝜇1𝑢2)𝑇𝐼 − 𝛾𝑃𝑇𝐼, 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝑁𝑃
) + 𝛾𝑃(𝑇𝑆 + 𝑇𝐼) − 𝑢2𝜇2𝑃, 

 

         with the following initial conditions [3]: 

                        𝑅𝑆(0) = 225,   𝑇𝑆(0) = 200,   𝑅𝐼(0) = 175,    𝑇𝐼(0) = 100,   𝑃(0) = 5,                   (2.2) 

where 𝛾 is the prediction rate of biological agents on susceptible and infected plants, 𝑢1 is the 

quarantine measures and 𝑢2 is insecticides measures on both the vector and the biological agents. 

 

3. Optimal Control Problem 

                    In this section, we aim to minimize the number of populations of infected plants 𝑅𝐼 and 

infected insects 𝑇𝐼, to reduce the infection of tungro disease. So, to minimize 𝑅𝐼 and  𝑇𝐼, we 

implement two control measures quarantine (implementing roguing mechanism) and insecticide 

spraying, respectively, and formulate the following OCP. 

By considering the state system (2.1) with the following set of admissible control functions  

Ω = {(𝑢1(⋅), 𝑢2(⋅))  ∶ 0 ≤ 𝑢1(𝑡), 𝑢2(𝑡) ≤ 1, ∀ 𝑡 ∈ [0, 𝑡𝑓]}, 

the cost function is given by 

𝐽(𝑢1
 (⋅), 𝑢2

 (⋅)) = min
Ω

∫ [𝐴1𝑅𝐼 + 𝐴2𝑇𝐼 +
1

2
[𝐵1𝑢1

2 + 𝐵2𝑢2
2]]

𝑡𝑓

0
𝑑𝑡                                               (3.1) 

   where 𝐴1 and 𝐴2 describes the balancing constant coefficients of infected rice plants and         

leafhopper vector population, while 𝐵1 and 𝐵2 are weight coefficients for each control costs 

measure.  

Therefore, following PMP [19] the Hamiltonian 𝐻(𝑅𝑆, 𝑅𝐼, 𝑇𝑅, 𝑇𝐼, 𝑃, 𝜆𝑖, 𝑢1, 𝑢2) is defined by 
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 𝐻(𝑅𝑆, 𝑅𝐼, 𝑇𝑅, 𝑇𝐼, 𝑃, 𝜆, 𝑢1, 𝑢2)   = 𝐴1𝑅𝐼 + 𝐴2𝑇𝐼 +
1

2
[𝐵1𝑢1

2 + 𝐵2𝑢2
2]  +  𝜆1 [𝛬𝑅 −

𝜂1𝛿

𝑁𝑅
𝑅𝑠𝑇𝐼 − 𝛽1𝑅𝑠] +

𝜆2 [
𝜂1𝛿

𝑁𝑅
𝑅𝑠𝑇𝐼 − (𝛽1 + 𝑑 + 𝑢1)𝑅𝐼] + 𝜆3 [𝛬𝑇 −

𝜂2𝛿

𝑁𝑇
𝑇𝑠𝑅𝐼 − (𝛽2 + 𝜇1𝑢2)𝑇𝑠 − 𝛾𝑃𝑇𝑠]  +  𝜆4 [

𝜂2𝛿

𝑁𝑇
𝑇𝑠𝑅𝐼 − (𝛽2 +

𝜇1𝑢2)𝑇𝐼 − 𝛾𝑃𝑇𝐼]  +  𝜆5 [𝑟𝑃 (1 −
𝑃

𝑁𝑃
) + 𝛾𝑃(𝑇𝑆 + 𝑇𝐼) − 𝑢2𝜇2𝑃]                                                              (3.2)  

where 𝜆1(𝑡),  𝜆2(𝑡),  𝜆3(𝑡),  𝜆4(𝑡),  𝜆5(𝑡) are the co-state functions associated with state functions.  

We clarify the NOCs for our OCP in the following theorem.    

Theorem 3.1. Suppose that 𝑅𝑆
∗(⋅), 𝑅𝐼

∗(⋅), 𝑇𝑅
∗(⋅), 𝑇𝐼

∗(⋅) and  𝑃∗(⋅) are optimal solutions for the system 

(2.1) subject to  initial conditions (2.2) with optimal controls 𝑢1
∗(⋅) and  𝑢2

∗(⋅) on the interval  [0, 𝑡𝑓] 

that minimizes the cost function (3.1) through the control set 𝛺. Then, there exist co-state 

functions  𝜆1
 (⋅), 𝜆2

 (⋅), 𝜆3
 (⋅), 𝜆4

 (⋅) and 𝜆5
 (⋅) satisfying, 

𝑑𝜆1
 

𝑑𝑡
=

𝜂1𝛿

𝑁𝑅
 [𝜆1

 − 𝜆2
 ] 𝑇𝐼

∗ + 𝜆1
  𝛽1 , 

𝑑𝜆2
 

𝑑𝑡
= −𝐴1 + 𝜆2

 (𝛽1 + 𝑑 + 𝑢1
∗) +

𝜂2 𝛿

𝑁𝑇
[𝜆3

 − 𝜆4
 ] 𝑇𝑆

∗ ,                                    

𝑑𝜆3
 

𝑑𝑡
=

𝜂2 𝛿

𝑁𝑇
 [𝜆3

 − 𝜆4
 ] 𝑅𝐼

∗ + 𝜆3
 (𝛽2 + 𝜇1 𝑢2

∗ + 𝛾 𝑃∗) − 𝜆5
  𝛾 𝑃∗ ,                                                                        (3.3) 

𝑑𝜆4
 

𝑑𝑡
= −𝐴2 +

𝜂1𝛿

𝑁𝑅
 [𝜆1

 − 𝜆2
 ] 𝑅𝑆

∗ + 𝜆4
  (𝛽2 + 𝜇1 𝑢2

∗ + 𝛾 𝑃∗) − 𝜆5
  𝛾 𝑃∗,                                        

𝑑𝜆5
 

𝑑𝑡
= 𝜆3 

 𝛾 𝑇5
∗ + 𝜆4 

 𝛾 𝑇𝐼
∗ + 𝜆5

 [−𝑟 +
2 𝑟 𝑃∗

𝑁𝑃
− 𝛾 (𝑇𝑆

∗ + 𝑇𝐼
∗) + 𝑢2

∗  𝜇2] ,                                            

with transversality conditions 𝜆1(𝑡𝑓) = 𝜆2(𝑡𝑓) = 𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 𝜆5(𝑡𝑓) =0. Furthermore,  

𝑢1
∗ = 𝑚𝑎𝑥 {𝑚𝑖𝑛 [ 

𝜆2
  𝑅𝐼

∗

𝐵1
, 1], 0}, 

                                                                 𝑢2
∗ = 𝑚𝑎𝑥 {𝑚𝑖𝑛 [ 

𝜇1𝜆3
  𝑇𝑆

∗+𝜇1𝜆4
  𝑇𝐼

∗+𝜆5
  𝜇2

∗  𝑃∗

𝐵2
, 1], 0}.                          (3.4) 

Proof. Based on PMP, we differentiate the Hamiltonian 𝐻(𝑅𝑆
∗,  𝑅𝐼

∗,  𝑇𝑅
∗,  𝑇𝐼

∗,  𝑃∗,  𝜆𝑖,  𝑢1
∗ ,  𝑢2

∗) in 

Equation (3.2) with respect to state variables in order to obtain the co-state variables as follows 

𝑑𝜆1

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑅𝑆
=

𝜂1𝛿

𝑁𝑅
 [𝜆1

 − 𝜆2
 ] 𝑇𝐼

∗ + 𝜆1
  𝛽1, 

𝑑𝜆2

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑅𝐼
= −𝐴1 + 𝜆2

 (𝛽1 + 𝑑 + 𝑢1
∗) +

𝜂2 𝛿

𝑁𝑇
[𝜆3

 − 𝜆4
 ] 𝑇𝑆

∗, 

𝑑𝜆3

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑇𝑆
=

𝜂2 𝛿

𝑁𝑇
 [𝜆3

 − 𝜆4
 ] 𝑅𝐼

∗ + 𝜆3
 (𝛽2 + 𝜇1 𝑢2

∗ + 𝛾 𝑃∗) − 𝜆5
  𝛾 𝑃∗,                             (3.5) 

𝑑𝜆4

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑇𝐼
= −𝐴2 +

𝜂1𝛿

𝑁𝑅
 [𝜆1

 − 𝜆2
 ] 𝑅𝑆

∗ + 𝜆4
  (𝛽2 + 𝜇1 𝑢2

∗ + 𝛾 𝑃∗) − 𝜆5
  𝛾 𝑃∗, 

𝑑𝜆5

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑃
= 𝜆3 

 𝛾 𝑇5
∗ + 𝜆4 

 𝛾 𝑇𝐼
∗ + 𝜆5

 [−𝑟 +
2 𝑟 𝑃∗

𝑁𝑃
− 𝛾 (𝑇𝑆

∗ + 𝑇𝐼
∗) + 𝑢2

∗  𝜇2], 

with the transversality conditions 𝜆𝑖(𝑡𝑓) = 0, 𝑖 =  1, …., 5. Furthermore, we differentiate the 

Hamiltonian with respect to control variables and using the following optimality condition:   
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𝜕𝐻(𝑅𝑆
∗,  𝑅𝐼

∗,  𝑇𝑅
∗,  𝑇𝐼

∗,  𝑃∗,  𝜆𝑖,  𝑢1
∗ ,  𝑢2

∗)

𝜕𝑢1
∗ =

𝜕𝐻(𝑅𝑆
∗,  𝑅𝐼

∗,  𝑇𝑅
∗,  𝑇𝐼

∗,  𝑃∗,  𝜆𝑖,  𝑢1
∗,  𝑢2

∗ )

𝜕𝑢2
∗ = 0    

Therefore, we have  

0 = 𝐵1 𝑢1
∗  −  𝜆2

  𝑅𝐼
∗, 

0 = 𝐵2 𝑢2
∗  − 𝜇1𝜆3

  𝑇𝑆
∗ − 𝜇1𝜆4

  𝑇𝐼
∗ −  𝜆5

  𝜇2
∗  𝑃∗. 

By using the compactness condition for controls, we get Equation (3.4).                                                  

 

4. Numerical Results 

                In this section, the effects of quarantine and chemical controls are studied numerically and 

presented in different optimal control strategies to find the best strategy for reducing the infection 

of RTD. We obtain the results by solving the optimality system of state and co-state equations by 

FBSM. The state equations are solved by starting with the initial value for the controls and using 

the forward Runge-Kutta scheme. Then, the co-state equations are solved using the backward 

Runge-Kutta scheme with transversality conditions. We get the solution of state and co-state 

equations by updating the controls until the consecutive iteration is close enough to each other. 

Then, we present some strategies based on the intervention of suggested controls in order to 

reduce the number of infected rice plants. In this simulation, the population with a control effect 

is labelled with a blue line and without control with a red line. The balanced and weight 

coefficients in the cost function are 𝑨𝟏 = 𝑨𝟐 = 𝟏𝟎 and 𝑩𝟏 = 𝑩𝟐 = 𝟐𝟎, respectively. The parameter 

values used are stated in Table 1. We investigate three optimal control strategies that are 

presented as follows: 

     Strategy 1: in this strategy, we activated the quarantine control measure (i.e., 𝒖𝟏 ≠ 𝟎) and stopped 

the chemical control measure (i.e., 𝒖𝟐 = 𝟎). It is clear from Fig. 2, the population of infected plants 

decreases rapidly when quarantine control measures are implemented. While in Fig. 3, The 

control profile for this strategy is displayed in Fig. 4. This figure shows that at the beginning of 

the period, the maximum efforts will be made for these control measures. Then, approximately 

after 6 days of the period, the measures using this control will gradually decrease until it reaches 

their lowest value at approximately 40 days of the proposed period. 
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Figure 2. The population of Infected plants with and without control. 

 

 

       Figure 3. The population of Infected vectors with and without control. 

 

 

Figure 4. Control profile. 
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Strategy 2: in this strategy, we focus on the effect of chemical control (i.e., 𝒖𝟐 ≠ 𝟎) and neglected 

the effect of quarantine control measure (i.e., 𝒖𝟏 = 𝟎). The simulation of this strategy is presented 

in Figs. 5-7, where we observe in Fig. 5, the population of infected plants decreases slightly 

compared to Fig. 2 and there is a bit of variation between with and without control. While the 

effect of this control appears clearly on the vector because insects are sprayed with some chemical 

pesticides, this is what appears in Fig. 6. Also, the population of infected vectors decreases more 

compared to infected vectors in Fig. 3. The control profile is shown in Fig. 7, where it is clear that 

the control remains at the maximum value during the initial periods until approximately 45 days. 

Then, the control used gradually decreases. 

 

Figure 5. The population of Infected plants with and without control. 

 

 

Figure 6. The population of Infected vectors with and without control. 
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Figure 7. Control profile. 

   Strategy 3: in this strategy, we combine all the available controls (i.e., 𝒖𝟏 ≠ 𝟎 and 𝒖𝟐 ≠ 𝟎). Here 

you will find a noticeable decrease in the numbers of infected plants and infected insects, as 

shown in Fig. 8 and Fig. 9, respectively. We also note from the profile of the controls shown in 

Fig. 10 that the proposed controls remain at their highest value at the beginning of the period and 

then gradually decrease until they reach their lowest value at 40 days of the proposed period, and 

this means that the disease is eliminated in the shortest possible time.  Furthermore, compared to 

the previous two strategies, we find that in the case of applying all controls (i.e., Strategy 3), it is 

the best case to eliminate the disease as soon as possible. 

 

 

Figure 8. The population of Infected plants with and without control. 
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Figure 9. The population of Infected vectors with and without control. 

 

 

Figure 10. Control profile 

 

5.  Conclusions 

 In this work, A mathematical model for the spread of tungro disease of rice has been discussed. 

The two control efforts namely quarantine control (𝒖𝟏) such as uprooting and burning infected 

plants and chemical control (𝒖𝟐) such as using insecticides have been suggested. Moreover, we 

formulated an OCP and proved their characterizations based on PMP and presented the solutions 

for the OCP with different control strategies to find the best strategies for controlling tungro in 

the rice plant population. A numerical simulation for the suggested problem has been presented 

in some figures. From this simulation, we found that the most effective strategy for reducing the 

infection of rice and eliminating the infected host and vector in the shortest possible time is to use 
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all available controls at the same time (i.e., Strategy 3), which gives the best results compared with 

the other strategies.  
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