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COMPLEX OSCILLATION OF SOLUTIONS AND THEIR

DERIVATIVES OF NON-HOMOGENOUS LINEAR

DIFFERENTIAL EQUATIONS IN THE UNIT DISC

ZINELAÂBIDINE LATREUCH AND BENHARRAT BELAÏDI∗

Abstract. In this paper, we study the complex oscillation of solutions and

their derivatives of the differential equation

f ′′ + A (z) f ′ + B (z) f = F (z) ,

where A (z) , B (z) ( 6≡ 0) and F (z) (6≡ 0) are meromorphic functions of finite

iterated p-order in the unit disc ∆ = {z : |z| < 1}.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental

results and the standard notations of the Nevanlinna’s value distribution theory on

the complex plane and in the unit disc ∆ = {z : |z| < 1} (see [11] , [12] , [15] , [16] , [18]).

We need to give some definitions and discussions. Firstly, let us give two defini-

tions about the degree of small growth order of functions in ∆ as polynomials on

the complex plane C. There are many types of definitions of small growth order of

functions in ∆ (see [9, 10]) .

Definition 1.1 [9, 10] Let f be a meromorphic function in ∆, and

D (f) = lim sup
r→1−

T (r, f)

log 1
1−r

= b.
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112 LATREUCH AND BELAÏDI

If b < ∞, then we say that f is of finite b degree (or is non-admissible). If b =

∞, then we say that f is of infinite degree (or is admissible), both defined by

characteristic function T (r, f).

Definition 1.2 [9, 10] Let f be an analytic function in ∆, and

DM (f) = lim sup
r→1−

log+M (r, f)

log 1
1−r

= a <∞ (or a =∞) .

Then we say that f is a function of finite a degree (or of infinite degree) defined by

maximum modulus function M(r, f) = max
|z|=r

|f (z)| .

Moreover, for F ⊂ [0, 1) , the upper and lower densities of F are defined by

dens∆F = lim sup
r→1−

m (F ∩ [0, r))

m ([0, r))
, dens∆F = lim inf

r→1−

m (F ∩ [0, r))

m ([0, r))

respectively, where m (G) =
∫
G

dt
1−t for G ⊂ [0, 1) .

Now we give the definitions of iterated order and growth index to classify gen-

erally the functions of fast growth in ∆ as those in C, see [4] , [14] , [15] . Let us

define inductively, for r ∈ [0, 1) , exp1 r = er and expp+1 r = exp(expp r), p ∈ N.

We also define for all r sufficiently large in (0, 1) , log1 r = log r and logp+1 r =

log(logp r), p ∈ N. Moreover, we denote by exp0 r = r, log0 r = r, exp−1 r =

log1 r, log−1 r = exp1 r.

Definition 1.3 [5] The iterated p-order of a meromorphic function f in ∆ is defined

by

ρp (f) = lim sup
r→1−

log+
p T (r, f)

log 1
1−r

(p ≥ 1) .

For an analytic function f in ∆, we also define

ρM,p (f) = lim sup
r→1−

log+
p+1M (r, f)

log 1
1−r

(p ≥ 1) .
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Remark 1.1 It follows by M. Tsuji in [18] that if f is an analytic function in ∆,

then

ρ1 (f) ≤ ρM,1 (f) ≤ ρ1 (f) + 1.

However, it follows by Proposition 2.2.2 in [15] that

ρM,p (f) = ρp (f) (p ≥ 2) .

Definition 1.4 [5] The growth index of the iterated order of a meromorphic func-

tion f(z) in ∆ is defined by

i (f) =


0, if f is non-admissible,

min {p ∈ N, ρp (f) <∞} , if f is admissible,

∞, if ρp (f) =∞ for all p ∈ N.

For an analytic functionf in ∆, we also define

iM (f) =


0, if f is non-admissible,

min {p ∈ N, ρM,p (f) <∞} , if f is admissible,

∞, if ρM,p (f) =∞ for all p ∈ N.

Definition 1.5 [6, 7] Let f be a meromorphic function in ∆. Then the iterated

p−exponent of convergence of the sequence of zeros of f (z) is defined by

λp (f) = lim sup
r→1−

log+
p N

(
r, 1
f

)
log 1

1−r
,

where N
(
r, 1
f

)
is the counting function of zeros of f (z) in {z ∈ C : |z| < r}.

Similarly, the iterated p-exponent of convergence of the sequence of distinct zeros

of f (z) is defined by

λp (f) = lim sup
r→1−

log+
p N

(
r, 1
f

)
log 1

1−r
,

where N
(
r, 1
f

)
is the counting function of distinct zeros of f (z) in {z ∈ C : |z| < r}.
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Definition 1.6 [8] The growth index of the iterated convergence exponent of the

sequence of zeros of f(z) in ∆ is defined by

iλ (f) =


0, if N

(
r, 1
f

)
= O

(
log 1

1−r

)
,

min {p ∈ N, λp (f) <∞} , if some p ∈ N with λp (f) <∞,

∞, if λp (f) =∞ for all p ∈ N.

The complex oscillation theory of solutions of linear differential equations in the

complex plane C was started by Bank and Laine in 1982 ([1]). After their well-

known work, many important results have been obtained on the growth and the

complex oscillation theory of solutions of linear differential equations in the unit

disc ∆ = {z : |z| < 1} , (see [2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 16, 20]) . Recently, the sec-

ond author (see, [2]) extended some results of [6, 20] to the case of higher order

linear differential equations with analytic coefficients. He investigated the relation

between solutions and their derivatives of the differential equation

(1.1) f (k) +A (z) f = 0

and analytic functions of finite iterated p-order, and obtained the following results:

Theorem A [2] Let H be a set of complex numbers satisfying

dens∆ {|z| : z ∈ H ⊂ ∆} > 0,

and let A (z) 6≡ 0 be an analytic function in ∆ such that ρM,p (A) = σ < ∞ and

for real number α > 0, we have for all ε > 0 sufficiently small,

|A (z)| ≥ expp

{
α

(
1

1− |z|

)σ−ε}

as |z| → 1− for z ∈ H. If ϕ (z) is an analytic function in ∆ such that ϕ(k−j) (z) 6≡ 0

(j = 0, · · · , k) with finite iterated p−order ρp (ϕ) < ∞, then every solution f 6≡ 0

of (1.1) , satisfies

λp

(
f (j) − ϕ

)
= λp

(
f (j) − ϕ

)
= ρp (f) =∞ (j = 0, · · · , k) ,

λp+1

(
f (j) − ϕ

)
= λp+1

(
f (j) − ϕ

)
= ρp+1 (f) = ρM,p (A) (j = 0, · · · , k) .
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Theorem B [2] Let H be a set of complex numbers satisfying

dens∆ {|z| : z ∈ H ⊂ ∆} > 0,

and let A (z) 6≡ 0 be an analytic function in ∆ such that ρp (A) = σ < ∞ and for

real number α > 0, we have for all ε > 0 sufficiently small,

|A (z)| ≥ expp−1

{
α

(
1

1− |z|

)σ−ε}
as |z| → 1− for z ∈ H. If ϕ (z) is an analytic function in ∆ such that ϕ(k−j) (z) 6≡ 0

(j = 0, · · · , k) with finite iterated p−order ρp (ϕ) < ∞, then every solution f 6≡ 0

of (1.1) , satisfies

λp

(
f (j) − ϕ

)
= λp

(
f (j) − ϕ

)
= ρp (f) =∞ (j = 0, · · · , k) ,

σ ≤ λp+1

(
f (j) − ϕ

)
= λp+1

(
f (j) − ϕ

)
= ρp+1 (f) ≤ ρM,p (A) (j = 0, · · · , k) .

In this paper we consider the oscillation problem of solutions and their deriva-

tives of second order non-homogenous linear differential equation

(1.2) f ′′ +A (z) f ′ +B (z) f = F (z) ,

where A (z) , B (z) 6≡ 0 and F (z) 6≡ 0 are meromorphic functions of finite iterated

p-order in ∆. It is a natural to ask what about the exponent of convergence of

zeros of f (j) (z) (j = 0, 1, 2, · · · ) , where f is a solution of (1.2) . For some related

papers in the complex plane on the usual order see, [17, 19] . The main purpose of

this paper is give an answer to this question. Before we state our results we need

to define the following notations

(1.3) Aj (z) = Aj−1 (z)−
B′j−1 (z)

Bj−1 (z)
for j = 1, 2, 3, · · · ,

(1.4) Bj (z) = A′j−1 (z)−Aj−1 (z)
B′j−1 (z)

Bj−1 (z)
+Bj−1 (z) for j = 1, 2, 3, · · ·

and

(1.5) Fj (z) = F ′j−1 (z)− Fj−1 (z)
B′j−1 (z)

Bj−1 (z)
for j = 1, 2, 3, · · · ,

where A0 (z) = A (z) , B0 (z) = B (z) and F0 (z) = F (z) . We obtain the following

results.
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Theorem 1.1 Let A (z) , B (z) 6≡ 0 and F (z) 6≡ 0 be meromorphic functions of

finite iterated p−order in ∆ such that Bj (z) 6≡ 0 and Fj (z) 6≡ 0 (j = 1, 2, 3, · · · ) .

If f is a meromorphic solution in ∆ of (1.2) with ρp (f) = ∞ and ρp+1 (f) = ρ,

then f satisfies

λp

(
f (j)

)
= λp

(
f (j)

)
= ρp (f) =∞ (j = 0, 1, 2, · · · )

and

λp+1

(
f (j)

)
= λp+1

(
f (j)

)
= ρp+1 (f) = ρ (j = 0, 1, 2, · · · ) .

Theorem 1.2 Let A (z) , B (z) 6≡ 0 and F (z) 6≡ 0 be meromorphic functions in ∆

with finite iterated p−order such that Bj (z) 6≡ 0 and Fj (z) 6≡ 0 (j = 1, 2, 3, · · · ) .

If f is a meromorphic solution in ∆ of (1.2) with

ρp (f) > max {ρp (A) , ρp (B) , ρp (F )} ,

then

λp

(
f (j)

)
= λp

(
f (j)

)
= ρp (f) (j = 0, 1, 2, · · · ) .

Remark 1.2 In Theorems 1.1, 1.2, the conditions Bj (z) 6≡ 0 and Fj (z) 6≡

0 (j = 1, 2, 3, · · · ) are necessary. For example f (z) = exp
(

1
1−z

)2

− 1 satisfies

(1.2) where A (z) = −3
1−z , B (z) = − 4

(1−z)6 , F (z) = 4
(1−z)6 and ρ1 (f) = 1 >

max {ρ1 (A) , ρ1 (B) , ρ1 (F )} = 0. On the other hand, we have

A1 = A− B′

B
= − 9

1− z
,

B1 = A′ −AB
′

B
+B =

15

(1− z)2 −
4

(1− z)6 , F1 = F ′ − F B
′

B
≡ 0,

and

λ1 (f) = 1 > λ1 (f ′) = 0.

Here, we give some sufficient conditions on the coefficients which guarantee

Bj (z) 6≡ 0 and Fj (z) 6≡ 0 (j = 1, 2, 3, · · · ) , and we obtain:

Theorem 1.3 Let A (z) , B (z) 6≡ 0 and F (z) 6≡ 0 be analytic functions in ∆

with finite iterated p−order such that β = ρp (B) > max {ρp (A) , ρp (F )} . Then all

nontrivial solutions of (1.2) satisfy

ρp (B) ≤ λp+1

(
f (j)

)
= λp+1

(
f (j)

)
= ρp+1 (f) ≤ ρM,p (B) (j = 0, 1, 2, · · · )
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with at most one possible exceptional solution f0 such that

ρp+1 (f0) < ρp (B) .

In the next, we set

σp (f) = lim sup
r→1−

logpm (r, f)

log 1
1−r

.

Theorem 1.4 Let A (z) , B (z) 6≡ 0 and F (z) 6≡ 0 be meromorphic functions in

∆ with finite iterated p-order such that σp (B) > max {σp (A) , σp (F )} . If f is a

meromorphic solution in ∆ of (1.2) with ρp (f) = ∞ and ρp+1 (f) = ρ, then f

satisfies

λp

(
f (j)

)
= λp

(
f (j)

)
= ρp (f) =∞ (j = 0, 1, 2, · · · )

and

λp+1

(
f (j)

)
= λp+1

(
f (j)

)
= ρp+1 (f) = ρ (j = 0, 1, 2, · · · ) .

2. Some lemmas

Lemma 2.1 [2] Let f be a meromorphic function in the unit disc for which i (f) =

p ≥ 1 and ρp (f) = β <∞, and let k ∈ N. Then for any ε > 0,

m

(
r,
f (k)

f

)
= O

(
expp−2

(
1

1− r

)β+ε
)

for all r outside a set E1 ⊂ [0, 1) with
∫
E1

dr
1−r <∞.

Lemma 2.2 [7] Let A0, A1, · · · , Ak−1, F 6≡ 0 be meromorphic functions in ∆, and

let f be a meromorphic solution of the differential equation

(2.1) f (k) +Ak−1 (z) f (k−1) + · · ·+A0 (z) f = F (z)

such that i (f) = p (0 < p <∞) . If either

max {i (Aj) (j = 0, 1, · · · , k − 1) , i (F )} < p

or

max {ρp (Aj) (j = 0, 1, · · · , k − 1) , ρp (F )} < ρp (f) ,
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then

iλ (f) = iλ (f) = i (f) = p

and

λp (f) = λp (f) = ρp (f) .

Using the same arguments as in the proof of Lemma 2.2 (see, the proof of Lemma

2.5 in [7]), we easily obtain the following lemma.

Lemma 2.3 Let A0, A1, · · · , Ak−1, F 6≡ 0 be finite iterated p−order meromorphic

functions in the unit disc ∆. If f is a meromorphic solution with ρp (f) = ∞

and ρp+1 (f) = ρ < ∞ of equation (2.1) , then λp (f) = λp (f) = ρp (f) = ∞ and

λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ.

Lemma 2.4 [7] Let p ∈ N, and assume that the coefficients A0, · · · , Ak−1 and

F 6≡ 0 are analytic in ∆ and ρp (Aj) < ρp (A0) for all j = 1, · · · , k − 1. Let

αM := max {ρM,p (Aj) : j = 0, · · · , k − 1} .

(i) If ρM,p+1 (F ) > αM , then all solutions f of (2.1) satisfy ρM,p+1 (f) = ρM,p+1 (F ) .

(ii) If ρM,p+1 (F ) < αM , then all solutions f of (2.1) satisfy ρp (A0) ≤ ρM,p+1 (f) ≤

αM , with at most one exeption f0 satisfying ρM,p+1 (f0) < ρp (A0) .

(iii) If ρM,p+1 (F ) < ρp (A0) , then all solutions f of (2.1) satisfy ρp (A0) ≤

λp+1 (f) = λp+1 (f) = ρM,p+1 (f) ≤ αM , with at most one exception f0 satisfy-

ing ρM,p+1 (f0) < ρp (A0) .

3. Proof of Theorems

Proof of Theorem 1.1. For the proof, we use the principle of mathematical

induction. Since B (z) 6≡ 0 and F (z) 6≡ 0, then by using Lemma 2.3 we have

λp (f) = λp (f) = ρp (f) =∞

and

λp+1 (f) = λp+1 (f) = ρp+1(f) = ρ.
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Dividing both sides of (1.2) by B, we obtain

(3.1)
1

B
f ′′ +

A

B
f ′ + f =

F

B
.

Differentiating both sides of equation (3.1) , we have

(3.2)
1

B
f (3) +

((
1

B

)′
+
A

B

)
f ′′ +

((
A

B

)′
+ 1

)
f ′ =

(
F

B

)′
.

Multiplying now (3.2) by B, we get

(3.3) f (3) +A1f
′′ +B1f

′ = F1,

where

A1 = A− B′

B
, B1 = A′ −AB

′

B
+B

and

F1 = F ′ − F B
′

B
.

Since B1 6≡ 0 and F1 6≡ 0 are meromorphic functions with finite iterated p-order,

then by using Lemma 2.3 we obtain

λp (f ′) = λp (f ′) = ρp (f) =∞

and

λp+1 (f ′) = λp+1 (f ′) = ρp+1(f) = ρ.

Dividing now both sides of (3.3) by B1, we obtain

(3.4)
1

B1
f (3) +

A1

B1
f ′′ + f ′ =

F1

B1
.

Differentiating both sides of equation (3.4) and multplying by B1, we get

(3.5) f (4) +A2f
(3) +B2f

′′ = F2,

where A2, B2 6≡ 0 and F2 6≡ 0 are meromorphic functions defined in (1.3) − (1.5) .

By using Lemma 2.3 we obtain

λp (f ′′) = λp (f ′′) = ρp (f) =∞

and

λp+1 (f ′′) = λp+1 (f ′′) = ρp+1 (f) = ρ.
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Suppose now that

(3.6)

λp

(
f (k)

)
= λp

(
f (k)

)
= ρp (f) =∞, λp+1

(
f (k)

)
= λp+1

(
f (k)

)
= ρp+1 (f) = ρ

for all k = 0, 1, 2, · · · , j − 1, and we prove that (3.6) is true for k = j. By the same

procedure as before, we can obtain

f (j+2) +Ajf
(j+1) +Bjf

(j) = Fj ,

where Aj , Bj 6≡ 0 and Fj 6≡ 0 are meromorphic functions defined in (1.3) − (1.5) .

By using Lemma 2.3 we obtain

λp

(
f (j)

)
= λp

(
f (j)

)
= ρp (f) =∞

and

λp+1

(
f (j)

)
= λp+1

(
f (j)

)
= ρp+1 (f) = ρ.

The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. By a similar reasoning as Theorem 1.1 and by using

Lemma 2.2, we obtain

λp

(
f (j)

)
= λp

(
f (j)

)
= ρp (f) (j = 0, 1, 2, · · · ) .

Proof of Theorem 1.3. By Lemma 2.4 (iii), all nontrivial solutions of (1.2) satisfy

ρp (B) ≤ λp+1 (f) = λp+1 (f) = ρp+1 (f) ≤ ρM,p (B)

with at most one exceptional solution f0 such that ρp (B) > ρp+1 (f0). By using

(1.3) and Lemma 2.1 we have

m (r,Aj) ≤ m (r,Aj−1) +O

(
expp−2

(
1

1− r

)β+ε
)

(β = ρp (Bj−1))

outside a set E1 ⊂ [0, 1) with
∫
E1

dr
1−r < ∞, for all j = 1, 2, 3, · · · , which we can

write as

(3.7) m (r,Aj) ≤ m (r,A) +O

(
expp−2

(
1

1− r

)β+ε
)

(j = 1, 2, 3, · · · ) .

On the other hand, we have from (1.4)
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Bj = Aj−1

(
A′j−1

Aj−1
−
B′j−1

Bj−1

)
+Bj−1

= Aj−1

(
A′j−1

Aj−1
−
B′j−1

Bj−1

)
+Aj−2

(
A′j−2

Aj−2
−
B′j−2

Bj−2

)
+Bj−2

(3.8) =

j−1∑
k=0

Ak

(
A′k
Ak
− B′k
Bk

)
+B.

Now we prove that Bj 6≡ 0 for all j = 1, 2, 3, · · · . For that we suppose there exists

j ∈ N such that Bj = 0. By (3.7) and (3.8) we have

T (r,B) = m (r,B) ≤
j−1∑
k=0

m (r,Ak) +O

(
expp−2

(
1

1− r

)β+ε
)

≤ jm (r,A) +O

(
expp−2

(
1

1− r

)β+ε
)

(3.9) = jT (r,A) +O

(
expp−2

(
1

1− r

)β+ε
)

which implies the contradiction ρp (B) ≤ ρp (A) .HenceBj 6≡ 0 for all j = 1, 2, 3, · · · .

Suppose now there exists j ∈ N such that Fj = 0. Then, from (1.5)

F ′j−1 (z)− Fj−1 (z)
B′j−1 (z)

Bj−1 (z)
= 0

which implies

(3.10) Fj−1 (z) = cBj−1 (z) ,

where c ∈ C∗. By (3.8) and (3.10) we have

(3.11)
1

c
Fj−1 =

j−2∑
k=0

Ak

(
A′k
Ak
− B′k
Bk

)
+B.

On the other hand, we have from (1.5)

(3.12) m (r, Fj) ≤ m (r, F ) +O

(
expp−2

(
1

1− r

)β+ε
)

(j = 1, 2, 3, · · · ) .
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By (3.11) , (3.12) and Lemma 2.1, we have

T (r,B) = m (r,B) ≤
j−2∑
k=0

m (r,Ak) +m (r, Fj−1) +O

(
expp−2

(
1

1− r

)β+ε
)

≤ (j − 1)m (r,A) +m (r, F ) +O

(
expp−2

(
1

1− r

)β+ε
)

= (j − 1)T (r,A) + T (r, F ) +O

(
expp−2

(
1

1− r

)β+ε
)

which implies the contradiction ρp (B) ≤ max {ρp (A) , ρp (F )} . Since Bj 6≡ 0, Fj 6≡

0 (j = 1, 2, 3, · · · ) , then by applying Theorem 1.1 and Lemma 2.4 (iii) we have

ρp (B) ≤ λp+1

(
f (j)

)
= λp+1

(
f (j)

)
= ρp+1 (f) ≤ ρM,p (B) (j = 0, 1, 2, · · · )

with at most one exceptional solution f0 such that ρp (B) > ρp+1 (f0) .

4. Proof of Theorem 1.4

Using the same reasoning as Theorem 1.1, we obtain Theorem 1.4.
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