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Abstract. This article’s objective is to progress the field of generalized fuzzy topological spaces, particularly generalized

fuzzy T0 spaces. Various types of these spaces are introduced and examined. We investigate their hereditary, productive,

and projective properties, and demonstrate that these properties are preserved under bijective generalized fuzzy

continuous generalized fuzzy open mappings. Additionally, we explore these concepts in the context of initial and final

generalized fuzzy topological spaces.

1. Introduction

In 1965, Zadeh [24] presented The idea of fuzzy sets, which have subsequently demonstrated

valuable in addressing a variety of real-world physical problems (see, for example, [4-5], [13], [25]).

The concept of fuzzy sets has provided a natural foundation for the development of a new branch

of mathematics known as fuzzy topology. The field of fuzzy topological spaces has emerged

as a vibrant field of mathematical research (see, for example, [7], [9], [12], [15-17], [21-23], [26]).

The idea of a fuzzy topological space was initially proposed by Chang [9]. Subsequently, many

mathematicians have contributed to the advancement of fuzzy topological spaces. For instance,

A. Császár [6] presented the notion of generalized topological spaces, and Chetty [10] extended

this to include generalized fuzzy topological spaces. Later, several studies (see, for example, [2-3],

[8], [10-11], [14], [20]) further developed and explored the concept of generalized fuzzy topological

spaces. Separation axioms are a key component of generalized fuzzy topological spaces, with the

generalized fuzzy T0 type being one such axiom that has already been introduced in the literature.
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Developing the study of generalized fuzzy topological spaces is The aim of this work, with

a particular focus on generalized fuzzy T0 topological spaces. In this work, we introduce new

concepts related to generalized fuzzy T0 spaces and explore the relationships between them.

The format of the paper is as follows: A few preliminary results are shown in Section 2, and gen-

eralized fuzzy T0 spaces are introduced and discussed in Section 3, along with the relationships

between these concepts. In Section 4, we introduce the idea of a subspace in generalized fuzzy

topological spaces and demonstrate that hereditary, projective, and additive properties apply to

these new concepts of generalized fuzzy T0 spaces. Section 5 explores how our concepts of gener-

alized fuzzy T0 spaces are maintained under bijective generalized fuzzy continuous generalized

fuzzy open mappings. In Section 6, we discuss and examine a generalized lower semi-continuous

function, along with initial and final generalized fuzzy topological spaces.

2. Preliminaries

This section provides essential concepts needed for the subsequent discussions. In this work,

the closed unit interval [0, 1] is denoted by I, while non-empty sets are represented by X and Y.

Definition 2.1. [24] A fuzzy set in X is a function from X to I. 0X and 1X represent the fuzzy sets defined
by 0X(x) = 0, and 1X(x) = 1, ∀x ∈ X. U, V, W etc denotes the fuzzy sets on X. IX represents the collection
of all fuzzy sets on X.

Definition 2.2. [16] The complement of U, represented as Uc, is specified by Uc(x) = 1X(x) −U(x) =

1−U(x), for every x ∈ X.

Definition 2.3. [16] Given an indexed set J and a group of fuzzy sets {Hk | k ∈ J} in X, the union and
intersection of these sets are defined, respectively, by:
(
⋃

k∈J Hk)(x) =
∨
{Hk(x) : k ∈ J}, ∀x ∈ X

(
⋂

k∈J Hk)(x) =
∧
{Hk(x) : k ∈ J}, ∀x ∈ X.

Definition 2.4. [16] A fuzzy singleton in X is a fuzzy set that is 0 for every element except one, where it
takes a value of α (with 0 < α ≤ 1). It is represented by xα, where x is its support. If α = 1, it is called a
crisp fuzzy singleton.
The collection of all fuzzy singletons of X will be referred to as FS(X). We say that two fuzzy singletons
xα, yβ are distinct if x , y or α , β.

Definition 2.5. [16] The fuzzy singleton xα is considered to be within U, referred to as xα ∈ U, if α ≤ U(x).

Definition 2.6. [9] for a mapping f : X −→ Y and U ∈ IX, the image f (U) ∈ IY defined as follows:

f (U)(y) =


∨

U(x) if x ∈ f−1(y) , φ, x ∈ X

0 , otherwise

Definition 2.7. [9] For a mapping f : X −→ Y and V ⊆ Y, the preimage f−1(V) ⊆ X defined by
f−1(V)(x) = V( f (x)), for every x ∈ X.
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Definition 2.8. [9] (X, τ) is referred to as a fuzzy topological space if τ ⊆ IX satisfying:
1. 0X, 1X ∈ τ,
2. if H, W ∈ τ, then H ∩W ∈ τ,
3. if Hk ∈ τ for k ∈ J, then

⋃
k∈J HK ∈ τ.

Theorem 2.1. [9] Consider a mapping f : X→ Y and let U ⊆ IX, W ⊆ IY. Then:
1. ( f (U))c

⊆ f (Uc), f−1(Wc) = ( f−1(W))c;
2. U ⊆ f−1( f (U)), f ( f−1(W)) ⊆W;
3. If f is injective, then f−1( f (U)) = U;
4. If f is surjective, then f ( f−1(W)) = W;
5. If f is both injective and surjective, then ( f (U))c = f (Uc).

Definition 2.9. [16] Two fuzzy sets H and W are considered quasi-coincident (written as HqW) if ∃ x ∈ X
for which H(x) + W(x) > 1. They are not quasi-coincident (denoted H q̄ W) if H(x) + W(x) ≤ 1 for every
x ∈ X. Additionally, a fuzzy singleton xα is quasi-coincident with H if α+ H(x) > 1.

Theorem 2.2. [23] Let f : X→ Y be a function and let xα represent a fuzzy singleton in X.
(1) If V ⊆ Y and f (xα)qV, then xαq f−1(V);
(2) If U ⊆ X and xαqU, then f (xα)q f (U).

Proposition 2.1. [16] Suppose U, V ∈ IX and xα be a fuzzy singleton. Then U ⊆ V iff Uq̄Vc; particulary,
xα ∈ U if and only if xαq̄Uc.

Proposition 2.2. [7] For any fuzzy sets U, V, W and fuzzy singletons xα, yβ, the following hold:
1. Uq̄V ⇔ Vq̄U;
2. U ∩V = 0X ⇒ Uq̄V;
3. Uq̄Uc;
4. Uq̄V, W ⊆ V ⇒ Uq̄W;
5. U ⊆ V ⇔ (xαqU⇒ xαqV);
6. xαq(

⋃
k∈J Uk)⇔ xαqUk, for some k ∈ J;

7. xαq(U ∩V)⇔ (xαqU and xαqV);
8. xαq̄yβ ⇔ x , y.

Definition 2.10. [10] A subcollection ‘g of IX is referred to as a generalized fuzzy topology (abbreviated as
GFT) if 0X ∈ g and g is closed under arbitrary unions of its members.
A nonempty set X paired with a GFT g, denoted as (X, g), is referred to as a generalized fuzzy topological
space (abbreviated as GFTS).
The elements of g are generalized fuzzy open sets (abbreviated as GFO(X)), while their complements are
known as generalized fuzzy closed sets (abbreviated as GFC(X)).

Definition 2.11. [19] In a GFTS (X, g), a fuzzy set U is considered a g-neighborhood of a fuzzy singleton
xα if there is w ∈ g s.t xα ∈ w ⊆ U. The collection of every such g- neighborhoods of xα is represented by
Ng(xα).
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Definition 2.12. [14] In a GFTS (X, g), a fuzzy set U is considered a g-Q-neighborhood of xα if ∃W ∈ g
s.t xα q W ⊆ U. The set of all such g-Q-neighborhoods of xα is represented by NQ

g (xα).

Definition 2.13. [14] A generalized fuzzy open set U is an open g-Q-neighborhood of xα if xα q U. The set
of all such open g-Q-neighborhoods of xα is represented by NQ

og(xα).

Definition 2.14. [14] Let (X, g) be a GFTS. For any fuzzy set H ∈ IX, the g-closure of H is the set cg(H)

defined by cg(H) =
⋂
{W : H ⊆W, W ∈ GFC(X)}.

Similarly, the g-interior of U is the set ig(U) defined by ig(U) =
⋃
{W : W ⊆ U, W ∈ g}

Proposition 2.3. [14] In a GFTS (X, g), the following properties hold:
(1) ∀H, W ∈ IX; H ⊆W⇒ ig(H) ⊆ ig(W) and cg(H) ⊆ cg(W);
(2) ∀H ∈ IX, ig(H) ∈ GFO(X) with ig(H) ⊆ H and cg(H) ∈ GFC(X) with H ⊆ cg(H);
(3) ∀U ∈ IX, U ∈ GFO(X) iff U = ig(U) and U ∈ GFC(X) iff U = cg(U);
(4) ∀U ∈ IX, ig(ig(U)) = ig(U) and cg(cg(U)) = cg(U);
(5) ∀U ∈ IX, 1− cg(U) = ig(1−U).

Proposition 2.4. [14] Let (X, g) be a GFTS on X, U ∈ IX, and xα be a fuzzy singleton. Then xα ∈ cg(U)

iff every open g-Q-neighborhood of xα is quasi-coincident with U.

Definition 2.15. [14] Consider (X, g) and (Y, ǵ) as two GFTS’s. A mapping f : (X, g) −→ (Y, ǵ) is
defined as follows:
(1) generalized fuzzy continous if ∀U ∈ ǵ, f−1(U) ∈ g ;
(2) generalized fuzzy open if ∀U ∈ g, f (U) ∈ ǵ.

Theorem 2.3. [1] A bijective mapping between sets X and Y maintains the value of a fuzzy singleton. Also,
the preimage of any fuzzy singleton under such a mapping maintains its original value.

3. Generalized fuzzy T0 spaces

This section presents several concepts related to generalized fuzzy T0 spaces and examines the

connections between them.

Proposition 3.1. Given a GFTS (X, g) and two fuzzy sets U and V. Subsequently UqV iff Uq cg(V),
when U ∈ g in X.

Proof. Necessity. Let U ∈ g such that Uq̄V. Then V ⊆ Uc. Since Uc
∈ GFC(X), we have cg(V) ⊆

cg(Uc) = Uc. Hence Uq̄ cg(V).

Sufficiency. Suppose that U q̄ cg(V). Then cg(V) ⊆ Uc. Since V ⊆ cg(V), we have V ⊆ Uc. Hence

Uq̄V. �

Corollary 3.1. Given a GFTS (X, g) and two fuzzy sets U and V. Subsequently Uq̄V iff Uq̄ cg(V), when
U ∈ g in X.

Corollary 3.2. Given a GFTS (X, g) and two fuzzy sets U and V and let yβ be fuzzy singleton. Then Uq̄V
if and only if yβq̄ cg(U), when yβ ∈ V ∈ g.
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Now, we introduce our definitions of a generalized fuzzy T0 topological space.

Definition 3.1. A GFTS (X, g) is referred to as a generalized fuzzy T0 space (gFT0 space, for short)
provided that the following conditions are met for each pair of different fuzzy singletons xα and yβ:
1. When x , y, either ∃H ∈ Ng(xα) s.t yβq̄H or ∃W ∈ Ng(yβ) s.t xαq̄W;
2. When x = y and α < β(say), ∃V ∈ NQ

g (yβ) such that xαq̄V.

Example 3.1. Consider X = {x, y, z} and let g = {0X, H} where H = {(x, 1)}. We have α ≤ H(x) for any
α ∈ (0, 1], implies xα ∈ H and β+ H(y) ≤ 1 for any β ∈ (0, 1] implies yβq̄H. Hence (X, g) is gFT0 space.

The following theorem gives some equvalents properties of gFT0 space.

Theorem 3.1. Consider (X, g) as a GFTS. The statements listed below are equivalent:
1. (X, g) is a gFT0 space;
2. For every pair of distinct crisp fuzzy singletons xα, yβ ∈ IX, either xα < cg(yβ) or yβ < cg(xα);
3. For every pair of distinct fuzzy singletons xα, yβ ∈ IX such that xαq̄yβ, either xαq̄cg(yβ) or yβq̄cg(xα);
4. For every pair of distinct fuzzy singletons xα, yβ ∈ IX, ∃H, W ∈ g s.t xα ∈ H ⊆ (yβ)c or yβ ∈W ⊆ (xα)c.

Proof. 1⇒ 2 Assume that (X, g) is gFT0 and x1, y1 be two distinct crisp fuzzy singletons in X.

When x , y, either ∃H ∈ Ng(x1) s.t yβq̄H or ∃W ∈ Ng(y1) s.t xαq̄W. Suppose , without loss of

generality, ∃H ∈ Ng(x1) s.t yβq̄H. Therefore, H ∈ NQ
g (xα) and yβq̄H. Hence xα < cg(yβ).

2⇒ 3 Let xα, yβ be two distinct crisp fuzzy singletons in X. Then either xα < cg(yβ) or yβ < cg(xα).
Suppose, without loss of generality, xα < cg(yβ). Then from Proposition 2.1, xαq(cg(yβ))c and

(cg(yβ))c
∈ g. Say (cg(yβ))c = U. Hence xαqU ⊆ (yβ)c. Thus xα ∈ U and U ∈ g. Also, we have

yβq̄U and xα ∈ U ∈ g. Hence from Corollary 3.2, xαq̄cg(yβ).
3⇒ 4 Let xα, yβ be two distinct fuzzy singletons such that xαq̄yβ. Suppose xαq̄cg(yβ). Then from

Proposition 2.1, xα ∈ (cg(yβ))c and (cg(yβ))c
∈ g. Also, we have (cg(yβ))cq̄yβ. Say (cg(yβ))c = U,

then Uq̄yβ implies U ⊆ (yβ)c. Hence xα ∈ U ⊆ (yβ)c.

4 ⇒ 1 Let xα, yβ be two distinct fuzzy singletons in X, then ∃H, W ∈ g s.t xα ∈ H ⊆ (yβ)c or

yβ ∈W ⊆ (xα)c. Suppose ∃H ∈ g s.t xα ∈ H ⊆ (yβ)c. From Proposition 2.1, H ⊆ (yβ)c implies Hq̄yβ.
Hence ∃H ∈ Ng(xα) s.t yβq̄H. Therefore (X, g) is a gFT0 space. �

Consider the following property P. We state that a GFTS (X, g) has property P if ∀x ∈ X and

ρ ∈ [0, 1], ∃ U ∈ g with U(x) = ρ.

Definition 3.2. A GFTS (X, g) is called
1. gFT(i)

0 if for any pair xα, yβ ∈ FS(X) where x , y, ∃H ∈ g s.t either xα ∈ H and yβ < H or yβ ∈ H and
xα < H;
2. gFT(ii)

0 if (X, g) has property P and for any r, δ ∈ [0, 1) and x, y ∈ X , x , y, there is W ∈ g s.t either
W(x) = r and W(y) > δ, or W(x) > r and W(y) = δ;
3. gFT(iii)

0 if ∀ xα, yβ ∈ FS(X) with x , y, ∃H ∈ g s.t xαqH and yβ ∩H = 0X or ∃W ∈ g s.t yβqW and
xα ∩W = 0X;
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4.gFT(iv)
0 if ∀ xα, yβ ∈ FS(X) with x , y, ∃H ∈ g s.t either xαqH ⊆ (yβ)c or yβqH ⊆ (xα)c.

The relations between the concepts given in Definition 3.2 are given in the subsequent theorem.

Theorem 3.2. As for a GFTS (X, g) the subsequent implications are true:
1. gFT(i)

0 ⇒ gFT(ii)
0 ;

2. gFT(i)
0 ⇒ gFT(iii)

0 ;

3. gFT(i)
0 ⇒ gFT0;

4. gFT(iii)
0 ⇒ gFT(iv)

0 ;

5. gFT0⇒ gFT(iv)
0 .

But, in general, the converses are not true.

Proof. 1. Let (X, g) be gFT(i)
0 and xα, yβ ∈ FS(X) s.t x , y and xα(x) = yβ(y) = 1− 1

n , n ∈ N. Then ∃

Hn ∈ g s.t, either xα ∈ Hn and yβ < Hn or yβ ∈ Hn and xα < Hn. Assume, without loss of generality,

xα ∈ Hn and yβ < Hn then Hn(x) > 1 − 1
n . Define H =

⋃
n Hn then H ∈ g and H(x) = 1, H(y) = 0.

So, H(x) = ρ and H(y) = ρ, ρ ∈ [0, 1]. Hence (X, g) satisfy property P. Further choose any

r, δ ∈ [0, 1) and x, y ∈ X where x , y. Since ∃ H ∈ g s.t either H(x) = 1 and H(y) = 0 or H(y) = 1

and H(x) = 0, we consider W(x) = max{H(x), r}. Then W(x) = 1, W(y) = r or W(y) = 1, W(x) =

r, implying the existance of W ∈ GFO(X) satisfying W(x) > δ, W(y) = r or W(y) > δ, W(x) = r.

Hence (X, g) is a gFT(ii)
0 space.

2. Let (X, g) be gFT(i)
0 and xα, yβ ∈ FS(X) s.t x , y and xα(x) = yβ(y) = 1 − 1

n , n ∈ N. Afterward

∃ Gn ∈ g s.t, either xα ∈ Gn and yβ < Gn or yβ ∈ Gn and xα < Gn. Assume ,without loss of

generality, xα ∈ Gn and yβ < Gn then Gn(x) > 1 − 1
n . Define G =

⋃
n Gn then G ∈ g and G(x) = 1,

G(y) = 0. G(x) = 1 implies G(x) + α > 1 for any α ∈ (0, 1]. Therefore xαqG and H(y) = 0 indicates

yβ ∩G = 0X. So ∃ G ∈ g s.t xαqG and yβ ∩G = 0X. Therefore, (X, g) is gFT(iii)
0 .

3. Suppose (X, g) be a gFT(i)
0 space and xα, yβ ∈ FS(X) s.t x , y. Therefore, ∃ G ∈ g s.t either

G(x) = 1 and G(y) = 0 or G(y) = 1 and G(x) = 0. Let takes G(x) = 1 and G(y) = 0. Now

G(x) = 1 implies α ≤ G(x), for any α ∈ (0, 1]. Therefore xα ∈ G for every G ∈ g. G(y) = 0 implies

β+ G(y) ≤ 1 for any β ∈ (0, 1]. Therefore yβq̄G. So, from Corollary 3.2, xαq̄cg(yβ). Hence from

Theorem 3.1, (X, g) is a gFT0 space.

4. Assume that (X, g) is gFT(iii)
0 and xα, yβ be any two distinct fuzzy singletons, then ∃ H ∈ g s.t

xαq H and yβ ∩H = 0X. yβ ∩H = 0X implies H(y) = 0 and so H(y) + β ≤ 1 for any β ∈ (0, 1].

Therefore H ⊆ (yβ)c. Hence xαq H ⊆ (yβ)c. Therefore (X, g) is gFT(iv)
0 .

5. Suppose (X, g) be a gFT0 space, xα, yβ ∈ FS(X) where x , y and xα(x) = yβ(y) = 1 − 1
n , n ∈ N.

Then ∃ Gn ∈ g s.t, either xα ∈ Gn and yβq̄Gn or yβ ∈ Gn and xαq̄Gn. Assume xα ∈ Gn and yβq̄Gn.

Then α ≤ Gn(x) implies 1 − 1
n < Gn(x). Define G =

⋃
n Gn then G ∈ g and G(x) = 1. Afterward

G(x) + α > 1 for any α ∈ (0, 1] and Therefore xαqG and G ⊆ yc
β. Hence (X, g) is gFT(iv)

0 . �

The opposite direction of the above implications does not hold, as demonstrated through the

subsequent examples.
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Example 3.2. . Consider X = {x, y} and let g = {0X, U1, U2} where U1(x) = 1 − ε
2 , U1(y) = 1 and

U2(x) = 1, U2(y) = 1− ε
2 , such that ε ∈ (0, 1]. Then for any r, δ ∈ [0, 1), we have (X, g) is gFT(ii)

0 space.

But for any α, β ∈ (0, 1] there exists U1 ∈ g such that xα ∈ U1 and yβ ∈ U1. Hence (X, g) is not gFT(i)
0 .

Example 3.3. Consider X = {x, y} and g = {0X, G} where G(x) = 1 − ε and G(y) = 0, such that
ε = α

2 for α ∈ (0, 1]. Then G(x) = 1 − α
2 ⇒ H(x) + α

2 = 1 ⇒ G(x) + α > 1 ⇒ xα q G and
G(y) = 0⇒ yβ ∩G = 0X. Therefore, (X, g) is gFT(iii)

0 space. But for α = 1 we get xα < G and G(y) = 0

implies yβ < G for any β ∈ (0, 1]. Hence (X, g) is not gFT(i)
0 space.

Example 3.4. Consider X = {x, y, z} and g = {0X, W1, W2, W3, W4} where W1 = {(x, 1)}, W2 =

{(y, 1
3 )}, W3 = {(x, 1), (y, 1

3 )} and W4 = {(x, 1), (y, 1
3 ), (z, 1)}. For any α, β ∈ (0, 1], we get xαq̄cg(yβ). So

(X, g) is a gFT0 space but not gFT(i)
0 space as there exists W2 ∈ g such that xα <W2 and yβ <W2.

Example 3.5. Consider X = {x, y} and g = {0X, W} where W(x) = 1 and W(y) = 0.1. For 0 < α ≤ 1,
0 < β < 0.9, we obtain W(x) + α > 1 ⇒ xαq W and W(y) + β ≤ 1 ⇒ yβq̄W. Therefore ∃ open g-Q-

neighborhood W of xα that is not not quasi-coincident with yβ. This indicates that (X, g) is gFT(iv)
0 space.

However, since W(y) , 0⇒ yβ ∩W , 0X. it is evident that (X, g) is not a gFT(iii)
0 space.

Example 3.6. Take the GFTS (X, g) to be described in Example 3.3, (X, g) is gFT(iv)
0 but not gFT0 as for

α = 1, β ∈ (0, 1] ∃ H ∈ g s.t yβq̄H but H < Ngo(xα).

Theorem 3.3. For a GFTS (X, g), The statements listed below are equivalent:
1. (X, g) is a gFT(i)

0 space;
2. ∀ x, y ∈ X where x , y, ∃W ∈ g s.t either W(x) = 1 and W(y) = 0 or W(y) = 1 and W(x) = 0;
3. for any pair xα, yβ ∈ FS(X) where x , y, ∃W ∈ g s.t xα ∈ W and yβ ∩W = 0X or yβ ∈ W and
xα ∩W = 0X.

Proof. 1⇔ 2 Necessity. Consider (X, g) as a gFT(i)
0 space and let xα, yβ ∈ FS(X) s.t, x , y and xα(x)

= yβ(y) = 1 − 1
n , n ∈ N. Then ∃ Wn ∈ g s.t, either xα ∈ Wn and yβ < Wn or yβ ∈ Wn and xα < Wn.

Assume ,without loss of generality, xα ∈Wn and yβ <Wn. Then Wn(x) > 1− 1
n . Define W =

⋃
n Wn

Subsequently W ∈ g and W(x) = 1, W(y) = 0.

Sufficiency. Consider xα, yβ ∈ FS(X) s.t, x , y and values α, β ∈ (0, 1], Subsequently there is W ∈ g
such that, W(x) = 1, W(y) = 0. Since W(x) = 1, then α ≤ W(x) for any α ∈ (0, 1], so xα ∈ W, also

when W(y) = 0 then β � W(y) for any β ∈ (0, 1], so yβ <W. Hence (X, g) is gFT(i)
0 .

1⇔ 3 Necessity. Consider (X, g) as a gFT(i)
0 space and xα, yβ ∈ FS(X) s.t x , y. Then ∃W ∈ g s.t,

W(x) = 1 and W(y) = 0 or W(y) = 1 and W(x) = 0. Now W(x) = 1 implies α ≤ W(x) for any

α ∈ (0, 1]. Hence xα ∈W. W(y) = 0 implies yβ ∩W = 0X.

Sufficiency. Let xα, yβ ∈ FS(X) s.t, xα(x) = yβ(y) = 1− 1
2n , where n is a natural number. ∃Wn ∈ g

s.t, either xα ∈Wn and yβ ∩Wn = 0X or yβ ∈Wn and xα ∩Wn = 0X. Assume that there is an infinite

subsets of N such that xα ∈Wn and yβ∩Wn = 0X for all n ∈ K. Now if xα ∈Wn, then Wn(x) > 1− 1
2n .

Additionally, if yβ ∩Wn = 0X, then Wn(y) = 0 for every n ∈ K. Define W =
⋃

n∈K Wn. Therefore,

W ∈ g, W(x) = 1 and W(y) =
⋃

n∈K Wn(y) = 0. Hence, (X, g) is a gFT(i)
0 space. �
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Theorem 3.4. A GFTS (X, g) is gFT(iv)
0 iff ∀ xα, yβ ∈ FS(X) with x , y, cg(xα) , cg(yβ).

Proof. Necessity. Suppose (X, g) is a gFT(iv)
0 space. Then ∀ xα, yβ ∈ FS(X) where x , y, ∃ U ∈ g

s.t xαqU ⊆ (yβ)c or yβqU ⊆ (xα)c. If xαqU ⊆ (yβ)c, then xα * Uc and U ⊆ (yβ)c, that is, xα * Uc

and yβ ⊆ Uc. Since Uc
∈ GFC(X) and cg(yβ) ∈ GFC(X) (the smallest one) containing yβ, then

cg(yβ) ⊆ Uc. Since xα < Uc and xα ∈ cg(xα), then cg(xα) , cg(yβ).
Sufficiency. suppose xα, yβ ∈ FS(X)(x , y) and cg(xα) , cg(yβ). Let zλ ∈ FS(X) such that

zλ ∈ cg(xα) and zλ < cg(yβ). We claim xα < cg(yβ) (Indeed, if xα ∈ cg(yβ), cg(xα) ⊆ cg(yβ). This

contradicts the fact that zλ < cg(yβ)). Hence xα < cg(yβ), that is, xαq(cg(yβ))c and U = (cg(yβ))c
∈

GFO(X), then xαqU ⊆ (yβ)c. �

4. Generalized fuzzy subspace, the product and the sum generalized fuzzy topological spaces

In this part, we examine the hereditary property and provide the idea of a subspace in general-

ized fuzzy topology.Additionally, we examine the additive, productive, and projective character-

istics of generalized fuzzy T0 spaces.

Lemma 4.1. Consider (X, g) as a GFTS and let B ⊆ X. Subsequently gB = {H ∩ B : H ∈ g} is a GFT on
B.

Proof. Since g is GFT , φ ∈ g. Hence φ∩ B = φ ∈ gB.

Now let {Hk : k ∈ J} be a subcollection of gB. By definition of gB, for each k ∈ J, ∃ Dk ∈ g s.t

Hk = Dk ∩ B. Then
⋃

k∈J Hk =
⋃

k∈J(Dk ∩ B) = (
⋃

k∈J Dk) ∩ B. But
⋃

k∈J Dk ∈ g. Hence
⋃

k∈J Hk ∈ gB.

So, gB is GFT on B. �

Definition 4.1. Consider (X, g) as a GFTS and B ⊆ X. The collection gB = {U ∩ B : U ∈ g} is referred to
as the relative generalized fuzzy topology on B. The space (B, gB) is known as a generalized fuzzy subspace
of (X, g).
Members of gB are known as generalized fuzzy open sets on B (GFO(B), for short) and their complements
are referred to as generalized fuzzy closed sets on B (GFC(B), for short).

Definition 4.2. A property P of a GFTS is considered hereditary if every subspace of a GFTS that possesses
property P, also retains property P.

Now, we shall show that our notions of a gFT0 spaces satisfies the hereditary property.

Theorem 4.1. Consider (X, g) is a GFTS and B ⊆ X, then
1. (X, g) is gFT0⇒ (B, gB) is gFT0;
2. (X, g) is gFT(i)

0 ⇒ (B, gB) is gFT(i)
0 ;

3. (X, g) is gFT(ii)
0 ⇒ (B, gB) is gFT(ii)

0 ;

4. (X, g) is gFT(iii)
0 ⇒ (B, gB) is gFT(iii)

0 ;

5. (X, g) is gFT(iv)
0 ⇒ (B, gB) is gFT(iv)

0 .



Int. J. Anal. Appl. (2025), 23:49 9

Proof. 1. Suppose (X, g) is gFT0 and xα, yβ ∈ FS(B). Since B ⊆ X, then xα, yβ ∈ FS(X). Furthermore,

since (X, g) is a gFT0 space, it follows that

When x , y, either ∃ G ∈ Ng(xα) s.t, yβq̄G or ∃ D ∈ Ng(yβ) s.t, xαq̄D. For a subset B of X, both

G ∩ B, D ∩ B ∈ gB. xα ∈ H ⇒ α ≤ G(x), x ∈ X ⇒ α ≤ (G ∩ B)(x), x ∈ B ⊆ X ⇒ xα ∈ G ∩ B. Also,

yβq̄G ⇒ β+ G(y) ≤ 1, y ∈ X ⇒ β+ (G ∩ B)(y) ≤ 1, y ∈ B ⊆ X ⇒ yβq̄(G ∩ B). Consequently,

G∩ B ∈ NgB(xα) and yβq̄(G∩ B).
When x = y and α < β, ∃ D ∈ NQ

g (yβ) s.t, xαq̄D. D ∈ NQ
g (yβ) implies ∃ G ∈ g s.t, yβqG ⊆ D. For

B ⊆ X, G∩ B ∈ gB. yβqG⇒ β+ G(y) > 1, y ∈ X⇒ β+ (G∩ B)(y) > 1, y ∈ B ⊆ X⇒ yβq(G∩ B) and

G∩ B ⊆ D. Then we have D ∈ NQ
gB
(yβ). xαq̄D⇒ α+ D(x) ≤ 1, x ∈ X⇒ α+ (D∩ B)(x) ≤ 1, x ∈ B ⊆

X. So xαq̄(D∩ B). Hence (B, gB) is also gFT0. Proof of (2) is similar to proof of (1).

3. Suppose (X, g) is gFT(ii)
0 and x, y ∈ B with x , y. Since B ⊆ X, then x, y ∈ X. Also, (X, g)

is gFT(ii)
0 , then for any r, δ ∈ [0, 1), ∃ an G ∈ g s.t, G(x) = r and G(y) > δ or G(x) > r and

G(y) = δ. For B ⊆ X, it follows that G ∩ B ∈ gB. G(x) = r ⇒ (G ∩ B)(x) = r, x ∈ B ⊆ X and

G(y) > δ⇒ (G∩ B)(y) > δ, y ∈ B ⊆ X. Hence (B, gB) is also gFT(ii)
0 .

4. Suppose (X, g) is gFT(iii)
0 and xα, yβ ∈ FS(B) with x , y. Since B ⊆ X, then xα, yβ ∈ FS(X).

Given that (X, g) is a gFT(iii)
0 , then either ∃ H ∈ g s.t, xαqH and yβ ∩H = 0X or ∃ W ∈ g s.t, yβqW

and xα ∩W = 0X. For B ⊆ X, it can be inferred that H ∩ B, W ∩ B ∈ gB. xαqH ⇒ H(x) + α > 1,

x ∈ X ⇒ (H ∩ B)(x) + α > 1, x ∈ B ⊆ X ⇒ xαq(H ∩ B) and yβ ∩ H = 0X ⇒ H(y) = 0 ⇒

(H ∩ B)(y) = 0, y ∈ B ⊆ X⇒ yβ ∩ (H ∩ B) = 0X. In a similar manner, it can be demonstrated that.

yβq(W ∩ B), xα ∩ (W ∩ B) = 0X. Hence (B, gB) is also gFT(iii)
0 . Proof of (5) is similar to proof of

(4). �

Definition 4.3. Consider { Xk, k ∈ J} be a collection of non empty sets. Define X =
∏

k∈J Xk as the product
of the Xk and let πk denote the projection map from X to Xk. Additionally, assume that Xk is a GFTS with
GFT gk. The GFT on X is then generated by using {π−1

k (bk) : bk ∈ gk, k ∈ J} as a subbasis, and this is
referred to as the product GFTS on X.

Definition 4.4. A property P of a GFTS is said to be productive, if, given a collection {(Xk, gk) : k ∈ J},
where each space has the property p, (

∏
Xk,
∏

gk) also possesses the property P.

Definition 4.5. A property P of a GFTS is said to be projective if (
∏

Xk,
∏

gk) has the property P implies
that each individual coordinate space (Xi, gi) also possesses the property P.

Definition 4.6. Consider (X, g) and (Y, ǵ) as two GFTS’s. A mapping f : (X, g) −→ (Y, ǵ) is referred to
as a generalized fuzzy homeomorphism if f is bijective and both f and its inverse f−1 are generalized fuzzy
continuous.

Now, we shall show that our notions of a gFT0 spaces satisfies the projective and the productive

properties

Theorem 4.2. Let {(Xk, gk), k ∈ J}, is a collection of GFTS’s and X =
∏

k∈J Xk and g be the product
generalized topology on X. Then, ∀ k ∈ J,
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1. (Xk, gk) is gFT0 iff (X, g) is gFT0;
2. (Xk, gk) is gFT(i)

0 iff (X, g) is gFT(i)
0 ;

3. (Xk, gk) is gFT(ii)
0 iff (X, g) is gFT(ii)

0 ;

4. (Xk, gk) is gFT(iii)
0 iff (X, g) is gFT(iii)

0 ;

5. (Xk, gk) is gFT(iv)
0 iff (X, g) is gFT(iv)

0 .

Proof. 1. Necessity. Assume ∀ k ∈ J, (Xk, gk) is gFT0. We need to prove that (X, g) is gFT0. Suppose

xα, yβ ∈ FS(X), there exist two possible scenarios (i) x , y, (ii) x = y and α < β, for instance.

Whenever x is not equal to y, then (xk)α, (yk)β ∈ FS(Xk) satisfy xk is not equal to yk for at least one

k ∈ J. Since (Xk, gk) is a gFT0 space, then either ∃Hk ∈ Ngk((xk)α) s.t, (yk)βq̄Hk or ∃ Vk ∈ Ngk((yk)β)

such that (xk)αq̄Vk. Additionally, πk(x) = xk and πk(y) = yk. Assume, without losing generality,

that ∃Hk ∈ Ngk((xk)α) s.t (yk)βq̄Hk.

Now, Hk ∈ Ngk((xk)α) ⇒ (xk)α ∈ Hk ⇒ α ≤ Hk(xk) ⇒ α ≤ Hk(πk(x)) ⇒ α ≤ (Hk ◦ πk)(x) ⇒
xα ∈ (Hk ◦ πk) ⇒ (Hk ◦ πk) ∈ Ng(xα) and (yk)βq̄Hk ⇒ Hk(yk) + β ≤ 1 ⇒ Hk(πk(y)) + β ≤ 1 ⇒

(Hk ◦πk)(y) + β ≤ 1⇒ yβq̄(Hk ◦πk).

When x = y and α < β,for instance, ∃Vk ∈ NQ
gk
((yk)β) such that (xk)αq̄Vk.

Now, Vk ∈ NQ
gk
((yk)β) implies that there exists Gk ∈ gk such that (yk)βqGk ⊆ Vk. (yk)βqGk ⇒

Gk(yk) + β > 1 ⇒ Gk(πk(y)) + β > 1 ⇒ (Gk ◦ πk)(y) + β > 1 ⇒ yβq(Gk ◦ πk) and Gk ⊆ Vk ⇒

(Gk ◦ πk) ⊆ (Vk ◦ πk). Therefore, yβq(Gk ◦ πk) ⊆ (Vk ◦ πk). Hence, (Vk ◦ πk) ∈ NQ
g (yβ). (xk)αq̄Vk ⇒

Vk(xk) + α ≤ 1⇒ Vk(πk(x)) + α ≤ 1⇒ (Vk ◦πk)(x) + α ≤ 1⇒ xαq̄(Vk ◦πk). Hence, (X, g) is gFT0.

Sufficiency. Let (X, g) be gFT0. We need to prove that (Xk, gk) f ork ∈ J is also gFT0. Choose a

constant element bk in Xk. Define Bk = {x ∈ X =
∏

k∈J Xk : x j = b j f orsome k , j}. Then Bk ⊆ X,

so (Bk, gBk) is a subspace of (X, g). Given that (X, g) is gFT0, it follows that (Bk, gBk) is also gFT0.

Furthermore, Bk is homeomorphic to Xk. Therefore, (Xk, gk) is a gFT0 space ∀ k ∈ J. Proof of (2) is

similar to (1).

3. Necessity. Assume ∀ k ∈ J, (Xk, gk) is gFT(ii)
0 . We need to demonstrate that (X, g) meets the

criteria for a gFT(ii)
0 space. Consider x and y in X with x is not equal to y. Then xk, yk ∈ Xk with

xk , yk for some k ∈ J. Since each (Xk, gk) is a gFT(ii)
0 space, then for any r, δ ∈ [0, 1), ∃ Hk ∈ gk s.t,

Hk(xk) = r and Hk(yk) > δ or Hk(xk) > r and Hk(yk) = δ. Note that πk(x) = xk and πk(y) = yk.

Suppose, without loss of generality, that ∃Hk ∈ gk such that Hk(xk) = r and Hk(yk) > δ.

Now, Hk(xk) = r ⇒ Hk(πk(x)) = r ⇒ (Hk ◦ πk)(x) = r and Hk(yk) > δ ⇒ Hk(πk(y)) > δ ⇒

(Hk ◦πk)(y) > δ. This means that (Hk ◦πk) ∈ g s.t, (Hk ◦πk)(x) = r and (Hk ◦πk)(y) > δ. Similarly,

we can show that (Ui ◦πi)(x) > r and (Ui ◦πi)(y) = δ. Hence (X, g) is gFT(ii)
0 space.

Sufficiency. Let (X, g) be gFT(ii)
0 . We need to show that (Xk, gk) is gFT(ii)

0 ∀k ∈ J. Consider a

constant element bk in Xk. Define Bk = {x ∈ X =
∏

k∈J Xk : x j = b j f orsome k , j}. Hence Bk ⊆ X,

and thus (Bk, gBk) is a subspace of (X, g). Since (X, g) is gFT(ii)
0 , it follows that (Bk, gBk) is gFT(ii)

0 .

At this point, we find Bk is homeomorphic to Xi. Hence (Xi, gi) is a gFT(ii)
0 space, ∀k ∈ J.

4. Necessity. Assume ∀ k ∈ J, (Xk, gk) is gFT(iii)
0 . We need to show that (X, g) is gFT(iii)

0 . Suppose
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xα, yβ ∈ FS(X) where x , y. Then, for some k ∈ J, (xk)α, (yk)β ∈ FS(Xk) with xk , yk. Since (Xk, gk)

is agFT(iii)
0 space, then either ∃ Hk ∈ gk s.t, (xk)αqHk and (yk)β ∩Hk = 0X or ∃Wk ∈ gk s.t, (yk)βqWk

and (xk)α ∩Wk = 0X. Note that πk(x) = xk and πk(y) = yk. Suppose, without loss of generality,

that ∃Ui ∈ gi such that (xi)αqUi and (yi)β ∩Ui = 0X.

Now, (xk)αqHk ⇒ Hk(xk) + α > 1 ⇒ Hk(πk(x)) + α > 1 ⇒ (Hk ◦ πk)(x) + α > 1 ⇒ xαq(Hk ◦ πk)

and (yk)β ∩Hk = 0X ⇒ Hk(yk) = 0 ⇒ Hk(πk(y)) = 0 ⇒ (Hk ◦ πk)(y) = 0 ⇒ yβ ∩ (Hk ◦ πk) =

0X. Therefore, (Hk ◦ πk) ∈ g satisfies xαq(Hk ◦ πk) and yβ ∩ (Hk ◦ πk) = 0X. Similarly, one can

demonstrate that yβq(Wk ◦πk) and xα ∩ (Wk ◦πk) = 0X. So, (X, g) is gFT(iii)
0 .

Sufficiency. Let (X, g) be gFT(iii)
0 . We need to show that (Xk, gk) is gFT(iii)

0 , ∀k ∈ J. Consider a

constant element bk in Xk. Define Bk = {x ∈ X =
∏

k∈J Xk : x j = b j f orsome k , j}. Then Bk ⊆ X, and

thus (Bk, gBk) is a subspace of (X, g). Since (X, g) is gFT(iii)
0 , so (Bk, gBk) is also gFT(iii)

0 . Furthermore,

Bk is homeomorphic to Xk. Therefore (Xi, gi) is a gFT(iii)
0 space, ∀k ∈ J. Proof of (5) is similar to

(4). �

Proposition 4.1. Let {(Xk, gk) : k ∈ J} be a collection of disjoint GFTS′s and let X =
⋃

k∈J Xk. The class
⊕k∈J gk = {H|H ∈ ℘(X) ∧ (H ∩Xk) ∈ gk ∀ k ∈ J} defines a GFT on X. Where ℘(X) is the fuzzy power
class of the universe.

Proof. it is evident that 0X ∈ ⊕k∈J gk. Consider an arbitrary collection {Hi : i ∈M} of sets from

⊕k∈J gk. For each i ∈M and k ∈ J, Hi ∩ Xk ∈ gk. Thus
⋃

i∈MHi ∩ Xk ∈ gk∀k ∈ J. Therefore,⋃
i∈MHi ∈ ⊕k∈J gk∀k ∈ J. Hence, ⊕k∈J gk is GFT on X. �

Definition 4.7. The GFT ⊕i∈I gi described in the above propostion is said to be the sum GFT on X. The
corresponding pair (X,⊕i∈I gi) is known as the sum GFTS for the family {(Xi, gi) : i ∈ I}.

Definition 4.8. A property P of a GFTS is said to be additive if, for any family of GFTS {(Xi, gi), i ∈ Λ}

with the property P, the sum of this family (X,⊕i∈I gi) also has property P.

Now, we shall show that our notions of gFT0 spaces satisfies the additive property.

Theorem 4.3. The property of being a gFT0 space is an additive property.

Proof. Suppose (Xk, gk) is a gFT0 space, ∀k ∈ J. We have to prove that ⊕k∈JXk is gFT0 space. To do

so, we consider two fuzzy singletons xα, yβ in X =
⋃

k∈J Xk with x is not equal to y. If x and y are

a member of different sets Xk and X j one easily obtain, xα ∈ Xk ⊆ X j − {yβ} or yβ ∈ X j ⊆ Xk − {xα}.
Xk ⊆ Xc

j , both Xk and X j are generalized fuzzy open sets in X under ⊕k∈J. If x and y belong to the

same gFT0 space (Xk0 , gk0), then there exists U0, V0 ∈ GFO(Xk0) such that xα ∈ U0 ⊆ Xk0 − {yβ} or

yβ ∈ V0 ⊆ Xk0 − {xα}. Since Xk0 ∈ GFO(X), X = ⊕k∈JXk, one finds U0, V0 ∈ GFO(X) and hence the

result. �

Theorem 4.4. The property of being a gFT(i)
0 space is an additive property.

Proof. Is similar to proof of Theorem (4.3). �
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Theorem 4.5. The property of being a gFT(ii)
0 space is an additive property.

Proof. Suppose (Xk, gk) is a gFT(ii)
0 space, ∀k ∈ J. We aim to show that ⊕k∈JXk is also gFT(ii)

0 space.

To do so, we consider two fuzzy singletons xα, yβ in X =
⋃

k∈J Xk with x is not equal to y. If x and

y is a member of different sets Xk and X j one easily obtain, Xk(x) = r and Xk(y) > δ or Xk(x) > r
and Xk(y) = δ. Xk ⊆ Xc

j , both Xk and X j are generalized fuzzy open sets in X under ⊕k∈J. If x and

y belong to the same gFT(ii)
0 space (Xk0 , gk0), then there exists U0 ∈ GFO(Xk0) s.t, U0(x) = r and

U0(y) > δ or U0(x) > r and U0(y) = δ. Since Xk0 ∈ GFO(X), X = ⊕k∈JXk, one finds U0 ∈ GFO(X)

and hence the result. �

Theorem 4.6. The property of being a gFT(iii)
0 space is an additive property.

Proof. Suppose (Xk, gk) is a gFT(iii)
0 space, ∀k ∈ J. We aim to show that ⊕k∈JXk is gFT(iii)

0 space. To

do so, we consider two fuzzy singletons xα, yβ in X =
⋃

k∈J Xk with different supports x and y. If x
and y belongs to different sets Xk and X j one easily obtain, xα(x)qXk and yβ ∩Xk = 0X or yβqXk and

xα ∩Xk = 0X. Xk ⊆ Xc
j , both Xk and X j are generalized fuzzy open sets in X under ⊕k∈J. If x and y

belong to the same gFT(iii)
0 space (Xk0 , gk0), then there exists U0 ∈ GFO(Xk0) such that xαqU0 and

yβ ∩U0 = 0X or yβqU0 and xα ∩U0 = 0X. Since Xk0 ∈ GFO(X), X = ⊕k∈JXk, one finds U0 ∈ GFO(X)

and hence the result. �

Theorem 4.7. The property of being a gFT(iv)
0 space is an additive property.

Proof. Is similar to proof of Theorem (4.6). �

5. Mappings in gFT0 spaces

In this part, we demonstrate the preservation of our concepts of generalized fuzzy T0 spaces

under bijective generalized fuzzy continuous generalized fuzzy open mappings.

Theorem 5.1. Assume (X, g) and (Y, ǵ) are two GFTS’s and let f : X −→ Y be a bijective generalized
fuzzy open map. Then
1. (X, g) is gFT0⇒ (Y, ǵ) is gFT0;
2. (X, g) is gFT(i)

0 ⇒ (Y, ǵ) is gFT(i)
0 ;

3. (X, g) is gFT(ii)
0 ⇒ (Y, ǵ) is gFT(ii)

0 ;

4. (X, g) is gFT(iii)
0 ⇒ (Y, ǵ) is gFT(iii)

0 ;

5. (X, g) is gFT(iv)
0 ⇒ (Y, ǵ) is gFT(iv)

0 .

Proof. 1. Consider (X, g) as a gFT0 space and let x́α, ýβ ∈ FS(Y) where x́ is not equal to ý. Given

that f is surjective, there is x, y ∈ X s.t f (x) = x́, f (y) = ý. Here, xα, yβ ∈ FS(X) where x
is not equal to y because f is injective. Given that (X, g) is gFT0, then either ∃ H ∈ Ng(xα)
s.t, yβq̄H or ∃ W ∈ Ng(yβ) s.t, xαq̄W. Suppose, for simplicity, that there is G ∈ Ng(xα) and

yβq̄G. Now, G ∈ Ng(xα) implies that ∃ W ∈ g s.t, xα ∈ W ⊆ G and yβq̄G ⇒ G(y) + β ≤ 1.

Given that f (G)(x́) = sup{G(x) : f (x) = x́} = G(x), for some x. Also f (G)(ý) = G(y), for a
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particular y. Since G, W ∈ GFO(X) and f is a generalized fuzzy open map, it can be inferred that

f (G), f (W) ∈ GFO(Y).
Again, xα ∈ W ⇒ α ≤ W(x) ⇒ α ≤ f (W)(x́) ⇒ x́α ∈ f (W). Since W ⊆ G ⇒ f (W) ⊆ f (G), so

x́α ∈ f (W) ⊆ f (G) and G(y) + β ≤ 1 ⇒ f (G)(ý) + β ≤ 1 ⇒ ýβq̄ f (G). Thus, ∃ f (G) ∈ Nǵ(x́α)
and ýβq̄ f (G). Similarly, we can demonstrate that f (W) ∈ Nǵ(ýβ) and x́αq̄ f (W). Alternatively,

consider x́α, ýβ ∈ FS(Y) with x́ = ý and α < β(say). Since f is surjective, ∃ x, y ∈ X s.t f (x) = x́,

f (y) = ý and xα, yβ ∈ FS(X) where x = y due to the injective of f . Given that (X, g) is a gFT0

space, then ∃ G ∈ NQ
g (yβ) s.t, xαq̄G. Since G ∈ NQ

g (yβ), ∃W ∈ g .t, yβqW ⊆ G. yβqW⇒ β+ W(y) >
1 ⇒ f (W)(ý) + β > 1 ⇒ ýβq f (W) and W ⊆ G ⇒ f (W) ⊆ f (G). Then ýβq f (W) ⊆ f (G). Also

we observe, xαq̄G ⇒ G(x) + α ≤ 1 ⇒ f (G)(x́) + α ≤ 1 ⇒ x́αq̄ f (G). Since W ∈ GFO(X) and f is

a generalized fuzzy open mapping, then f (W) ∈ GFO(Y). Consequently, ∃ f (G) ∈ NQ
ǵ (ýβ) s.t,

x́αq f (G). Hence (Y,µ) is gFT0.

2. Is similar to (1).

3. Consider (X, g) is gFT(ii)
0 and let x́, ý ∈ Y where x́ is not equal to ý. Since f is surjective, ∃ x, y ∈ X

s.t f (x) = x́, f (y) = ý. Given that f (x) , f (y) and f is injective, it can be inferred that x is not

equal to y. Considering that (X, g) is a gFT(ii)
0 space, ∃ G ∈ g s.t G(x) = r and G(y) > δ or G(x) > r

and G(y) = δ. For simplicity, assume there exists G ∈ g s.t, G(x) = r and G(y) > δ. Given that,

f (G)(x́) = sup{G(x) : f (x) = x́} = G(x), for some x. Also f (G)(ý) = G(y), for some y. Since

G ∈ GFO(X) and f is a generalized fuzzy open mapping, f (G) ∈ GFO(Y).
Again, G(x) = r ⇒ f (G)(x́) = r and G(y) > δ ⇒ f (G)(ý) > δ. Similarly, we can show that

f (G)(ý) = δ and f (G)(x́) > r. Therefore, (Y,µ) is gFT(ii)
0 .

4. Consider (X, g) is gFT(iii)
0 and let x́α, ýβ ∈ FS(Y) with x́ is not equal to ý. Since f is surjective, ∃

x and y are elements of X s.t f (x) = x́, f (y) = ý. xα, yβ ∈ FS(X) with x , y because f is injective.

Given (X, g) is gFT(iii)
0 , then either ∃ H ∈ g s.t, xαqH and yβ ∩H = 0X, or ∃ W ∈ g s.t yβqW and

xα ∩W = 0X. Assuming, for simplicity, there exists an G ∈ g s.t xαqG and yβ ∩G = 0X. This means

xαqG⇒ G(x)+α > 1 and yβ∩G = 0X ⇒ G(y) = 0. Since, f (G)(x́) = sup{G(x) : f (x) = x́} = G(x),
for some x. Also f (G)(ý) = G(y), for a certain y. Since G ∈ GFO(X) and f is a generalized fuzzy

open mapping, then f (G) ∈ GFO(Y).
Moreover, G(x) + α > 1 ⇒ f (G)(x́) + α > 1 ⇒ x́αq f (G) and G(y) = 0 ⇒ f (G)(ý) = 0 ⇒

ýβ ∩ f (G) = 0X. Likewise, it can be shown that ýβq f (W) and x́α ∩ f (W) = 0X. Therefore, (Y, ǵ) is

gFT(iii)
0 .

5. Is similar to (4). �

Theorem 5.2. Consider (X, g) and (Y, ǵ) as two GFTS’s and let f : X −→ Y is an injective and generalized
fuzzy continous map. Then
1. (Y, ǵ) is gFT0⇒ (X, g) is gFT0;
2. (Y, ǵ) is gFT(i)

0 ⇒ (X, g) is gFT(i)
0 ;

3. (Y, ǵ) is gF(ii)
0 ⇒ (X, g) is gFT(ii)

0 ;
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4. (Y, ǵ) is gFT(iii)
0 ⇒ (X, g) is gFT(iii)

0 ;

5. (Y, ǵ) is gFT(iv)
0 ⇒ (X, g) is gFT(iv)

0 .

Proof. 1. Suppose (Y, ǵ) is gFT0 and let xα, yβ ∈ FS(X) with x is not equal to y. Consequently,

( f (x))α, ( f (y))β ∈ FS(Y) with f (x) is not equal to f (y) due to f being injective. Given that (Y, ǵ)
is a gFT0 space, ∃ H́ ∈ Nǵ(( f (x))α) and ( f (y))β q̄ H́. H́ ∈ Nǵ(( f (x))α) implies ∃ Ẃ ∈ ǵ s.t, ( f (x))α ∈
ẃ ⊆ H́ Which indicates that f−1(( f (x))α) ∈ f−1(Ẃ) ⊆ f−1(H́). Thus xα ∈ f−1(Ẃ) ⊆ f−1(H́)

and ( f (y))β q̄ H́ ⇒ H́( f (y)) + β ≤ 1 ⇒ f−1(H́)(y) + β ≤ 1. Therefore yβ q̄ f−1(H́). Since f is a

generalized fuzzy continous map and Ẃ, H́ ∈ GFO(Y), it can be inferred that f−1(Ẃ), f−1(H́) ∈

GFO(X). Consequently, ∃ f−1(H́) ∈ Ng(xα) s.t, f−1(H́) q̄ yβ.
Alternatively, let xα, yβ ∈ FS(X) with x is not equal to y. Afterward ( f (x))α, ( f (y))β ∈ FS(Y)
with f (x) is equal to f (y) since f is injective. Given that (Y, ǵ) is gFT0, ∃ H́ ∈ NQ

ǵ (( f (y))β) s.t,

( f (x))αq̄H́. Since, Ú ∈ NQ
ǵ (( f (y))β), ∃ Ẃ ∈ ǵ s.t, ( f (y))β q Ẃ ⊆ H́. This indicates ( f (y))βqẂ

⇒ Ẃ( f (y)) + β > 1 ⇒ f−1(Ẃ)(y) + β > 1 ⇒ yβ q f−1(Ẃ) and Ẃ ⊆ H́ ⇒ f−1(Ẃ) ⊆ f−1(H́). So

yβ q f−1(Ẃ) ⊆ f−1(H́). Also we obtain, ( f (x))αq̄H́ ⇒ H́( f (x)) + α ≤ 1 ⇒ f−1(H́)(x) + α ≤ 1 ⇒

xα q̄ f−1(H́). Given that f is a generalized fuzzy continous map and Ẃ ∈ ǵ, it implies f−1(Ẃ) ∈ g.

Therefore, ∃ f−1(H́) ∈ NQ
g (yβ) s.t, xαq̄ f−1(H́). Hence (X, g) is gFT0.

2. Is similar to (1).

3. Assume (Y, ǵ) is gFT(ii)
0 and consider x, y ∈ X with x is not equal to y. Because f is injective, the

images f (x) and f (y) in Y are also distinct. Given that (Y, ǵ) is a gFT(ii)
0 space, for any r, δ ∈ [0, 1)

and distinct f (x) and f (y), there is an Ǵ ∈ ǵ s.t Ǵ( f (x)) = r and Ǵ( f (y)) > δ or Ǵ( f (y)) = δ and

Ǵ( f (x)) > r. Without limiting generality, assume ∃ Ǵ ∈ ǵ s.t Ǵ( f (x)) = r and Ǵ( f (y)) > δ.

Now, Ǵ( f (x)) = r ⇒ f−1(Ǵ)(x) = r and Ǵ( f (y)) > δ ⇒ f−1(Ǵ)(y) > δ. Given that f is a

generalized fuzzy continous map and Ǵ ∈ ǵ, it can be inferred that f−1(Ǵ) ∈ g. Similarly, if

Ǵ( f (x)) > r and Ǵ( f (y)) = δ, afterward f−1(Ǵ)(x) > r and f−1(Ǵ)(y) = δ. Thus, (X, g) is gFT(ii)
0 .

4. Consider (Y, ǵ) as a gFT(iii)
0 space and let xα, yβ ∈ FS(X) with different supports. Therefore

( f (x))α, ( f (y))β ∈ FS(Y) with f (x) is not equal to f (y) since f is injective.Because (Y, ǵ) is gFT(iii)
0 ,

∃ H́ ∈ ǵ s.t ( f (x))αqH́ and ( f (y))β ∩ H́ = 0X or ∃ Ẃ ∈ ǵ s.t ( f (y))βqẂ and ( f (x))α ∩ Ẃ = 0X.

Assume, for simplicity, that ∃ H́ ∈ ǵ s.t ( f (x))αqH́ and ( f (y))β ∩ H́ = 0X.

Now, ( f (x))αqH́ ⇒ H́( f (x)) + α > 1 ⇒ f−1(H́(x)) + α > 1 ⇒ ( f−1(H́))(x) + α > 1 ⇒ xαq f−1(H́)

and ( f (y))β ∩ H́ = 0X ⇒ H́( f (y)) = 0⇒ f−1(H́(y)) = 0⇒ ( f−1(H́))(y) = 0⇒ yβ ∩ f−1(H́) = 0X.

Given that f is a generalized fuzzy continous map and H́ ∈ ǵ, it can be inferred that f−1(H́) ∈ g.

Similarly, we can show that yβq f−1(Ẃ) and xα ∩ f−1(Ẃ) = 0X. Therefore, (X, g) is a gFT(iii)
0 space.

5. Is similar to (4). �

Theorem 5.3. A GFTS (X, g) is considered a gFT0 space iff ∀ xα, yβ ∈ FS(X) with x is not equal to y, ∃ a
generalized fuzzy continuous mapping f from X to a gFT0 space (Y, ǵ) s.t f (x) is not equal to f (y).

Proof. Necessity. Assume (X, g) is gFT0. Assume (Y, ǵ) = (X, g) and let f be the identity mapping

idX. Clearly, (Y, ǵ) and f meet the required criteria.
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Sufficiency. Consider fuzzy singletons xα and, yβ in FS(X). We examine two scenarios: (i) x , y
and (ii) x = y with α < β

For the situation where x , y, according to the hypothesis, ∃ a generalized fuzzy continous

mapping f from (X, g) to gFT0 (Y, ǵ) with f (x) is not equal to f (y). Given that (Y, ǵ) is a gFT0

space and ( f (x))α, ( f (y))β ∈ FS(Y) s.t f (x) is not equal to f (y), either ∃ H ∈ NY
ǵ (( f (x))α) s.t

( f (y))βq̄H or ∃W ∈ NY
ǵ (( f (y))β) s.t ( f (x))αq̄W. It follows from generalized fuzzy continouity of

f that either f−1(H) ∈ NX
g (xα) s.t yβq̄ f−1(H) or f−1(W) ∈ NX

g (yβ) s.t xαq̄ f−1(W).

If x = y and (α < β), then ( f (x))α, ( f (y))β ∈ FS(Y) with f (x) = f (y). Given that (Y, ǵ) is

a gFT0 space, there exists W ∈ NQY

ǵ (( f (y))β) s.t ( f (x))αq̄W. Therefore, f−1(V) ∈ NQX

g (yβ) s.t

xαq̄ f−1(V).Thus (X, g) is also a gFT0 space. �

Theorem 5.4. A GFTS (X, g) is a gFT(i)
0 space iff ∀ xα, yβ ∈ FS(X) with x , y, ∃ a generalized fuzzy

continuous mapping f from X to a gFT(i)
0 space (Y, ǵ) s.t f (x) is not equal to f (y).

Proof. Is analogous to the proof of Theorem 5.3. �

Theorem 5.5. A GFTS (X, g) is a gFT(ii)
0 space iff ∀ x, y ∈ X where x is not equal to y, ∃ a generalized

fuzzy continuous mapping f from X to a gFT(ii)
0 space (Y, ǵ) s.t f (x) , f (y).

Proof. Necessity. Suppose (X, g) is gFT(ii)
0 . Consider (Y, ǵ) be defined as (X, g) and let f be the

identity mapping idX. Clearly, (Y, ǵ) and f meet the required criteria.

Sufficiency. Assume x, y ∈ X with x , y. Based on the hypothesis, ∃ a generalized fuzzy continous

mapping f from (X, g) to gFT(ii)
0 (Y, ǵ) s.t, f (x) is not equal to f (y). Since (Y, ǵ) is gFT(ii)

0 and

f (x), f (y) ∈ Y with f (x) is not equal to f (y), then for any r, δ ∈ [0, 1) and f (x), f (y) ∈ Y with f (x) is

not equal to f (y). ∃ G ∈ ǵ s.t either G( f (x)) = r and G( f (y)) > δ or G( f (x)) > r and G( f (y)) = δ.

It follows from generalized fuzzy continouity of f that f−1(G) ∈ g s.t either f−1(G)(x) = r and

f−1(G)(y) > δ or f−1(G)(x) > r and f−1(G)(y) = δ. Hence (X, g) is a gFT(ii)
0 space. �

Theorem 5.6. A GFTS (X, g) is gFT(iii)
0 iff ∀ xα, yβ ∈ FS(X) with x is not equal to y, ∃ a generalized fuzzy

continuous mapping f from X to a gFT(iii)
0 space (Y, ǵ) s.t f (x) is not equal to f (y).

Proof. Necessity. assuming (X, g) is gFT(iii)
0 . Consider (Y, ǵ) = (X, g) and let f be the identity

mapping idX. Clearly, (Y, ǵ) and f meet the required criteria.

Sufficiency. Consider fuzzy singletons xα and, yβ in FS(X)with x , y. According to the assumption,

∃ a generalized fuzzy continous mapping f from (X, g) to gFT(iii)
0 (Y, ǵ) s.t f (x) is not equal to

f (y). Given that (Y, ǵ) is gFT(iii)
0 and ( f (x))α, ( f (y))β ∈ FS(Y) s.t f (x) is not equal to f (y), ∃H ∈ ǵ

s.t ( f (x))αqH and ( f (y))β ∩H = 0X or ∃ W ∈ ǵ s.t ( f (y))βqW and ( f (x))α ∩W = 0X. It follows

from generalized fuzzy continouity of f that f−1(H) ∈ g s.t xαq f−1(H) and yβ ∩ f−1(H) = 0X or

f−1(W) ∈ g s.t yβq f−1(W) and xα ∩ f−1(W) = 0X. Thuse, (X, g) is a gFT(iii)
0 space. �

Theorem 5.7. A GFTS (X, g) is a gFT(iv)
0 space iff ∀ xα, yβ ∈ FS(X) with x , y, ∃ a generalized fuzzy

continuous mapping f from X to a gFT(iv)
0 space (Y, ǵ) s.t f (x) is not equal to f (y).

Proof. Is analogous to the proof of Theorem 5.6. �
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6. A generalized lower semi-continuous function, initial and final generalized fuzzy

topological spaces

This section covers the initial and final generalized fuzzy topologies as well as the introduction

and examination of a generalized lower semi-continuous function.

Definition 6.1. A real-valued function f on a GTS is called a generalized lower semi-continuous function
if the collection {x : f (x) > β} is generalized open ∀ real β.

Definition 6.2. Consider a nonempty set X having a generalized topology g. Let ω(g) represent the
collection of all generalized lower semi-continuous functions from (X, g) to I. Hence, ω(g) = {H ∈ IX :

H−1(β, 1] ∈ g}, ∀ β ∈ [0, 1). It can be demonstrated that ω(g) forms a GFT on X.

Theorem 6.1. Consider (X, g) be a GTS . The subsequent statements are equivalent:
1. (X, g) is a gT0 space;
2. (X,ω(g)) is a gFT0 space;
3. (X,ω(g)) is a gFT(i)

0 space;

4. (X,ω(g)) is a gFT(ii)
0 space;

5. (X,ω(g)) is a gFT(iii)
0 space;

6. (X,ω(g)) is a gFT(iv)
0 space.

Proof. 1 ⇔ 2. Necessity: Suppose (X, g) is gT0. We shall demonstrate that (X,ω(g)) is gFT0.

Assume xα, yβ ∈ FS(X) where x is not equal to y. Given that (X, g) is gT0, ∃ G ∈ g s.t x ∈ G and

y < G or y ∈ G and x < G. According to the concept of the generalized lower semi-continuous

function, 1G ∈ ω(g) and satisfies 1G(x) = 1 and 1G(y) = 0. Therefore:

• Since 1G(x) = 1, it can be concluded that α ≤ 1G(x), so xα ∈ 1G

• Since 1G(y) = 0 , it can be concluded that 1G(y) + β ≤ 1, so yβq̄1G. Consequently, 1Gq̄yβ, meaning

1G ⊆ (yβ)c. Thus, 1G ∈ ω(g) and xα ∈ 1U ⊆ (yβ)c. Similarly, we can prove that yβ ∈ 1G ⊆ (xα)c.

Hence (X,ω(g)) is a gFT0 space.

Sufficiency: Considering (X,ω(g)) is gFT0. We must demonstrate that (X, g) is gT0. Assume

x, y ∈ X where x , y. Because (X,ω(g)) is a gFT0 space,so ∀ xα, yα ∈ FS(X), ∃G ∈ ω(g) s.t

xα ∈ G ⊆ (yα)c or yα ∈ G ⊆ (xα)c. Without loss of generality, xα ∈ G ⊆ (yα)c.

Now, xα ∈ G ⇒ α < G(x) ⇒ 1 − α = m < G(x) ⇒ x ∈ G−1(m, 1] and G ⊆ (yα)c
⇒ Gq̄yα ⇒

G(y) + α ≤ 1 ⇒ G(y) ≤ 1 − α = m ⇒ y < G−1(m, 1]. Likewise, it can be demonstrated that if

y ∈ G−1(m, 1], then x < G−1(m, 1]. Additionally, G−1(m, 1] is generalized open set. Hence (X, g) is

a gT0 space.

1⇔ 3. Necessity: Suppose (X, g) is gT0. We want to demonstrate that (X,ω(g)) is gFT(i)
0 . Consider

xα, yβ ∈ FS(X) where x , y. Because (X, g) is gT0,so ∃H ∈ g s.t x ∈ H and y < H or y ∈ H and

x < H. By the concept of the generalized lower semi continuous function, we know 1H ∈ ω(g).
Then 1H(x) = 1 and 1H(y) = 0 or 1H(y) = 1 and 1H(x) = 0. Hence (X,ω(g)) is a gFT(i)

0 space.

Sufficiency: Considering (X,ω(g)) is a gFT(i)
0 space. We need to demonstrate that (X, g) is gT0.
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Assume x, y ∈ X where x , y. Given that (X,ω(g)) is gFT(i)
0 space, ∀ xα, yα ∈ FS(X), ∃G ∈ ω(g) s.t

G(x) = 1 and G(y) = 0 or G(y) = 1 and G(x) = 0. Assume, without affecting generality, G(x) = 1

and G(y) = 0.

Now, G(x) = 1⇒ G(x) + α > 1⇒ G(x) > 1− α = m⇒ x ∈ G−1(m, 1] and G(y) = 0⇒ G(y) + α ≤

1 ⇒ G(y) ≤ 1 − α = m ⇒ y < G−1(m, 1]. This can be similarly shown for the reverse case.

Additionally, G−1(m, 1] is generalized open set. Hence (X, g) is a gT0 space.

1⇔ 4. Necessity: Assuming (X, g) is gT0. We aim to demonstrate that (X,ω(g)) is gFT(ii)
0 . Suppose

x, y ∈ X where x , y and assume that r, δ ∈ [0, 1). Since (X, g) is gT0, ∃G ∈ g s.t x ∈ G and y < G
or y ∈ G and x < G. By the concept of the generalized lower semi continuous function, 1G ∈ ω(g)
with 1G(x) = 1 and 1G(y) = 0. Thus:

• Since 1G(x) = 1, we have 1G(x) > r.

• Since 1G(y) = 0, we have 1G(y) = δ.

Hence (X,ω(g)) is a gFT(ii)
0 space.

Sufficiency: Suppose (X,ω(g)) is a gFT(ii)
0 space. We need to demonstrate that (X, g) is gT0.

Assume x, y ∈ X where x is not equal to y. Given that (X,ω(g)) is a gFT(ii)
0 space, ∀ r, δ ∈ [0, 1),

∃G ∈ ω(g) s.t G(x) = r and G(y) > δ or G(x) > r and G(y) = δ. Suppose, without loss of

generality, G(x) = r and G(y) > δ.

Now, G(x) = r⇒ x < G−1(r, 1] and G(y) > δ⇒ y ∈ G−1(δ, 1]. Hence (X, g) is a gT0 space.

1⇔ 5. Necessity: Suppose (X, g) is gT0. We shall demonstrate that (X,ω(g)) is gFT(iii)
0 . Assume

xα, yβ ∈ FS(X) where x , y. Given that (X, g) is gT0, ∃H ∈ g s.t x ∈ H and y < H or ∃W ∈ g s.t

y ∈ W and x < W. According to the concept of the generalized lower semi continuous function,

we know 1H, 1W ∈ ω(g). Thus:

• Since 1H(x) = 1, it can be concluded that 1H(x) + α > 1, so xαq1H.

• Since 1H(y) = 0, it can be concluded that yβ ∩ 1H(y) = 0X. This can be similarly shown for the

reverse case. Therefore, (X,ω(g)) is a gFT(iii)
0 space.

Sufficiency: Suppose (X,ω(g)) is a gFT(iii)
0 space. We need to demonstrate that (X, g) is gT0.

Assume x, y ∈ Xwhere x is not equal to y. Given that (X,ω(g)) is gFT(iii)
0 , ∀ xα, yα ∈ FS(X),

∃H ∈ ω(g) s.t xαqH and yα ∩H = 0X or ∃W ∈ ω(g) s.t yαqW and xα ∩W = 0X. Suppose, without

loss of generality, ∃H ∈ ω(g) s.t xαqH and yα ∩H = 0X.

Now, xαqH ⇒ H(x) + α > 1 ⇒ H(x) > 1 − α = m ⇒ x ∈ H−1(m, 1] and yα ∩H = 0X ⇒ H(y) =

0 ⇒ H(y) + α ≤ 1 ⇒ H(y) < 1 − α = m ⇒ y < H−1(m, 1]. This can be similarly shown for the

reverse case. Additionally, H−1(m, 1] and W−1(r, 1] are generalized open sets. Hence (X, g) is a gT0

space.

1⇔ 6. Necessity. Suppose (X, g) is gT0. We want to demonstrate that (X,ω(g)) is gFT(iv)
0 . Assume

xα, yβ ∈ FS(X) where x , y. Given that (X, g) is gT0, ∃G ∈ g s.t x ∈ G and y < G or ∃W ∈ g s.t

y ∈ W and x < W. According to the concept of the generalized lower semi continous function, we

know 1G, 1W ∈ ω(g). Thus

1G(x) = 1 implies 1G(x) + α > 1 ⇒ xαq1G. 1G(y) = 0 implies 1G(y) + β ≤ 1 ⇒ yβq̄1G ⇒ 1Gq̄yβ ⇒
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1G ⊆ (yβ)c. Hence, xαq1G ⊆ (yβ)c. Similarly, we can show that yβq1G ⊆ (xα)c. Hence, (X,ω(g)) is a

gFT(iv)
0 space.

Sufficiency: Assume (X,ω(g)) is gFT(iv)
0 . We need to demonstrate that (X, g) is gT0. Consider

x, y ∈ X where x is not equal to y. Given that (X,ω(g)) is gFT(iii)
0 , ∀ xα, yα ∈ FS(X), ∃G ∈ ω(g) s.t

xαqG ⊆ (yβ)c or yβqG ⊆ (xα)c. Suppose, without loss of generality, ∃G ∈ ω(g) s.t xαqG ⊆ (yβ)c.

Then:

• xαqG implies G(x) + α > 1, so G(x) > 1− α = m, meaning x ∈ G−1(m, 1].

• G ⊆ (yβ)c implies Gq̄yβ, so β+ G(y) ≤ 1, hence G(y) < 1 − β = m meaning y < G−1(m, 1]. Since

G−1(m, 1] is generalized open sets. Hence (X, g) is a gT0 space.

�

Definition 6.3. Given the family of GFTS {(Xk, gk)}k∈J and the the collection of functions { fk : X −→
(Xk, gk)}k∈J, The initial GFTS on a set X is specified as the smallest GFT that makes each fk generalized
fuzzy continuous. This GFT is generated by the family { f−1

k (Hk) : Hk ∈ gk}k∈J}.

Theorem 6.2. If {(Xk, gk)} represents a collection of gFT0 spaces and { fk : X → (Xk, gk)} denotes a
collection of injective and generalized fuzzy continuous functions; thus, the initial GFT induced by the
collection { fk}k∈J is also a gFT0 space.

Proof. Assume that g denote the initial GFT on X for the family { fk}k∈J. Consider xα, yβ ∈ FS(X)

where x , y. Since fk is a one-to-one function, fk(x) and fk(y) are distinct elements in Xk. Given that

(Xk, gk) is a gFT0 space, for every different fuzzy singletons ( fk(x))α and ( fk(y))β either ∃Hk ∈ gk

s.t ( fk(x))α ∈ Hk ⊆ (( fk(y))β)c or ∃Wk ∈ gk s.t ( fk(y))β ∈ Hk ⊆ (( fk(x))α)c. For simplicity, assume

∃Hk ∈ gk s.t ( fk(x))α ∈ Hk ⊆ (( fk(y))β)c.

Given that, ( fk(x))α ∈ Hk ⇒ α ≤ Hk( fk(x))⇒ α ≤ f−1
k (Hk)(x). This condition holds ∀ k ∈ J, so α ≤∨

k∈J f−1
k (Hk)(x). Also Hk ⊆ (( fk(y))β)c

⇒ Hkq̄( fk(y))β ⇒ Hk( fk(y)) + β ≤ 1⇒ f−1
k (Hk)(y) + β ≤ 1.

This is true for every k ∈ J.
∨

k∈J f−1
k (Hk)(y) + β ≤ 1. Let H =

∨
k∈J f−1

k (Hk). Then H ∈ g as

fk is a generalized fuzzy continous. so, α ≤ H(x) and H(y) + β ≤ 1. Therefore, xα ∈ H and

Hq̄yβ ⇒ H ⊆ (yβ)c. Hence xα ∈ H ⊆ (yβ)c. Similarly, yβ ∈ H ⊆ (xα)c. Hence (X, g) is a gFT0

space. �

Theorem 6.3. If (Xk, gk) represents a collection of gFT(i)
0 spaces and { fk : X → (Xk, gk)} denotes a

collection of injective and generalized fuzzy continuous functions; thus, the initial GFT induced by the
collection { fk}k∈J is also a gFT(i)

0 space.

Proof. Is analogous to the proof of Theorem 6.2. �

Theorem 6.4. If (Xk, gk) represents a collection of gFT(ii)
0 spaces and { fk : X → (Xk, gk)} denotes a

collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by
the collection { fk}k∈J is also a gFT(ii)

0 space.

Proof. Assume that g denote the initial GFT for the collection { fk}k∈J. Suppose x and y are elements

of X where x is not equal to y and any r, δ ∈ [0, 1). Since fk is a one-to-one function, fk(x) and
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fk(y) are distinct elements in Xk. Given that (Xk, gk) is a gFT(ii)
0 space, for any r, δ ∈ [0, 1) and

distinct fk(x) and fk(y) in Xk, ∃Hk ∈ gk s.t Hk( fk(x)) = r and Hk( fk(y)) > δ, or Hk( fk(x)) > r and

Hk( fk(y)) = δ. For simplicity, assume ∃Hk ∈ gk s.t Hk( fk(x)) = r and Hk( fk(y)) > δ.

Now, Hk( fk(x)) = r ⇒ f−1
k (Hk)(x) = r. This condition holds ∀ k ∈ J. Thus,

∨
k∈J f−1

k (Hk)(x) = r.

Also, Hk( fk(y)) > δ ⇒ f−1
k (Hk)(y) > δ ⇒

∨
k∈J f−1

k (Hk)(y) > δ. Suppose H =
∨

k∈J f−1
k (Hk). Since

fk is a generalized fuzzy continous, H ∈ g. Therefore, H(x) = r and H(y) > δ. This can be similarly

shown for the reverse case. Thus, (X, g) is a gFT(ii)
0 space. �

Theorem 6.5. If (Xk, gk) represents a collection of gFT(iii)
0 spaces and { fk : X → (Xk, gk)} denotes a

collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by
the collection { fk}k∈J is also a gFT(iii)

0 space.

Proof. Assume that g denote the initial GFT on X for the family { fk}k∈J. Consider xα, yβ ∈ FS(X)

where x , y. Since fk is a one-to-one function, fk(x) and fk(y) are distinct elements in Xk. Given that

(Xk, gk) is a gFT(iii)
0 space, for every different fuzzy singletons ( fk(x))α and ( fk(y))β either ∃Hk ∈ gk

s.t ( fk(x))αqHk and ( fk(y))β ∩Hk = 0X, or ∃Wk ∈ gk s.t ( fk(y))βqWk and ( fk(x))α ∩Wk = 0X. For

simplicity, assume ∃Hk ∈ gk s.t ( fk(x))αqHk and ( fk(y))β ∩Hk = 0X.

Given that, ( fk(x))αqHk ⇒ Hk( fk(x)) + α > 1 ⇒ f−1
k (Hk)(x) + α > 1. This condition holds ∀ k ∈ J.

Hence
∨

k∈J f−1
k (Hk)(x) + α > 1. Also, ( fk(y))β ∩Hk = 0X ⇒ Hk( fk(y)) = 0X ⇒ f−1

k (Hk)(y) =

0X ⇒
∨

k∈J f−1
k (Hk)(y) = 0X. Suppose H =

∨
k∈J f−1

k (Hk). Since fk is a generalized fuzzy continous,

H ∈ g. Therefore, H(x) + α > 1 and H(y) = 0X. Hence, xαqH and yβ ∩H = 0X. Similarly, yβqW

and xα ∩W = 0X. Hence (X, g) is a gFT(iii)
0 space. �

Theorem 6.6. If (Xk, gk) represents a collection of gFT(iv)
0 spaces and { fk : X → (Xk, gk)} denotes a

collection of injective and generalized fuzzy continuous functions; thus, the initial GFT on X induced by
the collection { fk}k∈J is also a gFT(iv)

0 space.

Proof. Is analogous to the proof of Theorem 6.5. �

Definition 6.4. Given the family of GFTS {(Xk, gk)}k∈J and the family of functions { fk : X −→ (Xk, gk)}k∈J,
The final GFTS on a set X is defined as the finest GFT on X that ensures every fk generalized fuzzy continuous.

Theorem 6.7. If (Xk, gk) represents a collection of gFT0 spaces and { fk : (Xk, gk) → X} denotes a set of
bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fk}k∈J

will be a gFT0 space.

Proof. Suppose g represent the final GFT for the collection { fk}k∈J. Assume xα, yβ ∈ FS(X) where

x , y. For each k, f−1
k (x) and f−1

k (y) are elements of Xk, and since fi is bijective, f−1
k (x) , f−1

k (y).
Given that (Xk, gk) is a gFT0 space, then ∀ ( f−1

k (x))α, ( f−1
k (y))β ∈ FS(Xk) with f−1

k (x) , f−1
k (y),

∃Hk, Wk ∈ gk s.t ( f−1
k (x))α ∈ Hk ⊆ (( f−1

k (y))β)c or ( f−1
k (y))β ∈ Wk ⊆ (( f−1

k (x))α)c. Suppose, with-

out loss of generality, ∃Hk ∈ gk s.t ( f−1
k (x))α ∈ Hk ⊆ (( f−1

k (y))β)c.

Consider, ( f−1
k (x))α ∈ Hk ⇒ α ≤ Hk( f−1

k (x)) ⇒ α ≤ fk(Hk)(x) and Hk ⊆ (( f−1
k (y))β)c

⇒
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Hkq̄( f−1
k (y))β ⇒ β+ Hk( f−1

k (y)) ≤ 1 ⇒ β+ fk(Hk)(y) ≤ 1. This is holds ∀ k ∈ J, so it follows

that α ≤
∨

k∈J fk(Hk)(x) and β+
∨

k∈J fk(Hk)(y) ≤ 1. Define H =
∨

k∈J fk(Hk). Since fk is a gener-

alized fuzzy open function, H ∈ g. Thus, α ≤ H(x) and β+ H(y) ≤ 1. Consequently, xα ∈ H and

Hq̄yβ ⇒ H ⊆ (yβ)c. Therefore, xα ∈ H ⊆ (yβ)c. Hence (X, g) is a gFT0 space. �

Theorem 6.8. If (Xk, gk) represents a collection of gFT(i)
0 spaces and { fk : (Xk, gk) → X} denotes a set of

bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fk}k∈J

will be a gFT(i)
0 space.

Proof. Resembles the proof of Theorem 6.7. �

Theorem 6.9. If (Xk, gk) represents a collection of gFT(ii)
0 spaces and { fk : (Xk, gk) → X} denotes a set of

bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fk}k∈J

will be a gFT(ii)
0 space.

Proof. Suppose g represent the final GFT for the collection { fk}k∈J. Assume x, y ∈ X wih x , y and

any r, δ ∈ [0, 1). For each k, f−1
k (x) and f−1

k (y) are elements of Xk, and since fk is bijective, f−1
k (x) ,

f−1
k (y). Given that (Xk, gk) is gFT(ii)

0 space, for each pair of fuzzy singletons f−1
k (x) and f−1

k (y) in

Xk and for any r, δ ∈ [0, 1), ∃Hk ∈ gk s.t Hk( f−1
k (x)) = r and Hk( f−1

k (y)) > δ or Hk( f−1
k (x)) > r

and Hk( f−1
k (y)) = δ. Suppose, without loss of generality, ∃Hk ∈ gk s.t Hk( f−1

k (x)) = r and

Hk( f−1
k (y)) > δ.

Now, Hk( f−1
k (x)) = r⇒ fk(Hk)(x) = r and Hk( f−1

k (y)) > δ⇒ fk(Hk)(y) > δ. This is holds ∀ k ∈ J.
Therefore,

∨
k∈J fk(Hk)(x) = r and

∨
k∈J fk(Hk)(y) > δ. Define H =

∨
k∈J fk(Hk). Since fk is a

generalized fuzzy open function, H ∈ g. Consequently, H(x) = r and H(y) > δ. Similarly, H(x) > r
and H(y) = δ. Then (X, g) is a gFT(ii)

0 space. �

Theorem 6.10. If (Xk, gk) represents a collection of gFT(iii)
0 spaces and { fk : (Xk, gk) → X} denotes a set

of bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fk}k∈J

will be a gFT(iii)
0 space.

Proof. Suppose g represent the final GFT for the collection { fk}k∈J. Assume xα, yβ ∈ FS(X) where x ,
y. For each k, f−1

k (x) and f−1
k (y) are elements of Xk, and since fi is bijective, f−1

k (x) , f−1
k (y). Given

that (Xk, gk) is a gFT(iii)
0 space, then ∀ ( f−1

k (x))α, ( f−1
k (y))β ∈ FS(Xk) with f−1

k (x) , f−1
k (y), ∃Hk ∈ gk

s.t ( f−1
k (x))αqHk and ( f−1

k (y))β ∩Hk = 0X or ∃Wk ∈ gk s.t ( f−1
k (y))βqWk and ( f−1

k (x))α ∩Wk = 0X.

Suppose, without loss of generality, ∃Hk ∈ gk s.t ( f−1
k (x))αqHk and ( f−1

k (y))β ∩Hk = 0X.

Now, ( f−1
k (x))αqHk ⇒ Hk( f−1

k (x)) + α > 1⇒ fk(Hk)(x) + α > 1⇒
∨

k∈J( fk(Hk))(x) + α > 1. Also,

( f−1
k (y))β ∩Hk = 0X ⇒ Hk( f−1

k (y)) = 0X ⇒ fk(Hk)(y) = 0X ⇒
∨

k∈J( fk(Hk))(y) = 0X. Define

H =
∨

k∈J fk(Hk). Since fk is a generalized fuzzy open function, H ∈ g. Consequently, xαqH and

yβ ∩H = 0X. Similarly, yβqW and xα ∩W = 0X. Therefore, (X, g) is a gFT(iii)
0 space. �

Theorem 6.11. If (Xk, gk) represents a collection of gFT(iv)
0 spaces and { fk : (Xk, gk) → X} denotes a set

of bijective and generalized fuzzy open functions; thus, the final GFT corresponding to the collection { fk}k∈J

will be a gFT(iv)
0 space.
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Proof. Resembles the proof of Theorem 6.10. �
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