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Abstract. In this paper, we propose and study an HIV dynamics model that considers three ways of infection, as well

as general transmission and neutralization rates in a periodic environment. The model accounts for both latently

and productively infected cells. General nonlinear functions are given for the incident rates of infection and the

neutralization rates of infected cells and viruses. The basic infection reproduction number, which is the spectral radius

of an integral operator, determines the model’s global dynamics. We have analyzed the model’s asymptotic stability

as the value of the basic reproduction number approaches unity. The numerical simulations carried out across three

different scenarios support the findings of the theoretical investigation.

1. Introduction

Infectious diseases continue to debilitate and cause inconvenience in humans and animals from

the invasion and growth of germs in the body. Several studies were performed to describe,

formulate, control, and predict the spread of infectious diseases (see [1–5] and the references

therein). Pathogens, which can spread in communities of people, plants, or animals, are what cause

infectious diseases. Some of the infectious diseases are transmitted through direct contact with

infectious individuals. These diseases are classified into two main categories: Directly transmitted

diseases (tuberculosis, HIV/AIDS, hepatitis, etc.) and vector-borne diseases such as malaria, yellow

fever, dengue fever, and chikungunya. In the global complex biological situation, more and more

attention is being paid over time to fundamental specialized studies about infectious diseases such
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as HIV and HBV. One of the most threatening viral agents is the HIV. HIV slowly destroys the

immune system until AIDS develops. Since the discovery of the existence of HIV reservoirs, it

has become apparent that the majority of pro-viruses were detected in CD4+T lymphocytes with a

memory phenotype, i.e. in cells that have previously been activated by an antigen [6]. Following

the activation of a naive T lymphocyte by a major histocompatibility complex associated with a

peptide, it proliferates rapidly, acquiring effector functions necessary for the elimination of the

antigen. When the antigen disappears, the majority of these cells die (contraction phase) and a

small number of memory cells persist. This population of memory CD4+T lymphocytes is made up

of several sub-populations with significant functional differences and which differ in their ability

to persist throughout life [7, 8]. Thus, studies aimed at identifying reservoir cells have rapidly

evolved in their level of sophistication in line with discoveries made in fundamental immunology.

To date, memory CD4+T cells are generally classified into three sub-populations (stem, central,

and effector memory cells). Although these three sub-populations are generally considered the

majority reservoirs for HIV, naïve CD4+T cells may also play a role in viral persistence.

Mathematical modeling of infectious diseases has become an important tool for public health

decision-makers because these models make it possible predict and control the evolution of these

diseases. Several models have been formulated for diseases such as malaria, HIV/AIDS, yellow

fever, dengue fever, and tuberculosis, to name but a few (see [5, 9–12] and the references therein).

The most proposed mathematical models used nonlinear ordinary-differential equations. Several

HIV mathematical models have been proposed and studied [13–18], Measles [19,20], and Zika [21,

22]. In particular, the mathematical modeling for HIV-1 infection has attracted the interest of several

researchers. Most of them focus on the interaction between HIV-1 and CD4+T cells, which play

the role of the main driver of the immune response. Mathematical models have played an essential

role in explaining the behavior of the HIV transmission. They are also advantageous to understand

and control the AIDS progression. Therefore, the mathematical modeling for the HIV transmission

is essential to understand the dynamics of the HIV free virions as well as the target cells. In [23], the

authors proposed the primary HIV dynamical system considering three components which are the

healthy and infected cells and free virions (HIV particles). Several mathematical models [24–29]

lead with mathematical modeling of HIV dynamics by focusing on the characterization of the

interactions of HIV with T-lymphocytes. At this time, no medication can eradicate HIV from the

human body. Substances that have been developed to inhibit various phases of HIV multiplication

or to lessen the virus’s capacity to infect new CD4 lymphocytes are the drugs utilized to combat the

virus. We refer to these medications as "antiviral" or "antiretroviral". Periodic presumed treatments

involve administering drugs at predetermined intervals. To maximize benefits, patients should

take the drugs daily at the same time, either before or with food. Periodic treatment doses have

a consistent impact on patients. As a result, it is critical to consider periodicity when developing

a mathematical model. Several studies have looked at the periodicity in mathematical models for

different infectious diseases [30–40]. To improve the mathematical model for HIV transmission
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suggested in [41], we will add the general rates of transmission and neutralization in a periodic

setting and add a new section for the variation of B cells.

The rest of this paper is organized as follows: In Section 2, we describe the model and look

how HIV dynamics change over time by looking at three ways of infection and their general

transmission rates and neutralization rates in a regular setting. First, we will give some basic

properties of the model. The basic infection reproduction number denoted as R0, is defined as the

spectral radius of an integral operator. It plays a crucial role in determining the global dynamics of

the model. Subsequently, it has been demonstrated that the HIV-free periodic trajectory is globally

asymptotically stable when R0 < 1 and that the virus persists when R0 > 1 with periodic behavior.

Several numerical examples are given in section 3 validating the acquired findings. We conclude

with a discussion in section 4 that affirms the results obtained.

2. EpidemicModel Formulation

This compartmental epidemic model is a more generalized version of the ones examined in [41].

It includes a new compartment for B cells variation, as well as the general rates of transmission and

neutralization. Here, the total cells are separated into three mutually-exclusive compartments: S,

Il, Ip, These represent the number of cells revealed to be susceptible, latently infected, and produc-

tively infected, respectively. We denote by V, W, and Tl to be the number of free HIV particles, B

cells, and T lymphocytes, respectively. The infected cells are divided into two compartments based

on the condition of the infected cell, specifically Il or Ip. The incidence rates are given by λ1 f1(V)S,

λ2 f2(Il)S and λ3 f3(Ip)S due to the three possible routes of infection. The neutralization function of

the productively infected cells is given by f4(Ip) and the neutralization function of viruses is given

by f5(V).

İl(t) = [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))]S(t) − (κ1(t) + ml(t))Il(t),
İp(t) = κ1(t)Il(t) −mp(t)Ip(t) − λ4(t) f4(Ip(t))Tl(t),
V̇(t) = κ2(t)Ip(t) −mv(t)V(t) − λ5(t) f5(V(t))W(t),
Ṡ(t) = ms(t)Si(t) −ms(t)S(t) − [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))]S(t),
Ẇ(t) = κ3(t)V(t) −mw(t)W(t),
Ṫl(t) = κ4(t)Ip(t) −mc(t)Tl(t) − λ6(t) f6(Ip(t))Tl(t),

(2.1)

with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) ∈ R6

+ .

The model’s parameters are positive functions where the significance is resumed in Table 1. The

incidence rates f1(V), f2(Il) and f3(Ip), the productively infected cells neutralization rate f4(Ip), the

viruses neutralization rate f5(V) and the T-Lymphocytes impairment rate f6(Ip) are continuous

increasing functions equal zero at the origin. Thus, we impose some assumptions on the functions

f1(V), f2(Il), f3(Ip), f4(Ip), f5(V) and f6(Ip). We assume that the parameters of the dynamics, which

should be nonnegative, are T-periodic, continuous, and bounded functions. We also assume that

the mortality rate of a cell is contingent upon its status.
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Symbol Meaning

Il Latently infected cells

Ip Productively infected cells

V HIV-1 particles

S Susceptible cells

W B cells

Tl T-Lymphocytes

f1(V) Infection transmission by V

f2(Il) Infection transmission by Il

f3(Ip) Infection transmission by Ip

f4(Ip) Neutralization function of Ip

f5(V) Neutralization function of viruses V

f6(Ip) T-Lymphocytes impairment function

λ1 Contact rate between S and V

λ2 Contact rate of S and Il

λ3 Contact rate of S and Ip

λ4 Periodic neutralization rate of Ip

λ5 Periodic neutralization rate of W

λ6 Periodic T-Lymphocyte impairment contact

ml Death rate of Il

mp Death rate of Ip

mv Death rate of V

ms Death rate of S

mw Death rate of B cells, W

mc Death rate of Tl

κ1 Periodic conversion rate from the Il to Ip

κ2 Periodic generation rate of HIV particles

κ3 Periodic recruited rate of B cells, W

κ4 Periodic T-Lymphocyte immune rate

Si Periodic generation rate of susceptible cells
Table 1. Meaning of the model’s notations.

Assumption 2.1. • fi, i = 1, · · · , 6 are continuous increasing functions such that fi(0) = 0, for
i = 1, · · · , 6.
• λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t), ms(t), ml(t), mp(t), mv(t), mw(t), mc(t), κ1(t), κ2(t),
κ3(t), κ4(t) and Si(t) are T-periodic, continuous, and bounded functions.
• ms(t) ≤ ml(t) ≤ mi(t), ∀ t ∈ R+.
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Let us consider D(t) to be a m ×m matrix function that is continuous, T-periodic, irreducible,

and cooperative. Hence, σD(t) denotes to the solution of the equation below

σ̇(t) = D(t)σ(t), (2.2)

and by r(σD(T)) the spectral radius of σD(T) having positive components. The application of

the famous theorem of Perron-Frobenius [42] enables us to deduce that σD(T) has a principal

eigenvalue equal to r(σD(T)). Consequently, the following lemma was deduced, which will be

useful for the

Lemma 2.1. (Zhang and Zhao [43, Lemma 2.1].) The equation (2.2) admits a unique solution given by

σ(t) = x(t)e`t where ` =
1
T

ln(r(σC(T))) such that the function x(t) is non-negative and T-periodic.

The equation

Ṡ(t) = ms(t)(Si(t) − S(t)), (2.3)

with initial condition S0
∈ R+ admits a unique T-periodic solution denoted by S∗(t) that it is

globally attractive in R+, i.e. S∗(t) > 0 for all positive t. Then, the model (2.1) admits a unique

virus-free periodic solution given by Q0(t) = (0, 0, 0, S∗(t), 0, 0).

For each continuous, non-negative T-periodic function denoted by η(t), let us define ηu =

max
t∈[0,T)

η(t) and ηl = min
t∈[0,T)

η(t) and let m(t) = min
t≥0

(mv(t), mc(t)). Define ηu = max
t∈[0,T)

η(t) and

ηl = min
t∈[0,T)

η(t) for each non-negative T-periodic function η(t). Then, let m(t) = min
t≥0

(mv(t), mc(t)).

Consequently, The model (2.1) is defined within the attractive and bounded set Ωu as the following.

Proposition 2.1.

Ωu =

(Il, Ip, V, S, W, Tl) ∈ R6
+ / Il + Ip + S ≤ Su

i ; V + Tl ≤ (κu
2 + κu

4)
Su

i

ml
; W ≤ (κu

2 + κu
4)

Su
i κ

u
3

mlml
w


According to the model (2.1), Ωu is a bounded, invariant, and attractor set of any dynamics solution.
Moreover, the model (2.1) satisfies

lim
t→∞

Il(t) + Ip(t) + S(t) − S∗(t) = 0. (2.4)

Proof. By merging the first three equations of the model (2.1), it can be inferred that

İl(t) + İp(t) + Ṡ(t) = −ml(t)Il(t) −mp(t)Ip(t) − κ1(t)Il(t) + ms(t)Si(t) −ms(t)S(t)
−λ4(t) f4(Ip(t))Tl(t)

≤ ms(t)
(
Si(t) − (Il(t) + Ip(t) + S(t))

)
≤ 0, if (Il(t) + Ip(t) + S(t)) ≥ Su

i ,
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V̇(t) + Ṫl(t) = (κ2(t) + κ4(t))Ip(t) −mv(t)V(t) −mc(t)Tl(t) − λ6(t) f6(Ip(t))Tl(t)
≤ (κ2(t) + κ4(t))Ip(t) −mv(t)V(t) −mc(t)Tl(t)
≤ (κu

2 + κu
4)S

u
i −m(t)(V(t) + Tl(t))

≤ 0, if m(t)(V(t) + Tl(t)) ≥ (κu
2 + κu

4)S
u
i ,

and

Ẇ(t) = κ3(t)V(t) −mw(t)W(t)

≤ (κu
2 + κu

4)
Su

i κ
u
3

ml
−mw(t)W(t)

≤ 0, if W(t) ≥ (κu
2 + κu

4)
Su

i κ
u
3

mlml
w

.

�

In the following subsection 2.1, we will establish the basic reproduction number R0 utilizing the

theoretical framework introduced in [36]. Later, we will prove that once R0 < 1. Consequently, the

HIV-free periodic trajectory Q0(t) = (0, 0, 0, S∗(t), 0, 0) is globally asymptotically stable, leading to

the disappearance of HIV. In the subsection 2.2, we aim to prove that if R0 > 1, then the model

(2.1) will be uniformly persistent which implies that the virus will persist.

2.1. HIV-free periodic trajectory. Initially, we seek to establish the definition of the basic repro-
duction number R0 and confirm that the assumptions (A1)–(A7) outlined in [36] hold true. Let

Z(t) =



Il(t)

Ip(t)

V(t)

S(t)

W(t)

Tl(t)


,P(t, Z(t)) =



(λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t)))S(t)

κ1(t)Il(t)

κ2(t)Ip(t)

0

0

0


,

Λ−(t, Z(t)) =



(κ1(t) + ml(t))Il(t)

mp(t)Ip(t) + λ4(t) f4(Ip(t))Tl(t)

mv(t)V(t)

(ms(t) + λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t)))S(t)

mw(t)W(t)

mc(t)Tl(t) + λ6(t) f6(Ip(t))Tl(t)


,

and Λ+(t, Z(t)) =



0

0

0

ms(t)Si(t)
κ3(t)V(t)
κ4(t)Ip(t)


. The model (2.1) admits the new form as follows

Ż(t) = P(t, Z(t)) −Λ(t, Z(t)) = P(t, Z(t)) −Λ−(t, Z(t)) + Λ+(t, Z(t)). (2.5)
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It is easily to see that the satisfaction of Assumptions (A1)–(A5) occurs. Still to prove the satisfaction

of Assumptions (A6) and (A7).

The model (2.5) admits an HIV-free periodic trajectory, Z∗(t) = (0, 0, 0, S∗(t), 0, 0)T.

Let us define the functions h(t, Z(t)) = P(t, Z(t)) −Λ−(t, Z(t)) + Λ+(t, Z(t)) and

M(t) =
(
∂hi(t, Z∗(t))

∂Z j

)
4≤i, j≤6

where hi(t, Z(t)) and Zi(t) are the i-th component of the functions h(t, Z(t)) and Z(t), respectively.

It is easy to obtain that

M(t) =


−ms(t) 0 0

0 −mw(t) 0

0 0 −mc(t)

 ,

with r(σM(T)) < 1. Therefore, the HIV-free trajectory Z∗(t) is asymptotically stable inside the set

Ωs defined as follows:

Ωs =
{
(0, 0, 0, S, 0, 0) ∈ R6

+

}
.

Therefore, the sixth condition (A6) of [36] occurs.

Let us define the 3 by 3 matrices P(t) and Λ(t) given by P(t) =
(
∂Pi(t, Z∗(t))

∂Z j

)
1≤i, j≤3

and Λ(t) =(
∂Λi(t, Z∗(t))

∂Z j

)
1≤i, j≤3

where P j(t, Z(t)) and Λ j(t, Z(t)) are the j-th component of P(t, Z(t)) and

Λ(t, Z(t)), respectively. We can easily obtain that

P(t) =


λ2(t) f ′2(0)S

∗(t) λ3(t) f ′3(0)S
∗(t) λ1(t) f ′1(0)S

∗(t)
κ1(t) 0 0

0 κ2(t) 0


and

Λ(t) =


κ1(t) + ml(t) 0 0

0 mp(t) 0

0 0 mv(t)

 .

By considering the following equation
d
dt

Y(s1, s2) = −Λ(s1)Y(s1, s2) with s1 ≥ s2 and Y(s1, s1) = I,

we denote by Y(s1, s2) its solution. Therefore, the seventh condition (A7) of [36] occurs.

Let us now define the Banach space of T-periodic functions R 7→ R3, equipped with the norm

‖.‖∞ and the linear operator F : CT → CT expressed as follows:

(Fµ)(ν) =

∫
∞

0
Y(ν, ν− t)P(ν− t)µ(ν− t)dt, ∀ν ∈ R,µ ∈ CT. (2.6)

The definition of the basic reproduction number,R0 of the model (2.1) is given through the spectral

radius of F, and is expressed as follows,

R0 = r(F).
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This definition will help us in studying the stability of the HIV-free periodic solution Q0(t) =

(0, 0, 0, S∗(t), 0, 0) of system (2.1) in this subsection.

Theorem 2.1. [36, Theorem 2.2]

• R0 < 1 ⇔ r(σP−Λ(T)) < 1.
• R0 = 1 ⇔ r(σP−Λ(T)) = 1.
• R0 > 1 ⇔ r(σP−Λ(T)) > 1.

Therefore, the HIV-free trajectory Q0(t) is locally asymptotically stable only once R0 < 1.

Theorem 2.2. Q0(t) is globally asymptotically stable only once R0 < 1.

Proof. By using results of Theorem 2.1, Q0(t) is locally asymptotically stable only if R0 < 1. Still to

prove that Q0(t) is globally attractive for the case where R0 < 1. Using the results (2.4) given in

Proposition 2.1, for all ς1 > 0, there exists a constant T1 > 0 such that Il(t) + Ip(t) + S(t) ≤ S∗(t) + ς1

for t > T1. Then, S(t) ≤ S∗(t) + ς1, and we get
İl(t) ≤ [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))](S∗(t) + ς1) − (κ1(t) + ml(t))Il(t),
İp(t) = κ1(t)Il(t) −mp(t)Ip(t) − λ4(t) f4(Ip(t))Tl(t),
V̇(t) ≤ κ2(t)Ip(t) −mv(t)V(t),

(2.7)

for t > T1. Consider the matrix M2(t) given by:

M2(t) =


λ2(t) f ′2(0) λ3(t) f ′3(0) λ1(t) f ′1(0)
0 0 0

0 0 0

 . (2.8)

By applying Theorem 2.1, one has r(σP−Λ(T)) < 1 and we choose ς1 > 0 small enough satisfying

r(σP−Λ+ς1M2(T)) < 1. Now consider the three-dimensional model as follows
˙̄Yl(t) = [λ1(t) f1(V̄(t)) + λ2(t) f2(Īl(t)) + λ3(t) f3(Īp(t))](S∗(t) + ς1) − (κ1(t) + ml(t))Īl(t),
˙̄Yi(t) = κ1(t)Il(t) −mp(t)Īp(t) − λ4(t) f4(Īp(t))T̄l(t),
˙̄Yv(t) = κ2(t)Īp(t) −mv(t)V̄(t).

(2.9)

By applying Lemma 2.1 and the comparison principle, we obtain the existence of a T-periodic

positive function y1(t) such that

x(t) ≤ y1(t)ek1t

with x(t) =
(
Il(t), Ip(t), V(t)

)
and k1 =

1
T

ln (r(σP−Λ+ς1M2(T)) < 0. Thus, lim
t→∞

Il(t) = lim
t→∞

Ip(t) =

lim
t→∞

V(t) = 0. Hence, we obtain lim
t→∞

W(t) = lim
t→∞

Tl(t) = 0. Furthermore, we have lim
t→∞

(S(t) −

S∗(t)) = 0. It can be deduced that the HIV-free trajectory Q0(t) is globally attractive. �
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2.2. HIV-Infected Periodic Solution . Now, we assume that R0 > 1. We start by considering

the Poincaré function P f : R6
+ → R6

+ associated to the model (2.1) with X0 7→ f (T, X0) such that

f (t, X0) is the unique solution of (2.1) where the initial value f (0, X0) = X0
∈ R6

+. Let us define the

sets Ω, Ω0, and ∂Ω0 as follows: Ω =
{
(Il, Ip, V, S, W, Tl) ∈ R6

+

}
, Ω0 = Int(R6

+) and ∂Ω0 = Ω \Ω0.

It easy to see that Ω and Ω0 are positively invariant according to Proposition 2.1 and P f is point

dissipative. Consider the set P∂ defined as follows

P∂ =
{
(I0

l , I0
p, V0, S0, W0, T0

l ) ∈ ∂Ω0 : Pn
f (I

0
l , I0

p, V0, S0, W0, T0
l ) ∈ ∂Ω0, ∀n ≥ 0

}
.

In the first step, we need to demonstrate that

P∂ =
{
(0, 0, 0, S, 0, 0), S ≥ 0

}
. (2.10)

to be able to apply the uniform persistence theory given in [43, 44]. Note that it is evident that
P∂ ⊇

{
(0, 0, 0, S, 0, 0), S ≥ 0

}
. Now, in order to prove that P∂ \

{
(0, 0, 0, S, 0, 0), S ≥ 0

}
= ∅, let

(I0
l , I0

p, V0, S0, W0, T0
l ) ∈ P∂ \

{
(0, 0, 0, S, 0, 0), S ≥ 0

}
.

Assume that I0
p = 0 and that 0 < I0

l , then for any t > 0, Il(t) > 0 and we have İp(t)|t=0 = κ1(0)I0
l > 0.

Now, ∀t > 0 if I0
p > 0 and I0

l = 0, then Ip(t) ≥ 0 and S(t) > 0. Then, for any t > 0, we have

Il(t) =
[
I0
l +

∫ t

0
[λ1(ω) f1(V(ω)) + λ2(ω) f2(Il(ω)) + λ3(ω) f3(Ip(ω))]S(ω) × e

∫ ω

0
(κ1(s) + ml(s))ds

dω
]

e
−

∫ t

0
(κ1(s) + ml(s))ds

> 0, ∀t > 0.

We deduce that (Il(t), Ip(t), V(t), S(t), W(t), Tl(t)) < ∂Ω0 for very small 0 < t. By using Proposition

2.1, the set Ω0 is positively invariant then we deduce (2.10). Consequently, The existence and

uniqueness of a fixed point (0, 0, 0, S∗(0), 0, 0) of P f in P∂ is established, indicating the persistence

of the HIV disease.

Theorem 2.3. Assuming that R0 > 1 only. There is at least a unique positive periodic trajectory of the
model (2.1) such that ∃ ε > 0 satisfying ∀ (I0

l , I0
p, V0, S0, W0, T0

l ) ∈ Int(R3
+) ×R+ × Int(R2

+),

lim inf
t→∞

Ip(t) ≥ ε > 0.

Proof. In the beginning, we will show that P f is uniformly persistent (also the solution of model

(2.1)) for (Ω0, ∂Ω0) ( [44],Theorem 3.1.1). By using the results of Theorem 2.1, we obtain

r(σP−Λ(T)) > 1 and then ∃ ζ2 > 0 sufficiently small satisfying r(σP−Λ−ζ2M2(T)) > 1. We con-

sider the perturbed dynamics

Ṡβ(t) = ms(t)Si(t) −ms(t)Sβ(t) − [λ1(t) f1(β) + λ2(t) f2(β) + λ3(t) f3(β)]Sβ(t), (2.11)

P f associated with (2.11) has a unique fixed point that it is globally attractive in R+ denoted here

by S̄0
β. Applying the implicit function theorem, β 7→ S̄0

β is continuous. Assume that β > 0 small

enough such that S̄β(t) > S̄(t) − ζ2, ∀ t > 0. Let Q1 = (0, 0, 0, S̄0, 0, 0). Concerning the initial



10 Int. J. Anal. Appl. (2025), 23:46

condition, the solution is continuous and then then ∃ β∗ satisfying ∀ (I0
l , I0

p, V0, S0, W0, T0
l ) ∈ Ω0

with ‖(I0
l , I0

p, V0, S0, W0, T0
l ) −Q1‖ ≤ β∗, and then

‖ f (t, (I0
l , I0

p, V0, S0, W0, T0
l )) − f (t, Q1)‖ < β, ∀ 0 ≤ t ≤ T.

Now, we aim to prove that

lim sup
i→∞

d(Pi
f (I

0
l , I0

p, V0, S0, W0, T0
l ), Q1) ≥ β

∗ for any (I0
l , I0

p, V0, S0, W0, T0
l ) ∈ Ω0. (2.12)

Assume that it is false, i.e.

lim sup
n→∞

d(Pi
f (I

0
l , I0

p, V0, S0, W0, T0
l ), Q1) < β

∗

for any (I0
l , I0

p, V0, S0, W0, T0
l ) ∈ Ω0.

In particular, assume that ∀i > 0, d(Pi
f (I

0
l , I0

p, V0, S0, W0, T0
l ), Q1) < β∗. Therefore,

‖w(t, Pi
f (I

0
l , I0

p, V0, S0, W0, T0
l )) − f (t, Q1)‖ < β for any i > 0, 0 ≤ t ≤ T.

Suppose that t = iT + t1, ∀ t ≥ 0, where t1 ∈ [0, T) and i ≤
t
T

describe the greatest integer value of
t
T

. This implies that

‖ f (t, (I0
l , I0

p, V0, S0, W0, T0
l )) − f (t, Q1)‖ = ‖w(t1, Pi

f (I
0
l , I0

p, V0, S0, W0, T0
l )) − f (t1, Q1)‖

< β, ∀ t ≥ 0.

Let (Il(t), Ip(t), V(t), S(t), W(t), Tl(t)) = f (t, (I0
l , I0

p, V0, S0, W0, T0
l )). Then 0 ≤ Il(t), Ip(t) and V(t) ≤

β for any t ≥ 0. Furthermore, we have

Ṡ(t) ≥ ms(t)Si(t) −ms(t)S(t) − (λ1(t) f1(β) + λ2(t) f2(β) + λ3(t) f3(β))S(t). (2.13)

P f associated with the new system (2.11) admits S̄0
β as a fixed point which is globally attractive and

satisfying S̄β(t) > S̄(t) − ζ2, therefore, there exists a constant T2 > 0 satisfying

S̄(t) > S̄(t) − ζ2, ∀ t > T2.

Then, for any t > T2
İl(t) ≥ [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))](S̄(t) − ζ2) − (κ1(t) + ml(t))Il(t),
İp(t) = κ1(t)Il(t) −mp(t)Ip(t) − λ4(t) f4(Ip(t))Tl(t),
V̇(t) = κ2(t)Ip(t) −mv(t)V(t) − λ5(t) f5(V(t))W(t).

(2.14)

r(σP−Λ−ζ2M2(T)) > 1, then by using the comparison principle associated with the results of

Lemma 2.1, we deduce the existence of T-periodic positive trajectory y2(t) satisfying J(t) ≥ ek2ty2(t)

and k2 =
1
T

ln r (σP−Λ−ζ2M2(T)) > 0. Therefore lim
t→∞

Ip(t) = ∞ which is impossible because the

trajectory is bounded and then (2.12) is verified. Therefore, P f is weakly uniformly persistent

respecting to (Ω0, ∂Ω0) and admits a global attractor. Thus, the set Q1 = (0, 0, 0, S̄0, 0, 0) is

invariant inside Ω and Ws(Q1) ∩Ω0 = ∅. Therefore, the solutions in P∂ converge to Q1 and Q1

is acyclic in P∂. By using [44, Theorem 1.3.1 and Remark 1.3.1], we deduce that P f associated to
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(Ω0, ∂Ω0) is uniformly persistent. Furthermore, according to [44, Theorem 1.3.6], P f admits a fixed

point (Ĩ0
l , Ĩ0

p, Ṽ0, S̃0, W̃0, T̃0
l ) ∈ Ω0. Moreover, (Ĩ0

l , Ĩ0
p, Ṽ0, S̃0, W̃0, T̃0

l ) ∈ Int(R3
+) × R+ × Int(R2

+). Let’s

prove that S̃0 > 0. Assume that it is false, i.e. S̃0 = 0. From the fourth equation of the model (2.1),

we have

˙̃S(t) ≥ ms(t)Si(t) −ms(t)S̃(t) − (λ1(t) f1(Ṽ(t)) + λ2(t) f2(Ĩl(t)) + λ3(t) f3(Ĩp(t)))S̃(t),

such that S̃0 = S̃(pT) = 0, p = 1, 2, 3, · · · . Regarding Proposition 2.1, we can conclude that ∀ ς3 > 0,

there exists T3 > 0 large enough satisfying

Ĩl(t), Ĩp(t) ≤ Su
i + ς3, Ṽ(t) ≤ (κu

2 + κu
4)

Su
i

ml
+ ς3, t > T3.

Then, we deduce that

˙̃S(t) ≥ ms(t)Si(t) −ms(t)S̃(t) − (λ1(t) f1(((κu
2 + κu

4)
Su

i

ml
+ ς3)) + λ2(t) f2((Su

i + ς3))

+ λ3(t) f3((Su
i + ς3)))S̃(t)

for any t ≥ T3. There exists a constant p̄ sufficiently large such that for any p > p̄, the inequality
pT > T3 holds. Therefore, by applying the comparison principle, we obtain

S̃(pT) = e
−

∫ pT

0
([λ1(u) f1((κu

2 + κu
4)

Su
i

ml
+ ς3) + λ2(u) f2(Si + ς3) + λ3(u) f3(Si + ς3)] + ms(u))du

×

[
S̃0 +

∫ pT

0
ms(ω)Si(ω)

× e

∫ ω

0

(
[λ1(u) f1((κu

2 + κu
4)

Su
i

ml
+ ς3) + λ2(u) f2(Si + ς3) + λ3(u) f3(Si + ς3)] + ms(u)

)
du

dω
]
.

Hence, for any p > p̄ it is impossible that S(pT) > 0. Then S̃0 should be nonnegative and the

solution (Ĩ0
l , Ĩ0

p, Ṽ0, S̃0, W̃0, T̃0
l ) of model (2.1) is a positive T-periodic trajectory. �

3. Numerical Examples

Our goal in this section is to perform the theoretical findings concerning the system (2.1) by

some numerical examples. We will model all incidence and neutralization rates using some of

Holling’s type II functions.

fi(x) =
f max
i x

ζi + x

where f max
i and ζi, i = 1, · · · , 6 are nonnegative constants. Note that fi, i = 1, · · · , 6 are continuous

and increasing functions. However, for the model parameters, we will used the seasonally forced

function of the form c(t) = c0(1+ c1 cos(nπ(t+θ))), where n ∈N, c0 ≥ 0, 0 < c1 ≤ 1, and 0 ≤ θ ≤ 1

is the phase angle. Therefore, we define the model parameters as follows.
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

λ1(t) = λ10(1 + λ11 cos(nπ(t + θ))), ms(t) = ms0(1 + ms1 cos(nπ(t + θ))),

λ2(t) = λ20(1 + λ21 cos(nπ(t + θ))), ml(t) = ml0(1 + ml1 cos(nπ(t + θ))),

λ3(t) = λ30(1 + λ31 cos(nπ(t + θ))), mp(t) = mi0(1 + mi1 cos(nπ(t + θ))),

λ4(t) = λ40(1 + λ41 cos(nπ(t + θ))), mv(t) = mv0(1 + mv1 cos(nπ(t + θ))),

λ5(t) = λ50(1 + λ51 cos(nπ(t + θ))), mw(t) = mw0(1 + mw1 cos(nπ(t + θ))),

λ6(t) = λ50(1 + λ51 cos(nπ(t + θ))), mc(t) = mc0(1 + mc1 cos(nπ(t + θ))),

κ1(t) = κ10(1 + κ11 cos(nπ(t + θ))), κ2(t) = κ20(1 + κ21 cos(nπ(t + θ))),

κ3(t) = κ30(1 + κ31 cos(nπ(t + θ))), κ4(t) = κ40(1 + κ41 cos(nπ(t + θ))),

Si(t) = Si0(1 + Si1 cos(nπ(t + θ))).

(3.1)

The seasonal cycles frequencies λ11, λ21, λ31, λ41, λ51, ms1, ml1, mi1, mv1, mw1, mc1, κ11, κ21, κ41, κ51,

and Si1 are the amplitudes satisfying |λ11| < 1, |λ21| < 1, |λ31| < 1, |λ41| < 1, |ms1| < 1, |ml1| < 1,

|mi1| < 1, |mv1| < 1, |mw1| < 1, |mc1| < 1, |λ51| < 1, |λ61| < 1, |κ11| < 1, |κ21| < 1, |κ31| < 1, |κ41| < 1, and

|Si1| < 1. The constants λ10, λ20, λ30, λ40, λ50, λ60, ms0, ml0, mi0, mv0, mw0, mc0, κ10, κ20, κ30, κ40, Si0,

λ11, λ21, λ31, λ41, λ51, λ61, ms1, ml1, mi1, mv1, mw1, mc1, κ11, κ21, κ31, κ41, S10, θ and n are given in

Table 2.

Table 2. Constants of the model parameters.

λ10 λ20 λ30 λ40 λ50 λ60 ms0 ml0 mi0 mv0 mw0 mc0 κ10 κ20

0.8 0.7 2 0.5 1 0.2 0.8 4 2 0.5 1 0.2 0.8 1

κ30 κ40 Si0 λ11 λ21 λ31 λ41 λ51 λ61 κ11 κ21 κ31 κ41 θ n

0.8 10 10 0.8 0.7 2 0.5 1 0.2 0.8 0.2 0.8 4 2 0.2

ms1 ml1 mi1 mv1 mw1 mc1 Si1 f max
4

f max
5

f max
6

ζ4 ζ5 ζ6

0.2 0.8 4 2 0.5 1 0.2 0.31 0.32 0.33 2 2.1 2.2

The first set of tests concerns the case of constant parameters. The second set of examples concerns

the case of only T-periodic variable contact rates: λ1(t),λ2(t), λ3(t), λ4(t), λ5(t), and λ6(t). The

third set of examples illustrates a scenario where each model parameter is a periodic function.

3.1. Fixed parameters. Firstly, we examine the scenario in which all parameters are presumed to

be constant. The model (2.1) takes the following form

İl(t) = [λ10 f1(V(t)) + λ20 f2(Il(t)) + λ30 f3(Ip(t))]S(t) − (κ10 + ml0)Il(t),
İp(t) = κ10Il(t) −mi0(t)Ip(t) − λ40 f4(Ip(t))Tl(t),
V̇(t) = κ20Ip(t) −mv0V(t) − λ50 f5(V(t))W(t),
Ṡ(t) = ms0Si0 −ms0S(t) − [λ10 f1(V(t)) + λ20 f2(Il(t)) + λ30 f3(Ip(t))]S(t),
Ẇ(t) = κ30V(t) −mw0W(t),
Ṫl(t) = κ40Ip(t) −mc0Tl(t) − λ60 f6(Ip(t))Tl(t).

(3.2)
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Let us denote by R0, the basic reproduction number, that it is calculated when applying the

next-generation matrix method [45, 46]. Let

P =


λ20 f ′2(0)Si0 λ30 f ′3(0)Si0 λ10 f ′1(0)Si0

0 0 0

0 0 0

 , Λ =


κ10 + ml0 0 0

−κ10 mi0 0

0 −κ20 mv0

 ,

and then

Λ−1 =



1
κ10 + ml0

0 0

κ10

mi0(κ10 + ml0)

1
mi0

0

κ10κ20

mi0mv0(κ10 + ml0)

κ20

mi0mv0

1
mv0


.

Therefore, the next-generation matrix, PΛ−1, is given by PΛ−1 = Si0


a1 a2 a3

0 0 0

0 0 0

 with

a1 =
κ10κ20λ10 f ′1(0) + mi0mv0λ20 f ′2(0) + κ10mv0λ30 f ′3(0)

mi0mv0(κ10 + ml0)
, a2 =

κ20λ10 f ′1(0) + mv0λ30 f ′3(0)
mi0mv0

,

and a3 =
λ10 f ′1(0)

mv0
. Therefore, R0 is given by

R0 = Si0
κ10κ20λ10 f ′1(0) + mi0mv0λ20 f ′2(0) + κ10mv0λ30 f ′3(0)

mi0mv0(κ10 + ml0)
.

We provide several examples validating the theoretical findings concerning the behavior of the

trajectories of model (3.2). In Figure 1, we consider a set of parameters f max
1 = 0.15, f max

2 =

0.25, f max
3 = 0.35, f max

4 = 0.31, f max
5 = 0.32 and f max

6 = 0.33, ζ1 = 11, ζ2 = 9, and ζ3 = 13 ζ4 = 2,

ζ5 = 2.1 and ζ6 = 2.2 such that R0 ≈ 0.8 < 1. The trajectory converges to Q0 = (0, 0, 0, Si0, 0, 0)

where Q0 represents the HIV-free equilibrium point . The trajectories for several initial values

converge to the same HIV-free equilibrium point is shown in Figure 2. In Figure 3, we provide the

trajectories where f max
1 = 0.25, f max

2 = 0.35, f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and f max

6 = 0.33

ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3 ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2 such that R0 ≈ 9.68 > 1. The

trajectory converges to the endemic equilibrium point. In Figure 4, we provide the trajectories for

several initial values that converge to the same endemic equilibrium point.
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Figure 1. Dynamics of (3.2) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(2.5, 4, 2.8, 7, 4.7, 3.6) ∈ R6
+ for f max

1 = 0.15, f max
2 = 0.25, f max

3 = 0.35, f max
4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33, ζ1 = 11, ζ2 = 9, ζ3 = 13 , ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2

then R0 ≈ 0.8 < 1.

Figure 2. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.15, f max

2 = 0.25, f max
3 = 0.35, f max

4 = 0.31, f max
5 = 0.32 and

f max
6 = 0.33, ζ1 = 11, ζ2 = 9, ζ3 = 13 , ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2, (R0 ≈ 0.8 < 1).
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Figure 3. Dynamics of (3.2) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(0.5, 0.2, 0.8, 7, 0.7, 0.6) ∈ R6
+ for f max

1 = 0.25, f max
2 = 0.35, f max

3 = 0.45, f max
4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and

ζ6 = 2.2 then R0 ≈ 9.68 > 1.

Figure 4. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.25, f max

2 = 0.35, f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and

f max
6 = 0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2

(R0 ≈ 9.68 > 1).
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3.2. Periodic transmission rates. In this step, we conduct numerical simulations on model (2.1),

utilizing a linear function to express the transmission rate. Only the seasonally forced T-periodic

functions λ1(t),λ2(t),λ3(t), λ4(t), and λ6(t) are time-dependent. The dynamics take the following

form: 

İl(t) = [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))]S(t) − (κ10 + ml0)Il(t),
İp(t) = κ10Il(t) −mi0(t)Ip(t) − λ4(t) f4(Ip(t))Tl(t),
V̇(t) = κ20Ip(t) −mv0V(t) − λ5(t) f5(V(t))W(t),
Ṡ(t) = ms0Si0 −ms0S(t) − [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))]S(t),
Ẇ(t) = κ30V(t) −mw0W(t),
Ṫl(t) = κ30Ip(t) −mc0Tl(t) − λ6(t) f6(Ip(t))Tl(t).

(3.3)

The approximation of R0 is performed using the time-averaged system. We provide several

examples validating the theoretical findings concerning the behavior of the trajectories of model

(3.3). Considering a set of parameters f max
1 = 0.15, f max

2 = 0.25, f max
3 = 0.35, f max

4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33 ζ1 = 11, ζ2 = 9, and ζ3 = 13 ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2 such

that R0 ≈ 0.8 < 1. The trajectory converges to Q0 = (0, 0, 0, Si0, 0, 0) as shown in Figure 5 . In

Figure 6, we provide the trajectories for several initial values that converge to the same HIV-

free equilibrium point. In Figure 7, we provide the trajectories where f max
1 = 0.25, f max

2 = 0.35,

f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and f max

6 = 0.33, ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3 ζ4 = 2,

ζ5 = 2.1 and ζ6 = 2.2 such that R0 ≈ 9.68 > 1. The trajectory converges to the periodic trajectory

expressing the persistence of HIV. Provide the trajectories for several initial values that converge

to the same periodic trajectory indicated in Figure 8.

Figure 5. Dynamics of (3.3) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(2.5, 4, 2.8, 7, 4.7, 3.6) ∈ R6
+ for f max

1 = 0.15, f max
2 = 0.25, f max

3 = 0.35, ζ1 = 11,

ζ2 = 9, and ζ3 = 13 then R0 ≈ 0.8 < 1.
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Figure 6. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.15, f max

2 = 0.25, f max
3 = 0.35, ζ1 = 11, ζ2 = 9, and ζ3 = 13

(R0 ≈ 0.8 < 1).

Figure 7. Dynamics of (3.3) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(0.5, 0.2, 0.8, 7, 0.7, 0.6) ∈ R6
+ for f max

1 = 0.25, f max
2 = 0.35, f max

3 = 0.45, f max
4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and

ζ6 = 2.2 then R0 ≈ 9.68 > 1.
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Figure 8. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.25, f max

2 = 0.35, f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and

f max
6 = 0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2

(R0 ≈ 9.68 > 1).

3.3. Full periodic environment. In the final scenario, let’s pretend that the model is this shape

by assuming that all of the parameters are periodic functions that reflect a completely periodic

environment:

İl(t) = [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))] f (S(t)) − (κ1(t) + ml(t))Il(t),
İp(t) = κ1(t)Il(t) −mp(t)Ip(t) − λ4(t) f4(Ip(t))Tl(t),
V̇(t) = κ2(t)Ip(t) −mv(t)V(t) − λ5(t) f5(V(t))W(t),
Ṡ(t) = ms(t)Si(t) −ms(t)S(t) − [λ1(t) f1(V(t)) + λ2(t) f2(Il(t)) + λ3(t) f3(Ip(t))]S(t),
Ẇ(t) = κ3(t)V(t) −mw(t)W(t),
Ṫl(t) = κ4(t)Ip(t) −mc(t)Tl(t) − λ6(t) f6(Ip(t))Tl(t).

(3.4)

Again, the approximation of R0 is performed using the time-averaged system. We provide several

examples validating the theoretical findings concerning the behaviour of the trajectories of model

(3.4). In Figure 9, we consider a set of parameters f max
1 = 0.15, f max

2 = 0.25, f max
3 = 0.35, f max

4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33 ζ1 = 11, ζ2 = 9, and ζ3 = 13 ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2 such that

R0 ≈ 0.8 < 1. The trajectory converges to the HIV-free periodic solutionQ0(t) = (0, 0, 0, S ∗ (t), 0, 0).

In Figure 10, we provide the trajectories for several initial values which converge to the same HIV-

free periodic solution. In Figure 11, we provide the trajectories where f max
1 = 0.25, f max

2 = 0.35,
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f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and f max

6 = 0.33 ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3 ζ4 = 2,

ζ5 = 2.1 and ζ6 = 2.2 such that R0 ≈ 9.68 > 1. The trajectory converges to the periodic trajectory

expressing the persistence of HIV. Figure 12 illustrates the trajectories for various initial values

that ultimately converge to the same periodic trajectory.

Figure 9. Dynamics of (3.4) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(2.5, 4, 2.8, 7, 4.7, 3.6) ∈ R6
+ for f max

1 = 0.15, f max
2 = 0.25, f max

3 = 0.35, f max
4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33, ζ1 = 11, ζ2 = 9, ζ3 = 13 , ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2,

then R0 ≈ 0.8 < 1.

Figure 10. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.15, f max

2 = 0.25, f max
3 = 0.35, f max

4 = 0.31, f max
5 = 0.32 and f max

6 =

0.33, ζ1 = 11, ζ2 = 9, ζ3 = 13 , ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2, (R0 ≈ 0.8 < 1).
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Figure 11. Dynamics of (3.4) with initial condition (I0
l , I0

p, V0, S0, W0, T0
l ) =

(0.5, 0.2, 0.8, 7, 0.7, 0.6) ∈ R6
+ for f max

1 = 0.25, f max
2 = 0.35, f max

3 = 0.45, f max
4 = 0.31,

f max
5 = 0.32 and f max

6 = 0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and

ζ6 = 2.2 then R0 ≈ 9.68 > 1.

Figure 12. Trajectories dynamics for several initial conditions (different colors)

where f max
1 = 0.25, f max

2 = 0.35, f max
3 = 0.45, f max

4 = 0.31, f max
5 = 0.32 and f max

6 =

0.33,ζ1 = 1.5, ζ2 = 1.2, and ζ3 = 1.3, ζ4 = 2, ζ5 = 2.1 and ζ6 = 2.2 (R0 ≈ 9.68 > 1).



Int. J. Anal. Appl. (2025), 23:46 21

4. Conclusions

The HIV dynamical system proposed in [41] was extended to a model with general transmission

and neutralization rates by considering a new compartment describing the B cell variation in a

periodic environment. The dynamics deal with three routes of infection, taking into account

infection from both latently infected cells and productively infected cells. General nonlinear

nonnegative increasing functions give both the incidence rates of infection and the neutralization

rates of infected cells and viruses. The basic infection reproduction number was defined through

the spectral radius of an integral operator. We have established the model’s asymptotic stability

analysis concerning the value of the basic reproduction number to unity. We have performed

numerical examples using specific forms of Holling’s type II functions, covering all incidence

and neutralization rates. We performed numerical simulations for three scenarios to confirm the

results, showing that the solution converges to a limit cycle.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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