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Abstract. In this study, we present a novel class of bi-univalent functions that incorporates the Borel distribution and

the Mittag-Leffler function within the open unit disk D. This is achieved by employing the q-analog of the hyperbolic

tangent function in conjunction with the Hadamard product. The primary goal is determining the initial coefficient

bounds for functions that fall within this newly defined class. Additionally, we explore the classical Fekete-Szegö

functional problem as it pertains to these functions. Moreover, we highlight several known corollaries that arise from

specific selections of the parameters associated with this class.

1. Introduction

The concept of probability distributions related to the potential outcomes of a random variable

is a fundamental concept in the fields of statistics and probability theory. This concept is widely

applied to describe and model various real-life events. The significance of specific distributions,

along with the random experiments they pertain to, is underscored by the practice of giving them

unique designations. Within probability theory, the geometric distribution is particularly useful

for determining the number of trials needed to achieve a successful result in a random experiment

that presents two possible outcomes.

Moreover, discrete probability distributions are crucial for analyzing outcomes in countable

sample spaces and are widely used in fields like statistics, mathematics, and computer science.

The Borel distribution, named after Emile Borel, is particularly important in reliability theory

and lifetime analysis, providing a framework for modeling rare events. By utilizing the Borel
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distribution, researchers can effectively study discrete events, improving decision-making and

insights based on probability principles.

In addition, a discrete random variable λ is said to adhere to a Borel distribution with the

parameter λ ∈ [0, 1] if its probability mass function can be represented in the following manner

P(λ = n) =
(λn)n−1e−λn

n!
, where n = 0, 1, 2, 3, · · ·

The Mittag-Leffler functions find widespread applications across numerous fields, such as frac-

tional differential equations, stochastic systems, dynamical systems, statistical distributions, and

chaotic systems. Moreover, the Mittag-Leffler function naturally appears in the solutions to frac-

tional differential and integral equations. It plays a significant role in exploring the fractional

generalization of the kinetic equation, as well as in the analysis of random walks, super-diffusive

transport, and the examination of complex systems.

In this paper, we have implored the use of convolution of the Taylor-Macluarin series repre-

sentation of Borel distribution and Mittag-Leffler function to establish our class. Let H be the

collection of all functions f (z) that are analytic in the open unit disk D = {z ∈ C : |z| < 1}. In

this context, these functions are subject to the normalization conditions f (0) = 1− f ′(0) = 0. The

study of such functions contributes significantly to a deeper comprehension of complex analysis

and its various applications. Moreover, any function f that is a member of the setH can be written

in the following specific form

f (ζ) = z +
∞∑

n=2

anzn, where z ∈ D. (1.1)

Let f and g be analytic functions within the open unit disk D. We say that f is subordinated to

g in the open unit disk D, denoted as f (z) ≺ g(z) for all z ∈ D, if we can find a Schwarz function

w such that h(0) = 0 and |h(z)| < 1 for every z ∈ D, fulfilling the condition f (z) = g(h(z)) for

all z ∈ D. This relationship between f and g is a crucial concept in complex analysis, offering

a means to compare the behaviors of two analytic functions within the unit disk. Importantly,

when the function g is univalent on D, the condition f (z) ≺ g(z) is equivalent to f (0) = g(0)
and f (D) ⊂ g(D). For additional insights and in-depth discussions regarding the Subordination

Principle, readers are encouraged to consult the monographs [12], [13], [29], [31] and [35]. These

references offer thorough explanations and applications of this principle within the realms of

complex analysis and geometric function theory.

The Hadamard product, also referred to as convolution, of two analytic functions f (z) as

described in Equation (1.1) and h(z) = z +
∞∑

n=2

bnzn is expressed as follows:

( f ∗ h)(z) = z +
∞∑

n=2

anbnzn.

Moreover, the convolution operation provides a deeper mathematical exploration and enhances

our understanding of the geometric and symmetric properties of functions within the spaceH . Its
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significance in operator theory and geometric function theory is well-established and thoroughly

discussed in the available literature. For those seeking further insights into convolution within

geometric function theory, we recommend consulting the monographs [7] and [12], as well as the

articles [34], [37], and the associated references therein.

In this study, the notation S denotes the collection of functions that are univalent within the

open unit disk D and are members of the set H . It is well-known that univalent functions are

injective, which implies their invertibility. However, The inverse functions might not be valid

across the whole unit disk D. In particular, the Koebe one-quarter Theorem highlights that the

image of D through any function f ∈ S includes the disk D(0, 1/4), which is centered at the origin

and has a radius of 1/4. As a result, for every function f ∈ S, there is an inverse function f−1 = g
that can be defined as follows

g( f (ζ)) = ζ, ζ ∈ D

f (g(η)) = η, |η| < r( f ); r( f ) ≥ 1/4.

Moreover, the inverse function is given by

g(η) = η− a2η
2 + (2a2

2 − a3)η
3
− (5a3

2 − 5a2a3 + a4)η
4 + · · ·· (1.2)

A function f ∈ H is called bi-univalent if it maintains univalence in the unit disk D, along

with its inverse f−1. Therefore, Σ is identified as the set of all bi-univalent functions withinH , as

outlined in Equation (1.1). The class Σ includes, for instance, the following functions:

z(1− z)−1, − log(1− z),
√

log(1 + z) − log(1− z).

The Koebe function,
2z− z2

2
and

z
1− z2 , are not part of the class Σ. For those interested in learning

more about univalent and bi-univalent functions, we recommend checking out the articles [24],

[26], [32], as well as the monographs [12] and [15], along with the references included in those

works.

Research in geometric function theory reveals complex relationships between function coef-

ficients and their geometric properties. By examining constraints on the modulus of these co-

efficients, scholars enhance their understanding of function behavior within the mathematical

framework. This approach not only deepens comprehension of geometric function theory but also

encourages further exploration in the field. For instance, in the class S, the modulus of the coeffi-

cient an is limited by the integer n, providing valuable insights into the geometric characteristics

of these functions. Specifically, restrictions on the second coefficients in class S yield important

information about growth and distortion bounds.

The investigation into the coefficient-related characteristics of functions within the bi-univalent

class Σ began in the 1970s. A pivotal contribution was made by Lewin in 1967 [24], who analyzed

the bi-univalent function class and established a limit for the coefficient |a2|. Subsequently, in 1969,

Netanyahu’s research [32] identified that the maximum value of |a2| is 4
3 for functions classified

under Σ. Additionally, Brannan and Clunie, in 1979 [9], proved that for functions in this category,
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the inequality |a2| ≤
√

2 is valid. This research has established a foundation for studies on

coefficient bounds of bi-univalent function subclasses. However, there remains a significant gap

in understanding the general coefficients |a2| for n ≥ 4. Estimating these coefficients, particularly

|an|, remains unresolved in geometric function theory, indicating the complexity of bi-univalent

functions and the need for further investigation into their behavior in higher dimensions.

In 1933, Fekete and Szegö advanced the study of univalent functions by establishing the maxi-

mum value of |a3 − λa2
2| for λ between 0 and 1. This led to the Fekete-Szegö problem, which aims

to maximize the functional Ψλ( f ) = a3 − λa2
2 for functions in the class H , with λ as any complex

number. The Fekete-Szegö functional and its related coefficient estimations have since attracted

considerable attention from numerous researchers in the field. Notable contributions can be found

in articles such as [3], [4], [5], [10], [11], [14], [16], [18], [26], [28], [36], along with the references cited

therein. These investigations have significantly enhanced the comprehension of the Fekete-Szegö

problem and its relevance within the domain of geometric function theory.

2. Preliminaries and Lemmas

The information presented in this section are essential for understanding the key conclusions of

this paper. In a recent study, Wanas and Khuttar [39] put forth a power series defined by coefficients

that reflect the probabilities associated with the Borel distribution, which can be articulated in the

following manner:

Bλ(z) = z +
∞∑

n=2

(λ(n− 1))n−2 e−λ(n−1)

Γ(n)
zn,

where the parameter 0 ≤ λ ≤ 1 and z ∈ D. This power series converges throughout the whole

complex plane, as demonstrated by the well-known ratio test. For additional details regarding

Borel distribution and its applications in geometric function theory, interested readers are encour-

aged to refer to the articles [2], [6], [23], [38] and the related references mentioned within these

articles.

In the year 1903, Mittag-Leffler [30] defined a special function named after him as follows

Eα(z) =
∞∑

n=0

zn

Γ(1 + nα)
, where z ∈ C, and<{α} > 0.

This last series converges in the whole complex plane for all values of <(α) > 0 and diverges

for z , 0 when <{α} < 0. Additionally, when <{α} = 0, the radius of convergence is given by

eπ/2|Im(z)|. In the year 1905, Wiman ( [40], [41]) introduced and studied the Mittag-Leffler function

of two parameters as follows:

Eα,β(z) =
∞∑

n=0

zn

Γ(β+ nα)
, where z ∈ C, <{α} > 0,<{β} > 0.

The Mittag-Leffler function of two parameters was later studied by Agarwal and Humbert,

see for example [1], [21] and [22]. It is important to note that Mittag-Leffler functions represent
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fractional extensions of fundamental functions. The function Eα,β includes a variety of well-known

functions as particular instances, among others are the following

E1,1(ζ) = eζ, E1,2(ζ) =
eζ − 1
ζ

, E2,1(ζ) = ζ cosh
√
ζ,

E2,2(ζ) =
√
ζ sinh

√
ζ, and E2,3(ζ) = 2

(
cosh

√
ζ− 1

)
.

It is important to highlight that the two-parameter Mittag-Leffler function Eα,β(z) is not included

in the set H . In the year 2016, Bansal and Prajapat [8] introduced the normalized Mittag-Leffler

function Mα,β, which is defined in the following manner:

Mα,β(z) = Γ(β)zEα,β(z) = z +
∞∑

n=2

Γ(β)
Γ(β+ α(n− 1))

zn,

where z,α, β are complex numbers, β , 0,−1,−2,−3, · · ·,<{α} > 0,<{β} > 0. For additional insights

into Mittag-Leffler functions and their various applications, we recommend that readers consult

the works of [17], [19], [20], [25], [27], [33], [42] and the references provided therein.

By employing the convolution, also known as the Hadamard product, of two analytic func-

tions, we introduce an analytic function denoted as Hλ
α,β(z) =Mα,β(z) ∗ Bλ(z). The power series

representation of this function is expressed as follows:

H
λ
α,β(z) = z +

∞∑
n=2

Γ(β) (λ(n− 1))n−2 e−λ(n−1)

Γ(n)Γ(α(n− 1) + β)
zn.

Moreover, we introduce the linear operator Hλ
α,β : H → H which we define as follows. For

any f (z) ∈ H this linear operator is defined as Kλ
α,β f (z) = Hλ

α,β(z) ∗ f (z). More precisely, it can be

expressed as follows:

K
λ
α,β f (z) = z +

∞∑
n=2

Γ(β) (λ(n− 1))n−2 e−λ(n−1)

Γ(n)Γ(α(n− 1) + β)
anzn.

Now, utilizing the aforementioned linear operator, we present a novel class comprising bi-

univalent functions characterized by Borel distribution and Mittag-Leffler functions. This class is

associated with the q-analogue of the hyperbolic tangent function, which we denote asWγ(α, β,λ).

The formal definition of this class is provided as follows.

Definition 2.1. A function f (z) belongs to the family Σ is considered to be part of the classWγ(α, β,λ) if
it obeys the following subordination conditions:

(1− γ)

Kλ
α,β f (z)

z

+ γ
(
K
λ
α,β f (z)

)′
≺ 1 + tanh(qz)

and

(1− γ)

Kλ
α,βg(w)

w

+ γ
(
K
λ
α,βg(w)

)′
≺ 1 + tanh(qw),
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where the function g(w) = f−1(w) is given by the Equation (1.2), the parameters 0 < λ ≤ 1, γ ≥ 0,
α, β ∈ C with<(α) > 0,<(β) > 0 and β , 0,−1,−2,−3, · · ·.

The lemma presented below is extensively documented in the literature (see, for example, [18])

and is regarded as a fundamental principle that significantly contributes to the research we are

conducting.

Lemma 2.1. Let p(z) be a function in the Caratheodory class P. Then for any z ∈ D the function p can be

written as p(z) = 1+
∞∑

n=1

pnzn. Moreover, |pn| ≤ 2 for each natural number n. In addition, for any complex

number ζ, we have

|p2 − ζp2
1| ≤ 2 max{1, |2ζ− 1|}.

The purpose of this article is to explore a novel class of bi-univalent functions that are defined

through the Borel distribution and the Mittag-Leffler function, utilizing the Hadamard product in

relation to the q-analogue hyperbolic tangent function. The main goal is to obtain estimates for the

moduli of the initial coefficients in the Taylor series expansion of functions within this category.

Additionally, the paper delves into the Fekete-Szegö functional problem related to this class of

functions, which enhances our comprehension of their essential properties.

3. Coefficient Estimates of the ClassWγ(α, β,λ)

This part of the paper focuses on examining the bounds for the modulus of the initial coefficients

of functions belonging to the class Wγ(α, β,λ), as indicated in Equation (1.1). Furthermore, we

seek to determine the coefficient bounds for several subclasses that fall under our established

class. Additionally, we aim to establish the coefficient bounds for some of the subclasses within

our defined class.

Theorem 3.1. Let a function f be a bi-univalent function that belongs to the class Wγ(α, β,λ) and is
represented by the Equation (1.1). The following inequalities hold:

|a2| ≤
qeλΓ(α+ β)

√
2Γ(2α+ β)√

4qλ(1 + 2γ)Γ(β)Γ2(α+ β) + (1 + γ)2Γ2(β)Γ(2α+ β)
, (3.1)

and

|a3| ≤


2qAe2λ

λ , if
∣∣∣∣ qλB2

A

∣∣∣∣ ≤ 1

2q2e2λB2, if 1 <
∣∣∣∣ qλB2

A

∣∣∣∣ < 2
4qAe2λ

λ , if
∣∣∣∣ qλB2

A

∣∣∣∣ ≥ 2

(3.2)

where

A =
Γ(2α+ β)

(1 + 2γ)Γ(β)
and B =

Γ(α+ β)

(1 + γ)Γ(β)
.
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Proof. Let f be a function that is part of the class Wγ(α, β,λ). Based on Definition 2.1 and the

Subordination Principle, it is feasible to recognize two Schwarz functions, η(z) and ζ(w), that are

defined within the open unit disk D such that

(1− γ)

Kλ
α,β f (z)

z

+ γ
(
K
λ
α,β f (z)

)′
= 1 + tanh(qη(z)), (3.3)

and

(1− γ)

Kλ
α,βg(w)

w

+ γ
(
K
λ
α,βg(w)

)′
= 1 + tanh(qζ(w)). (3.4)

Now, using these Schwarz functions, we define two analytic functions h(z) and P(w) as follow:

h(z) =
1 + η(z)
1− η(z)

and P(w) =
1 + ζ(w)

1− ζ(w)
.

It is obvious that the functions h(z) and P(w) are analytic within the open unit disk D and are

classified under the Caratheodory class. Therefore, we can express them in the following manner:

h(z) =
1 + η(z)
1− η(z)

= 1 + h1z + h2z2 + · · ·

and

P(w) =
1 + ζ(w)

1− ζ(w)
= 1 + p1w + p2w2 + · · ·

Moreover, h(0) = 1 = P(0), they have positive real parts, |h j| ≤ 2 and |p j| ≤ 2 for all j ∈N.

Equivalently, we get the following representations of η(z) and ζ(w)

ζ(z) =
h(z) − 1
h(z) + 1

=
h1

2
z +

h2

2
−

h2
1

4

 z2 + · · ·, (3.5)

and

ζ(w) =
P(w) − 1
P(w) + 1

=
p1

2
w +

p2

2
−

p2
1

4

 w2 + · · ·. (3.6)

By referring to Equation (3.5), we can express the right-hand sides of Equation (3.3) in the

following manner:

1 + tanh(qη(z)) = 1 +
qh1

2
z + q

h2

2
−

h2
1

4

 z2

+ q

h2

2
−

h1h2

2
+

(3− 2q2)h3
1

24

 z3 + · · ·

(3.7)

Moreover, the left-hand side Equation (3.3) can be written as:

(1− γ)

Kλ
α,β f (z)

z

+ γ
(
K
λ
α,β f (z)

)′
= 1 +

(1 + γ)Γ(β)
eλΓ(α+ β)

a2z +
λ(1 + 2γ)Γ(β)
2e2λΓ(2α+ β)

a3z2 + · · ·

(3.8)



8 Int. J. Anal. Appl. (2025), 23:41

Hence, considering Equation (3.3), then comparing coefficients on both sides of Equation (3.7)

and Equation(3.8) we get the following two equations:

2(1 + γ)Γ(β)a2 = qeλΓ(α+ β)h1, (3.9)

2λ(1 + 2γ)Γ(β)a3 = qe2λΓ(2α+ β)
(
2h2 − h2

1

)
, (3.10)

Similarly, by consulting Equation (3.6), the right-hand sides of Equation (3.4) can be written as:

1 + tanh(qζ(w)) = 1 +
qp1

2
w + q

p2

2
−

p2
1

4

 w2

+ q

p2

2
−

p1p2

2
+

(3− 2q2)p3
1

24

 z3 + · · ·

(3.11)

Moreover, the left-hand side Equation (3.4) can be written as:

(1− γ)

Kλ
α,βg(w)

w

+ γ
(
K
λ
α,βg(w)

)′
= 1 +

(1 + γ)Γ(β)
eλΓ(α+ β)

a2w +
λ(1 + 2γ)Γ(β)
2e2λΓ(2α+ β)

(2a2
2 − a3)w2 + · · ·

(3.12)

To proceed, we take into account Equation (3.4) and then analyze the coefficients from both

sides of Equations (3.11) and (3.12), which leads us to derive the following two equations.

−2(1 + γ)Γ(β)a2 = qeλΓ(α+ β)p1, (3.13)

and

2λ(1 + 2γ)Γ(β)(2a2
2 − a3) = qe2λΓ(2α+ β)

(
2p2 − p2

1

)
. (3.14)

Now, on one hand, using Equation (3.9) and Equation (3.13) we get the following equation

(
2(1 + γ)Γ(β)
qeλΓ(α+ β)

)2

a2
2 = h2

1 + p2
1.

On the other hand, adding Equation (3.10) to Equation (3.14), we obtain the following equation(
4(1 + 2γ)Γ(β)
qe2λΓ(2α+ β)

)
a2

2 = 2(h2 + p2) − (h2
1 + p2

1).

Now, consulting the last two equations, we obtain the following equation

a2
2 =

2q2e2λΓ(2α+ β)Γ2(α+ β)(h2 + p2)

2Γ(β)[4qλΓ2(α+ β) + (1 + γ)2Γ(β)Γ(2α+ β)]
. (3.15)

Therefore, considering equation (3.15) and using constraints |h2| ≤ 2 and |p2| ≤ 2, the simple

calculations gives the desired inequality (3.1).
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Secondly, our objective is to ascertain the coefficient estimate for |a3|. By referring to Equation

(3.10), we can derive the subsequent equation

a3 =
qe2λΓ(2α+ β)

2λ(1 + 2γ)Γ(β)
(2h2 − h2

1).

Thus, by applying the constraints |h1| ≤ 2 and |h2| ≤ 2, we can derive the following inequality

from the previous equation

|a3| ≤
4qe2λΓ(2α+ β)

λ(1 + 2γ)Γ(β)
. (3.16)

By utilizing Equation (3.14), we can derive the subsequent equation

a3 =
qAe2λ

2λ
(p2

1 − 2p2) + 2a2
2. (3.17)

Furthermore, by applying Equation (3.13), the last equation can be expressed in the following

manner

a3 =
qe2λ

2λ

{
−2Ap2 + Ap2

1 + qλB2p2
1

}
=
−qAe2λ

λ

{
p2 −

(
A + qλB2

2A

)
p2

1

}
.

Now, by referring to Lemma 2.1 along with the preceding equation, we can derive the subsequent

inequality

|a3| ≤
2qAe2λ

λ
max

{
1,

∣∣∣∣∣∣qλB2

A

∣∣∣∣∣∣
}

. (3.18)

By applying Equation (3.16) in conjunction with Equation (3.18), we can establish the subsequent

inequality.

|a3| ≤
2qAe2λ

λ
min

{
2, max

{
1,

∣∣∣∣∣∣qλB2

A

∣∣∣∣∣∣
}}

. (3.19)

Finally, the straightforward computations derived from Equation (3.19) yield the necessary

estimation of |a3| that is represented by Inequality (3.2). Therefore, the demonstration of Theorem

3.1 is now complete. �

In our analysis, we introduce a parameter γ that plays a crucial role in categorizing our class

W
γ(α, β,λ). The choice of γ can significantly influence the properties and behaviors of this class,

leading us to identify distinct subclasses based on its values.

Example 3.1. Let the function f be in the class Σ and represented by the Equation (1.1). We say f belongs
to the subclassW1(α, β,λ) if the following conditions hold:(

K
λ
α,β f (z)

)′
≺ 1 + tanh(qz), (3.20)

and (
K
λ
α,βg(w)

)′
≺ 1 + tanh(qw), (3.21)

where g(w) = f−1(w) is expressed by the Equation (1.2), the parameters 0 < λ ≤ 1, α, β ∈ C with
<(α) > 0,<(β) > 0 and β , 0,−1,−2,−3, · · ·.
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Example 3.2. Let the function f be in the class Σ and represented by the Equation (1.1). We say f belongs
to the subclassW0(α, β,λ) if the following conditions hold:Kλ

α,β f (z)

z

 ≺ 1 + tanh(qz), (3.22)

and Kλ
α,βg(w)

w

 ≺ 1 + tanh(qw), (3.23)

where g(w) = f−1(w) is expressed by the Equation (1.2), the parameters 0 < λ ≤ 1, α, β ∈ C with
<(α) > 0,<(β) > 0 and β , 0,−1,−2,−3, · · ·.

The following corollaries are derived directly from Theorem 3.1 and are associated with Example

3.1 and Example 3.2, respectively. The techniques employed to prove these corollaries are quite

similar to those used in the proof of Theorem 3.1, which is the reason we have chosen to leave out

the detailed proofs.

Corollary 3.1. If a function f ∈ Σ is represented by the Equation (1.1) and belong to the classW1(α, β,λ),
then the following hold

|a2| ≤
qeλΓ(α+ β)

√
Γ(2α+ β)√

6qλΓ(β)Γ2(α+ β) + 2Γ2(β)Γ(2α+ β)
,

and

|a3| ≤



2qA∗e2λ

3λ , if
∣∣∣∣ qλ(B∗)2

A∗

∣∣∣∣ ≤ 4
3

q2e2λ(B∗)2

2 , if 4
3 <

∣∣∣∣∣ qλB2
1

A1

∣∣∣∣∣ < 8
3

4qA∗e2λ

3λ , if
∣∣∣∣∣ qλB2

1
A1

∣∣∣∣∣ ≥ 8
3

where

A∗ =
Γ(2α+ β)

Γ(β)
and B∗ =

Γ(α+ β)

Γ(β)
.

Corollary 3.2. If a function f ∈ Σ is represented by the Equation (1.1) and belong to the classW0(α, β,λ),
then it can be concluded that

|a2| ≤
qeλΓ(α+ β)

√
2Γ(2α+ β)√

4qλΓ(β)Γ2(α+ β) + Γ2(β)Γ(2α+ β)
,

and

|a3| ≤


2qA∗e2λ

λ , if
∣∣∣∣ qλ(B∗)2

A∗

∣∣∣∣ ≤ 1

2q2e2λ(B∗)2, if 1 <
∣∣∣∣ qλ(B∗)2

A∗

∣∣∣∣ < 2
4qA∗e2λ

λ , if
∣∣∣∣ qλ(B∗)2

A∗

∣∣∣∣ ≥ 2

where

A∗ =
Γ(2α+ β)

Γ(β)
and B∗ =

Γ(α+ β)

Γ(β)
.
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4. Fekete-Szegö Inequalities for the ClassWγ(α, β,λ)

This part of the paper will focus on the advancement of the Fekete-Szegö inequalities for func-

tions that are part of the designated classWγ(α, β,λ). This class includes bi-univalent functions

that are defined through the Borel distribution and the Mittag-Leffler function. Additionally,

we aim to establish Fekete-Szegö inequalities for several subclasses that are included within the

boundaries of our defined class.

Theorem 4.1. Let a function f be a bi-univalent function that belongs to the class Wγ(α, β,λ) and is
represented by the Equation (1.1), then for a real number ζ the following inequality holds

|a3 − ζa2
2| ≤

2qAe2λ

λ
min

{
max

{
1,

∣∣∣∣∣∣qζλB2

2A

∣∣∣∣∣∣
}

, max
{

1,

∣∣∣∣∣∣q(2− ζ)λB2

2A

∣∣∣∣∣∣
}}

, (4.1)

where

A =
Γ(2α+ β)

(1 + 2γ)Γ(β)
and B =

Γ(α+ β)

(1 + γ)Γ(β)
.

Proof. By consulting Equation (3.10), we arrive at the subsequent equation, which can be expressed

as follows

a3 =
qAe2λ

2λ
(2h2 − h2

1).

For any real number ζ, we can express the last equation using Equation (3.9) as follows

a3 − ζa2
2 =

qAe2λ

2λ
(2h2 − h2

1) −
q2ζe2λ

4
B2h2

1

=
qAe2λ

λ

{
h2 −

(
1
2
+

qζλB2

4A

)
h2

1

}
.

By applying Lemma 2.1 to the last equation, we can derive the following inequality. This process

involves substituting the relevant expressions or conditions outlined in the lemma into our equa-

tion, which allows us to manipulate the terms accordingly. As a result, we obtain an inequality

that provides a clearer understanding of the relationship between the variables involved.

|a3 − ζa2
2| ≤

2qAe2λ

λ
max

{
1,

qζλB2

2A

}
. (4.2)

In contrast, for the real number ζ, we can derive the following result by applying Equation (3.14)

a3 − ζa2
2 =

qAe2λ

2λ
(p2

1 − 2p2) + (2− ζ)a2
2.

Consequently, by applying Equation (3.13), the final equation can be expressed as follows

a3 − ζa2
2 =

qAe2λ

2λ
(p2

1 − 2p2) +
(2− ζ)q2e2λB2

4
p2

1

=
qAe2λ

2λ

(
p2

1 − 2p2 +
qλ(2− ζ)B2

2A
p2

1

)
=
−qAe2λ

λ

{
p2 −

(
1
2
+

qλ(2− ζ)B2

4A

)
p2

1

}
.



12 Int. J. Anal. Appl. (2025), 23:41

By utilizing Lemma 2.1 in the previous equation, we can derive a new relationship that allows

us to establish the subsequent inequality

|a3 − ζa2
2| ≤

2qAe2λ

λ
max

{
1,

qλ(2− ζ)B2

2A

}
. (4.3)

Finally, using Equation (4.2) and Equation (4.3), we can straightforwardly derive the required

inequality represented by (4.1). This concludes the proof. �

The subsequent corollaries arise directly from Theorem 4.1. The approach employed to establish

these corollaries closely resembles that of the previous theorem, utilizing similar methodologies,

logical reasoning, and mathematical techniques. Therefore, we have opted to omit the compre-

hensive proofs for these corollaries.

Corollary 4.1. Let a function f ∈ Σ be represented by equation (1.1) and be part of the subclassW1(α, β,λ),
then for a real number ζ the following inequality holds

|a3 − ζa2
2| ≤

2qA∗e2λ

3λ
min

{
max

{
1,

∣∣∣∣∣∣3qζλ(B∗)2

8A∗

∣∣∣∣∣∣
}

, max
{

1,

∣∣∣∣∣∣3q(2− ζ)λ(B∗)2

8A∗

∣∣∣∣∣∣
}}

.

Corollary 4.2. Let a function f ∈ Σ be represented by equation (1.1) and be part of the subclassW0(α, β,λ),
then for a real number ζ the following inequality holds

|a3 − ζa2
2| ≤

2qA∗e2λ

λ
min

{
max

{
1,

∣∣∣∣∣∣qζλ(B∗)2

2A∗

∣∣∣∣∣∣
}

, max
{

1,

∣∣∣∣∣∣q(2− ζ)λ(B∗)2

2A∗

∣∣∣∣∣∣
}}

.

5. Conclusion

This study explored a novel category of bi-univalent functions, defined through the convolution

of the Borel distribution and the Mittag-Leffler function, which are linked to the q-analogue

hyperbolic tangent function. We have effectively obtained estimates for the initial coefficients and

has formulated the Fekete-Szegö inequalities that pertain to functions within this category and

its different subclasses. The results of this investigation are expected to provide a wide range

of insights for subclasses related to orthogonal polynomials, such as Legendre and Horadam

polynomials. Additionally, the findings presented in this study are likely to inspire researchers to

expand these concepts to include symmetric q-calculus and harmonic functions.
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