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Abstract. The purpose of this work is to introduce and study two new topological properties called L-mild normality

and L2-mild normality. A space X is called an L-mildly normal space if there exist a mildly normal space Y and a bijective

function f : X → Y such that the restriction function f |A : A → f (A) is a homeomorphism for each Lindelöf subspace

A ⊆ X. If the space Y is Hausdorff, then the space X is called L2-mildly normal. We investigate these properties and

present some examples to illustrate the relationships among L-mild normality and L2-mild normality with other kinds

of topological properties.

1. Introduction

The notions of epi-normality, C-normality and L-normality were introduced by Arhangel’skii

during his visiting to Department of Mathematics in King Abdulaziz University, Saudi Arabia

on 2012. The notion of C-normality has been studied by Alzahrani and Kalantan in [1]. The

notion of L-normality has been studied by Kalantan and Saeed in [2]. In 2022, Al-Awadi and

others introduced the notion of C-mild normality in [3]. Alqurashi and Thabit studied the notions

of C-almost normality and L-almost normality in [4]. The concepts of CC-Tychonoffness, CCT3,

CC-regularity and CC-almost regularity have been studied in [5]. In this paper, we study two new

properties which are L-mild normality and L2-mild normality. We show that these new properties

are different from each other, and they are different from C-normality, L-normality, C-regularity,

L-regularity, epi-mild normality and so on. Some properties, counterexample and relationships of

these properties are investigated. Two sets A and B of a space X are said to be separated if there

exist two disjoint open sets U and V in X such that A ⊆ U and B ⊆ V [6–8]. If T ′ ⊆ T , then T ′ is

called a topology that is coarser thanT andT is called finer [7]. A subset A of a space X is said to be
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a closed domain subset if it is the closure of its own interior [9]. A complement of a closed domain

set is called open domain. The topology on X generated by the family of all open domains denoted

by Ts is coarser than T and (X,Ts) is called the semi regularization of X. A space (X,T ) is called

semi-regular if T = Ts [10]. Any undefined concepts in this work can be found in the introduction

section of [4, 5, 11].

2. Preliminaries

Recall that: a space X is said to be mildly normal [12], if any pair of disjoint closed domain

subsets A and B of X can be separated. A space X is called C-normal [1] (resp. C-regular [13],

C-Tychonoff [14]) if there exist a normal (resp. regular, Tychonoff) space Y and a bijective function

f : X→ Y such that the restriction function f |A : A→ f (A) is a homeomorphism for each compact

subspace A ⊆ X. A space X is called L-normal [2] (resp. CC-normal [15]) if there exist a normal

space Y and a bijective function f : X → Y such that the restriction function f |A : A → f (A) is a

homeomorphism for each Lindelöf (resp. countably compact) subspace A ⊆ X. A space X is called

L-regular [13] (resp. L-Tychonoff [14]) if there exist a regular (resp. Tychonoff) space Y and a bijective

function f : X→ Y such that the restriction function f |A : A→ f (A) is a homeomorphism for each

Lindelöf subspace A ⊆ X. A space (X,T ) is said to be epi-normal [16] (resp. epi-mildly normal [17],

epi-almost normal [18], epi-regular [19], epi-quasi normal [11]), if there exists a topology T ′ on X
coarser than T such that (X,T ′) is T4 (resp. Hausdorff mildly-normal, Hausdorff almost-normal,

T3, Hausdorff-quasi-normal).

We give the definitions of L-mild normality and L2-mild normality.

Definition 2.1. A space X is called L-mildly normal space if there exist a mildly normal space Y and a

bijective function f : X→ Y such that the restriction function f |A : A→ f (A) is a homeomorphism

for each Lindelöf subspace A ⊆ X. If the space Y is Hausdorff, then the space X is called L2-mildly
normal.

From Definition 2.1, it is clear that: every mildly normal space is L-mildly normal and every

Hausdorff mildly normal is L2-mildly normal, where Y = X and the identity function f : X → X
satisfies the requirements. The converse is not true, for example:

Example 2.1. The modified Dieudonné plank [15, Example 2.4], is a Tychonoff, L-normal space which

is neither mildly normal nor locally compact, see also [2, Example 2.2] and [20, Example 2]. Hence,

the modified Dieudonné plank is an L2-mildly normal space which is neither mildly normal nor

locally compact.

Next, we present the following basic results:

Theorem 2.1. Every L-normal space is L-mildly normal.
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Proof. Let X be an L-normal space. Then, there exist a normal space Y and a bijective function

f : X→ Y such that the restriction function f |A : A→ f (A) is a homeomorphism for each Lindelöf

subspace A ⊆ X. Since Y is a normal space, we have Y is mildly normal. Therefore, X is L-mildly

normal. �

The converse of Theorem 2.1 is not necessary to be true in general. For example:

Example 2.2. The finite complement topology [21, Example 19], (R,CF ) is a T1-compact space and

every subspace of (R,CF ) is compact [21]. Note that: (R,CF ) is not a C-regular space [13].

Since (R,CF ) is a mildly normal space, we get (R,CF ) is L-mildly normal. Therefore, (R,CF ) is

an L-mildly normal space, which is neither L-normal, L-regular, epi-mildly normal nor L2-mildly

normal.

Theorem 2.2. Every Lindelöf L-mildly normal space is mildly normal.

Proof. Let X be a Lindelöf L-mildly normal space. Then, there exist a mildly normal space Y and a

bijective function f : X→ Y such that the restriction function f |A : A→ f (A) is a homeomorphism

for each Lindelöf subspace A of X. Since X is Lindelöf, put A = X. Since f is bijective, we get

f : X→ Y is a homeomorphism. Since Y is a mildly normal space, we get X is mildly normal. �

Corollary 2.1. If X is a Lindelöf non mildly normal space, then X cannot be L-mildly normal.

Theorem 2.3. Every Lindelöf L2-mildly normal space is Hausdorff mildly normal.

Proof. It is similar to the proof of Theorem 2.2. �

Corollary 2.2.

(1) Every Lindelöf L2-mildly normal space is epi-mildly normal.

(2) Every Lindelöf non Hausdorff space cannot be L2-mildly normal.

The proofs of the next results are similar to that of the corresponding results in [1, 14].

Theorem 2.4. L-mild normality and L2-mild normality are topological properties.

Theorem 2.5. L-mild normality and L2-mild normality are additive properties.

Proposition 2.1. If X is a T1 L-mildly normal space, then a witness Y is a T1-space.

Proof. It is similar to that of Proposition 1 in [4]. �

Lemma 2.1. If X is a T1 L-normal space, then the witness Y is T4.

Theorem 2.6. Every L-mildly normal space is C-mildly normal.

Proof. Let X be an L-mildly normal space. Then, there exist a mildly normal space Y and a bijective

function f : X → Y such that the restriction function f |A : A → f (A) is a homeomorphism for

each Lindelöf subspace A of X. Since every compact subset is Lindelöf, we have each compact

subspace C of X is a Lindelöf subspace of X. Thus, the restriction function f |C : C → f (C) is a

homeomorphism for each compact subspace C of X. Therefore, X is C-mildly normal. �
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The converse of Theorem 2.6 may not be true in general. For example:

Example 2.3. Consider the space presented in [4, Example 18]. The space X is a Hausdorff

space, which is neither Urysohn, regular, mildly normal, compact, paracompact nor epi-mildly

normal [17, Example 16]. Hence, X is neither C2-mildly normal nor L2-mildly normal. Note that: X
is a Hausdorff Lindelöf second countable C-paracompact space, which is not C2-paracompact [22,

Example 2.25]. Since X is a Lindelöf non mildly normal space, it is not L-mildly normal. Also, the

space X is C-almost normal [4]. Hence, it is C-mildly normal. Therefore, the space X is a C-mildly

normal space, which is neither mildly normal, L-mildly normal, C2-mildly normal nor epi-mildly

normal.

Example 2.4. The countable complement topology [21, Example 20], (R,CC) is a C-regular space that

is not L-regular [13]. Since (R,CC) is a mildly normal space, we obtain (R,CC) is L-mildly normal.

Also, the countable complement topology is C2-mildly normal. Since X is Lindelöf non Hausdorff,

we get: X cannot be L2-mildly normal. Therefore, (R,CC) is an L-mildly normal and C2-mildly

normal space, which is neither L-regular, epi-regular, L2-mildly normal nor epi-mildly normal.

Note that: if X is L-mildly normal and f : X → Y is a witness of the L-mild normality of X,

then f may not be continuous. For example, the countable complement topology, Example 2.4, is

an L-mildly normal space and the witness of the L-mild normality of X is not continuous. But it

will be if X is of a countable tightness. A space X is of a countable tightness if for each subset B of

X and each x ∈ B, there exists a countable subset B0 of B such that x ∈ B0 [7]. Note that: every

first countable space is Fréchet, every Fréchet space is sequential and every sequential space is

countable tightness.

Theorem 2.7. If X is an L-mildly normal (resp. L2-mildly normal) space of a countable tightness and
f : X→ Y is a witness of the L-mild normality (resp. L2-mild normality) of X, then f is continuous.

Proof. It is similar to that of Theorem 5 in [14] and Theorem 11 in [4]. �

Corollary 2.3. If X is an L-mildly normal (resp. L2-mildly normal) first countable space and

f : X→ Y is a witness of the L-mild normality (resp. L2-mild normality) of X, then f is continuous.

Theorem 2.8. If (X,T ) is an L-mildly normal countable tightness (resp. Fréchet, first countable) such
that the witness (Y,T ′) of the L-mild normality of X is Hausdorff, then (X,T ) is epi-mildly normal.

Proof. It is similar to that of Theorem 7 in [4].

�

Theorem 2.9. If X is a T3 separable, L-mildly normal (resp. L2-mildly normal) space and of a countable
tightness, then X is mildly normal and epi-mildly normal.

Proof. It is similar to that of Theorem 12 in [4]. �
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Since every second countable space is a Lindelöf separable space [7], and every Lindelöf L-

mildly normal (resp. L2-mildly normal) space is mildly normal, Theorem 2.2) (resp. Hausdorff

mildly normal,Theorem 2.3), we get:

Corollary 2.4.

(1) Every Hausdorff second countable L-mildly normal space is epi-mildly normal.

(2) Every second countable L-mildly normal space is mildly normal.

(3) Every second countable L2-mildly normal space is mildly normal and epi-mildly normal.

It can be observe that: epi-mild normality and L-mild normality are different from each other.

For example:

Example 2.5. The particular point topology [21, Example 10], (R,Tp) is neither a C-regular nor C-

normal space [1, 13]. Since the particular point topology (R,Tp) is mildly normal, we get (R,Tp)

is L-mildly normal. Therefore, (R,Tp) is an L-mildly normal space, which is neither L-regular,

L-normal, epi-mildly normal, epi-normal nor L2-mildly normal.

Theorem 2.10. If X is a C-mildly normal space such that every Lindelöf subspace of X is contained in a
compact subspace of X, then X is L-mildly normal.

Proof. Let X be a C-mildly normal space such that if A is a Lindelöf subspace of X, there exists a

compact subspace B of X such that A ⊆ B. Let Y be any mildly normal space and f : X → Y be a

bijective function such that f |C : C→ f (C) is a homeomorphism for each compact subspace C of X.

Now, let A be any Lindelöf subspace of X. Pick a compact subspace B of X such that A ⊆ B. Then,

f |B : B→ f (B) is a homeomorphism. Thus, f |A : A→ f (A) is a homeomorphism as ( f |B)|A = f |A.

Therefore, X is L-mildly normal. �

Theorem 2.11. If X is a C2-mildly normal space such that every Lindelöf subspace of X is contained in a
compact subspace of X, then X is L2-mildly normal.

Proof. It is similar to the proof of Theorem 2.10. �

3. Some other properties and counterexamples

In this section, we present some other properties, counterexamples and relationships:

Theorem 3.1. Every L2-mildly normal space is C2-mildly normal.

Proof. It is similar to the proof of Theorem 2.6. �

The converse of Theorem 3.1 is not necessary to be true in general. For example, the countable

complement topology, Example 2.4, is a C2-mildly normal space which is not L2-mildly normal.

Theorem 3.2. Every L2-mildly normal space is L-mildly normal.
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Proof. Since X is an L2-mildly normal space, there exist a Hausdorff mildly normal space Y and a

bijective function f : X→ Y such that the restriction function f |C : C→ f (C) is a homeomorphism

for each Lindelöf subspace C ⊆ X. Since Y is mildly normal, we obtain: X is L-mildly normal. �

The converse of Theorem 3.2 is not necessarily true in general. For example, the finite comple-

ment topology, Example 2.2, is an L-mildly normal space which is not L2-mildly normal. Since

every C2-mildly normal space is C-mildly normal [23], we get:

Corollary 3.1. Every L2-mildly normal space is C-mildly normal.

Theorem 3.3. Every T1 L-normal space is L2-mildly normal.

Proof. Let X be a T1 L-normal space. Then, there exist a normal space Y and a bijective function

f : X→ Y such that the restriction function f |C : C→ f (C) is a homeomorphism for each Lindelöf

subspace C ⊆ X. By Lemma 2.1, the witness Y is T4. Hence, Y is Hausdorff mildly normal.

Therefore, X is L2-mildly normal. �

Corollary 3.2. Every T1 non L2-mildly normal space cannot be L-normal.

Note that: L-normality and L2-mild normality are different from each other. For example:

Example 3.1. The left ray topology (R,L) and the right ray topology (R,R) are mildly normal

spaces because they are normal. Thus, (R,L) and (R,R) are L-mildly normal spaces. Since the

two spaces are first countable non Hausdorff, they are not L2-mildly normal. Therefore, (R,L) and

(R,R) are L-mildly normal spaces, which are neither L-regular, L2-mildly normal nor epi-mildly

normal.

Example 3.2. The countable complement extension topology [21, Example 63], is a Hausdorff, Urysohn

and Lindelöf space, which is neither regular, completely regular, normal, compact nor first count-

able [21]. Since a subset A of X is compact if and only if it is finite [21], we get X is C2-mildly

normal. Since X is sub-metrizable, we have X is epi-mildly normal. Observe that: the space X is

a mildly normal space, which is not normal. Thus, X is an L2-mildly normal, epi-mildly normal,

epi-regular and epi-completely regular space, but it is neither L-normal nor L-regular.

Theorem 3.4. Every L2-mildly normal countable tight (resp.Fréchet, first countable, sequential) space is
epi-mildly normal.

Proof. It is similar to the proof of Theorem 2.8. �

Corollary 3.3.

(1) Every L2-mildly normal first countable space is Hausdorff.

(2) Every L2-mildly normal nearly paracompact first countable space is mildly normal.

(3) If X is an L2-mildly normal first countable space, then there exists a topology T ? on X such

that T ? ⊆ T and (X,T ?) is Hausdorff mildly normal.
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Corollary 3.4.

(1) Every first countable non epi-mildly normal space is not L2-mildly normal.

(2) Every first countable non Hausdorff space is not L2-mildly normal.

Theorem 3.5. Every T1 L-normal first countable space is epi-mildly normal

Proof. By Lemma 2.1, the witness Y is T4. Since X is first countable, we get: f : X → Y is bijective

continuous function. By Theorem 3.3, X is L2-mildly normal. By Corollary 3.3, there exists a

topology T ? on X such that T ? ⊆ T and (X,T ?) is Hausdorff mildly normal. Therefore, X is

epi-mildly normal. �

Since any closed extension space (Xp,T ∗) of a given space (X,T ) is aπ-normal non T1-space [24],

we obtain:

Theorem 3.6. Every closed extension space (Xp,T ∗) of a given first countable space (X,T ) is an L-mildly
normal space, but it is not L2-mildly normal.

Proof. Since any closed extension space (Xp,T ∗) of a given space (X,T ) is π-normal [24, Theorem

9], we get: (Xp,T ∗) is mildly normal. Hence, (Xp,T ∗) is L-mildly normal. Since any closed

extension space (Xp,T ∗) of a first countable space (X,T ) is first countable [24], we conclude that:

(Xp,T ∗) is first countable. Since (Xp,T ∗) is first countable non Hausdorff, by Corollary 3.4, we

have: (Xp,T ∗) cannot be L2-mildly normal. �

Corollary 3.5. L2-mild normality is not preserved by the closed extension spaces.

Note that: any uncountable indiscrete space is an L-mildly normal space, which is neither C-

Tychonoff, L2-mildly normal nor epi-mildly normal being not Hausdorff. The following example

is an L-mildly normal space, which is neither L-regular nor L2-mildly normal. Note that: L-mild

normality does not imply to L2-mild normality. Here is a counterexample.

Example 3.3. The excluded point topology [21, Example 15], (X,Ep) is a T0, compact, first countable,

paracompact and normal space, which is neither T1, regular nor semi regular [21]. Since X is

compact Lindelöf normal space, which is not regular, the space X is an L-mildly normal space,

which is neither L-regular nor L2-mildly normal. Since X is not T2, we obtain: X is not epi-mildly

normal. Therefore, the space (X,Ep) is a Lindelöf L-mildly normal space, which is neither L-regular,

epi-mildly normal nor L2-mildly normal.

The following example is an L2-mildly normal space, which is neither L-normal nor L-regular:

Example 3.4. The Smirnov’s deleted sequence topology [21, Example 64], is a Urysohn, Lindelöf and

second countable space, which is neither regular, normal nor compact [21]. Note that: the space

X is sub-metrizable. Thus, it is an epi-mildly normal and C2-mildly normal space. Since the space

X is a mildly normal and C-regular space [11, 13], which is not normal , it is an L2-mildly normal

space, which is neither L-normal nor L-regular.
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L2-mild normality does not imply to L-almost normality. Here is an example:

Example 3.5. The irregular lattice topology [21, Example 79], is a Hausdorff, Urysohn, countable,

Lindelöf and second countable space, which is neither regular, normal, compact nor paracompact

[21]. The irregular lattice topology is a mildly normal space, which is not partially normal [25].

Hence, it is not quasi normal. Thus, the given space is an L2-mildly normal and C-almost normal

space which is neither almost normal, epi-quasi normal nor almost regular [4, 11]. Since X is a

Lindelöf space, it is neither L-almost normal, C-regular, C-normal nor C-Tychonoff. Therefore, the

irregular lattice topology is an epi-mildly normal, C-almost normal and L2-mildly normal space

which is neither quasi normal, regular, C-regular, epi-regular, epi-quasi normal, C-normal nor

L-regular.

Here is an example of an L-normal and L-mildly normal space that is neither C2-mildly normal

nor epi-mildly normal.

Example 3.6. The integer broom topology [21, Example 121], is a T0, normal, semi normal, compact,

Lindelöf, separable, countable and paracompact space, which is neither T1, regular, completely

regular nor semi regular [21]. Thus, X is an L-mildly normal space. Since X is a compact Lindelöf

normal non Hausdorff space, it is an L-normal space, which is neither L-regular, epi-mildly normal

nor C2-mildly normal.

Note that: every L-mildly normal first countable T0-space is not necessary to be T1 and any

L-normal space cannot be L2-mildly normal as shown by the next example:

Example 3.7. The odd-even topology [21, Example 6], is a regular, completely regular, normal,

Lindelöf and locally compact, but it is neither T0, compact nor semi regular [21]. The space X is an

L-completely regular, L-normal and L-mildly normal space, which is neither epi-mildly normal, C-

Tychonoff, see [4, Example 16]. Also, the space X is not L2-mildly normal. Therefore, the odd-even

topology is an L-normal, L-regular and L-mildly normal space, which is neither C2-mildly normal,

L2-mildly normal nor C-Tychonoff.

Let M be a non-empty subset of a space (X,T ). Define a topology T(M) on X as follows:

T(M) = {U ∪ K : K ⊆ X \M}. Then, (X,T(M)) is called a discrete extension of (X,T ) denoted by

XM, where Td ⊆ T ⊆ T(M), see [26].

The following problems are still open: Is there an example of an epi-mildly normal (resp.

Hausdorff locally compact) space, which is not L-mildly normal?. Is there an example of an L2-

mildly normal space, which is neither L-normal nor Hausdorff?. Is L-mild normality preserved by

the discrete extension?.

4. Conclusion

New topological properties called L-mild normality and L2-mild normality, have been studied.

Some results, properties, relationships and counterexamples have been given and discussed.
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