International Journal of Analysis and Applications

L-Mild Normality and L₂-Mild Normality

Alyaa AlAwadi^{1,2,*}, Sadeq Ali Thabit²

¹Department of Mathematics and statistic, College of Science, University of Jeddah, Saudi Arabia ²Department of Mathematics, Faculty of Applied and Health Sciences, Mahrah University, Yemen

*Corresponding authors: aaalawadi@uj.edu.sa

Abstract. The purpose of this work is to introduce and study two new topological properties called *L*-mild normality and L_2 -mild normality. A space *X* is called an *L*-mildly normal space if there exist a mildly normal space *Y* and a bijective function $f : X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. If the space *Y* is Hausdorff, then the space *X* is called L_2 -mildly normal. We investigate these properties and present some examples to illustrate the relationships among *L*-mild normality and L_2 -mild normality with other kinds of topological properties.

1. Introduction

The notions of epi-normality, *C*-normality and *L*-normality were introduced by Arhangel'skii during his visiting to Department of Mathematics in King Abdulaziz University, Saudi Arabia on 2012. The notion of *C*-normality has been studied by Alzahrani and Kalantan in [1]. The notion of *L*-normality has been studied by Kalantan and Saeed in [2]. In 2022, Al-Awadi and others introduced the notion of *C*-mild normality in [3]. Alqurashi and Thabit studied the notions of *C*-almost normality and *L*-almost normality in [4]. The concepts of *CC*-Tychonoffness, *CCT*₃, *CC*-regularity and *CC*-almost regularity have been studied in [5]. In this paper, we study two new properties which are *L*-mild normality and *L*₂-mild normality. We show that these new properties are different from each other, and they are different from *C*-normality, *L*-normality, *C*-regularity, *L*-regularity, epi-mild normality and so on. Some properties, counterexample and relationships of these properties are investigated. Two sets *A* and *B* of a space *X* are said to be *separated* if there exist two disjoint open sets *U* and *V* in *X* such that $A \subseteq U$ and $B \subseteq V$ [6–8]. If $\mathcal{T}' \subseteq \mathcal{T}$, then \mathcal{T}' is called a topology that is *coarser* than \mathcal{T} and \mathcal{T} is called *finer* [7]. A subset *A* of a space *X* is said to be

Received: Dec. 31, 2024.

²⁰²⁰ Mathematics Subject Classification. 54C10, 54D10, 54D20, 54D15, 54D70.

Key words and phrases. epi-mildly normal; epi-normal; *C*-normal; *C*-mildly normal; epi-regular; *L*-regular; *L*-regular.

a *closed domain* subset if it is the closure of its own interior [9]. A complement of a closed domain set is called *open domain*. The topology on *X* generated by the family of all open domains denoted by \mathcal{T}_s is coarser than \mathcal{T} and (X, \mathcal{T}_s) is called the *semi regularization* of *X*. A space (X, \mathcal{T}) is called *semi-regular* if $\mathcal{T} = \mathcal{T}_s$ [10]. Any undefined concepts in this work can be found in the introduction section of [4,5,11].

2. Preliminaries

Recall that: a space X is said to be *mildly normal* [12], if any pair of disjoint closed domain subsets A and B of X can be separated. A space X is called *C-normal* [1] (resp. *C-regular* [13], *C-Tychonoff* [14]) if there exist a normal (resp. regular, Tychonoff) space Y and a bijective function $f: X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each compact subspace $A \subseteq X$. A space X is called *L-normal* [2] (resp. *CC-normal* [15]) if there exist a normal space Y and a bijective function $f: X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf (resp. countably compact) subspace $A \subseteq X$. A space X is called *L-regular* [13] (resp. *L-Tychonoff* [14]) if there exist a regular (resp. Tychonoff) space Y and a bijective function $f: X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. A space (X, \mathcal{T}) is said to be *epi-normal* [16] (resp. *epi-mildly normal* [17], *epi-almost normal* [18], *epi-regular* [19], *epi-quasi normal* [11]), if there exists a topology \mathcal{T}' on X coarser than \mathcal{T} such that (X, \mathcal{T}') is T_4 (resp. Hausdorff mildly-normal, Hausdorff almost-normal, T_3 , Hausdorff-quasi-normal).

We give the definitions of *L*-mild normality and *L*₂-mild normality.

Definition 2.1. A space *X* is called *L*-*mildly normal* space if there exist a mildly normal space *Y* and a bijective function $f : X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. If the space *Y* is Hausdorff, then the space *X* is called *L*₂-*mildly normal*.

From Definition 2.1, it is clear that: every mildly normal space is *L*-mildly normal and every Hausdorff mildly normal is L_2 -mildly normal, where Y = X and the identity function $f : X \to X$ satisfies the requirements. The converse is not true, for example:

Example 2.1. *The modified Dieudonné plank* [15, Example 2.4], is a Tychonoff, *L*-normal space which is neither mildly normal nor locally compact, see also [2, Example 2.2] and [20, Example 2]. Hence, the modified Dieudonné plank is an L_2 -mildly normal space which is neither mildly normal nor locally compact.

Next, we present the following basic results:

Theorem 2.1. Every L-normal space is L-mildly normal.

Proof. Let *X* be an *L*-normal space. Then, there exist a normal space *Y* and a bijective function $f : X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace $A \subseteq X$. Since *Y* is a normal space, we have *Y* is mildly normal. Therefore, *X* is *L*-mildly normal.

The converse of Theorem 2.1 is not necessary to be true in general. For example:

Example 2.2. *The finite complement topology* [21, Example 19], (\mathbb{R} , $C\mathcal{F}$) is a T_1 -compact space and every subspace of (\mathbb{R} , $C\mathcal{F}$) is compact [21]. Note that: (\mathbb{R} , $C\mathcal{F}$) is not a *C*-regular space [13]. Since (\mathbb{R} , $C\mathcal{F}$) is a mildly normal space, we get (\mathbb{R} , $C\mathcal{F}$) is *L*-mildly normal. Therefore, (\mathbb{R} , $C\mathcal{F}$) is an *L*-mildly normal space, which is neither *L*-normal, *L*-regular, epi-mildly normal nor L_2 -mildly normal.

Theorem 2.2. Every Lindelöf L-mildly normal space is mildly normal.

Proof. Let *X* be a Lindelöf *L*-mildly normal space. Then, there exist a mildly normal space *Y* and a bijective function $f : X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace *A* of *X*. Since *X* is Lindelöf, put A = X. Since *f* is bijective, we get $f : X \to Y$ is a homeomorphism. Since *Y* is a mildly normal space, we get *X* is mildly normal. \Box

Corollary 2.1. If *X* is a Lindelöf non mildly normal space, then *X* cannot be *L*-mildly normal.

Theorem 2.3. *Every Lindelöf L*₂*-mildly normal space is Hausdorff mildly normal.*

Proof. It is similar to the proof of Theorem 2.2.

Corollary 2.2.

- (1) Every Lindelöf *L*₂-mildly normal space is epi-mildly normal.
- (2) Every Lindelöf non Hausdorff space cannot be *L*₂-mildly normal.

The proofs of the next results are similar to that of the corresponding results in [1,14].

Theorem 2.4. *L-mild normality and L*₂*-mild normality are topological properties.*

Theorem 2.5. *L-mild normality and L*₂*-mild normality are additive properties.*

Proposition 2.1. If X is a T_1 L-mildly normal space, then a witness Y is a T_1 -space.

Proof. It is similar to that of Proposition 1 in [4].

Lemma 2.1. If X is a T_1 L-normal space, then the witness Y is T_4 .

Theorem 2.6. Every L-mildly normal space is C-mildly normal.

Proof. Let X be an *L*-mildly normal space. Then, there exist a mildly normal space Y and a bijective function $f : X \to Y$ such that the restriction function $f|_A : A \to f(A)$ is a homeomorphism for each Lindelöf subspace A of X. Since every compact subset is Lindelöf, we have each compact subspace C of X is a Lindelöf subspace of X. Thus, the restriction function $f|_C : C \to f(C)$ is a homeomorphism for each compact subspace C of X. Therefore, X is C-mildly normal.

The converse of Theorem 2.6 may not be true in general. For example:

Example 2.3. Consider the space presented in [4, Example 18]. The space *X* is a Hausdorff space, which is neither Urysohn, regular, mildly normal, compact, paracompact nor epi-mildly normal [17, Example 16]. Hence, *X* is neither C_2 -mildly normal nor L_2 -mildly normal. Note that: *X* is a Hausdorff Lindelöf second countable *C*-paracompact space, which is not C_2 -paracompact [22, Example 2.25]. Since *X* is a Lindelöf non mildly normal space, it is not *L*-mildly normal. Also, the space *X* is *C*-almost normal [4]. Hence, it is *C*-mildly normal. Therefore, the space *X* is a *C*-mildly normal space, which is neither mildly normal, *L*-mildly normal, *C*₂-mildly normal nor epi-mildly normal.

Example 2.4. *The countable complement topology* [21, Example 20], (\mathbb{R} , *CC*) is a *C*-regular space that is not *L*-regular [13]. Since (\mathbb{R} , *CC*) is a mildly normal space, we obtain (\mathbb{R} , *CC*) is *L*-mildly normal. Also, the countable complement topology is *C*₂-mildly normal. Since *X* is Lindelöf non Hausdorff, we get: *X* cannot be *L*₂-mildly normal. Therefore, (\mathbb{R} , *CC*) is an *L*-mildly normal and *C*₂-mildly normal space, which is neither *L*-regular, epi-regular, *L*₂-mildly normal nor epi-mildly normal.

Note that: if *X* is *L*-mildly normal and $f : X \to Y$ is a witness of the *L*-mild normality of *X*, then *f* may not be continuous. For example, the countable complement topology, Example 2.4, is an *L*-mildly normal space and the witness of the *L*-mild normality of *X* is not continuous. But it will be if *X* is of a countable tightness. A space *X* is of a *countable tightness* if for each subset *B* of *X* and each $x \in \overline{B}$, there exists a countable subset B_0 of *B* such that $x \in \overline{B}_0$ [7]. Note that: every first countable space is Fréchet, every Fréchet space is sequential and every sequential space is countable tightness.

Theorem 2.7. If X is an L-mildly normal (resp. L_2 -mildly normal) space of a countable tightness and $f : X \rightarrow Y$ is a witness of the L-mild normality (resp. L_2 -mild normality) of X, then f is continuous.

Proof. It is similar to that of Theorem 5 in [14] and Theorem 11 in [4].

Corollary 2.3. If *X* is an *L*-mildly normal (resp. L_2 -mildly normal) first countable space and $f : X \rightarrow Y$ is a witness of the *L*-mild normality (resp. L_2 -mild normality) of *X*, then *f* is continuous.

Theorem 2.8. If (X, \mathcal{T}) is an L-mildly normal countable tightness (resp. Fréchet, first countable) such that the witness (Y, \mathcal{T}') of the L-mild normality of X is Hausdorff, then (X, \mathcal{T}) is epi-mildly normal.

Proof. It is similar to that of Theorem 7 in [4].

Theorem 2.9. If X is a T_3 separable, L-mildly normal (resp. L_2 -mildly normal) space and of a countable tightness, then X is mildly normal and epi-mildly normal.

Proof. It is similar to that of Theorem 12 in [4].

Since every second countable space is a Lindelöf separable space [7], and every Lindelöf *L*-mildly normal (resp. L_2 -mildly normal) space is mildly normal, Theorem 2.2) (resp. Hausdorff mildly normal, Theorem 2.3), we get:

Corollary 2.4.

- (1) Every Hausdorff second countable *L*-mildly normal space is epi-mildly normal.
- (2) Every second countable *L*-mildly normal space is mildly normal.
- (3) Every second countable L_2 -mildly normal space is mildly normal and epi-mildly normal.

It can be observe that: epi-mild normality and *L*-mild normality are different from each other. For example:

Example 2.5. The particular point topology [21, Example 10], $(\mathbb{R}, \mathcal{T}_p)$ is neither a *C*-regular nor *C*-normal space [1,13]. Since the particular point topology $(\mathbb{R}, \mathcal{T}_p)$ is mildly normal, we get $(\mathbb{R}, \mathcal{T}_p)$ is *L*-mildly normal. Therefore, $(\mathbb{R}, \mathcal{T}_p)$ is an *L*-mildly normal space, which is neither *L*-regular, *L*-normal, epi-mildly normal, epi-normal nor L_2 -mildly normal.

Theorem 2.10. If X is a C-mildly normal space such that every Lindelöf subspace of X is contained in a compact subspace of X, then X is L-mildly normal.

Proof. Let *X* be a *C*-mildly normal space such that if *A* is a Lindelöf subspace of *X*, there exists a compact subspace *B* of *X* such that $A \subseteq B$. Let *Y* be any mildly normal space and $f : X \to Y$ be a bijective function such that $f|_C : C \to f(C)$ is a homeomorphism for each compact subspace *C* of *X*. Now, let *A* be any Lindelöf subspace of *X*. Pick a compact subspace *B* of *X* such that $A \subseteq B$. Then, $f|_B : B \to f(B)$ is a homeomorphism. Thus, $f|_A : A \to f(A)$ is a homeomorphism as $(f|_B)|_A = f|_A$. Therefore, *X* is *L*-mildly normal.

Theorem 2.11. If X is a C_2 -mildly normal space such that every Lindelöf subspace of X is contained in a compact subspace of X, then X is L_2 -mildly normal.

Proof. It is similar to the proof of Theorem 2.10.

3. Some other properties and counterexamples

In this section, we present some other properties, counterexamples and relationships:

Theorem 3.1. *Every L*₂*-mildly normal space is C*₂*-mildly normal.*

Proof. It is similar to the proof of Theorem 2.6.

The converse of Theorem 3.1 is not necessary to be true in general. For example, the countable complement topology, Example 2.4, is a C_2 -mildly normal space which is not L_2 -mildly normal.

Theorem 3.2. *Every* L₂*-mildly normal space is* L*-mildly normal.*

Proof. Since X is an L_2 -mildly normal space, there exist a Hausdorff mildly normal space Y and a bijective function $f : X \to Y$ such that the restriction function $f|_C : C \to f(C)$ is a homeomorphism for each Lindelöf subspace $C \subseteq X$. Since Y is mildly normal, we obtain: X is *L*-mildly normal. \Box

The converse of Theorem 3.2 is not necessarily true in general. For example, the finite complement topology, Example 2.2, is an *L*-mildly normal space which is not L_2 -mildly normal. Since every C_2 -mildly normal space is *C*-mildly normal [23], we get:

Corollary 3.1. Every *L*₂-mildly normal space is *C*-mildly normal.

Theorem 3.3. Every T_1 L-normal space is L_2 -mildly normal.

Proof. Let *X* be a T_1 *L*-normal space. Then, there exist a normal space *Y* and a bijective function $f : X \to Y$ such that the restriction function $f|_C : C \to f(C)$ is a homeomorphism for each Lindelöf subspace $C \subseteq X$. By Lemma 2.1, the witness *Y* is T_4 . Hence, *Y* is Hausdorff mildly normal. Therefore, *X* is L_2 -mildly normal.

Corollary 3.2. Every *T*¹ non *L*₂-mildly normal space cannot be *L*-normal.

Note that: *L*-normality and *L*₂-mild normality are different from each other. For example:

Example 3.1. The left ray topology $(\mathbb{R}, \mathcal{L})$ and the right ray topology $(\mathbb{R}, \mathcal{R})$ are mildly normal spaces because they are normal. Thus, $(\mathbb{R}, \mathcal{L})$ and $(\mathbb{R}, \mathcal{R})$ are *L*-mildly normal spaces. Since the two spaces are first countable non Hausdorff, they are not L_2 -mildly normal. Therefore, $(\mathbb{R}, \mathcal{L})$ and $(\mathbb{R}, \mathcal{R})$ are *L*-mildly normal spaces, which are neither *L*-regular, L_2 -mildly normal nor epi-mildly normal.

Example 3.2. *The countable complement extension topology* [21, Example 63], is a Hausdorff, Urysohn and Lindelöf space, which is neither regular, completely regular, normal, compact nor first countable [21]. Since a subset A of X is compact if and only if it is finite [21], we get X is C_2 -mildly normal. Since X is sub-metrizable, we have X is epi-mildly normal. Observe that: the space X is a mildly normal space, which is not normal. Thus, X is an L_2 -mildly normal, epi-mildly normal, epi-mildly normal.

Theorem 3.4. Every L_2 -mildly normal countable tight (resp.Fréchet, first countable, sequential) space is epi-mildly normal.

Proof. It is similar to the proof of Theorem 2.8.

Corollary 3.3.

- (1) Every L_2 -mildly normal first countable space is Hausdorff.
- (2) Every L_2 -mildly normal nearly paracompact first countable space is mildly normal.
- (3) If X is an L_2 -mildly normal first countable space, then there exists a topology \mathcal{T}^* on X such that $\mathcal{T}^* \subseteq \mathcal{T}$ and (X, \mathcal{T}^*) is Hausdorff mildly normal.

Corollary 3.4.

- (1) Every first countable non epi-mildly normal space is not L_2 -mildly normal.
- (2) Every first countable non Hausdorff space is not L_2 -mildly normal.

Theorem 3.5. Every T_1 L-normal first countable space is epi-mildly normal

Proof. By Lemma 2.1, the witness Y is T_4 . Since X is first countable, we get: $f : X \to Y$ is bijective continuous function. By Theorem 3.3, X is L_2 -mildly normal. By Corollary 3.3, there exists a topology \mathcal{T}^* on X such that $\mathcal{T}^* \subseteq \mathcal{T}$ and (X, \mathcal{T}^*) is Hausdorff mildly normal. Therefore, X is epi-mildly normal.

Since any closed extension space (X^p, \mathcal{T}^*) of a given space (X, \mathcal{T}) is a π -normal non T_1 -space [24], we obtain:

Theorem 3.6. Every closed extension space (X^p, \mathcal{T}^*) of a given first countable space (X, \mathcal{T}) is an L-mildly normal space, but it is not L₂-mildly normal.

Proof. Since any closed extension space (X^p, \mathcal{T}^*) of a given space (X, \mathcal{T}) is π -normal [24, Theorem 9], we get: (X^p, \mathcal{T}^*) is mildly normal. Hence, (X^p, \mathcal{T}^*) is *L*-mildly normal. Since any closed extension space (X^p, \mathcal{T}^*) of a first countable space (X, \mathcal{T}) is first countable [24], we conclude that: (X^p, \mathcal{T}^*) is first countable. Since (X^p, \mathcal{T}^*) is first countable non Hausdorff, by Corollary 3.4, we have: (X^p, \mathcal{T}^*) cannot be L_2 -mildly normal.

Corollary 3.5. *L*₂-mild normality is not preserved by the closed extension spaces.

Note that: any uncountable indiscrete space is an *L*-mildly normal space, which is neither *C*-Tychonoff, L_2 -mildly normal nor epi-mildly normal being not Hausdorff. The following example is an *L*-mildly normal space, which is neither *L*-regular nor L_2 -mildly normal. Note that: *L*-mild normality does not imply to L_2 -mild normality. Here is a counterexample.

Example 3.3. *The excluded point topology* [21, Example 15], (X, \mathcal{E}_p) is a T_0 , compact, first countable, paracompact and normal space, which is neither T_1 , regular nor semi regular [21]. Since X is compact Lindelöf normal space, which is not regular, the space X is an L-mildly normal space, which is neither L-regular nor L_2 -mildly normal. Since X is not T_2 , we obtain: X is not epi-mildly normal. Therefore, the space (X, \mathcal{E}_p) is a Lindelöf L-mildly normal space, which is neither L-regular, epi-mildly normal.

The following example is an *L*₂-mildly normal space, which is neither *L*-normal nor *L*-regular:

Example 3.4. *The Smirnov's deleted sequence topology* [21, Example 64], is a Urysohn, Lindelöf and second countable space, which is neither regular, normal nor compact [21]. Note that: the space X is sub-metrizable. Thus, it is an epi-mildly normal and C_2 -mildly normal space. Since the space X is a mildly normal and C-regular space [11, 13], which is not normal , it is an L_2 -mildly normal space, which is neither L-normal nor L-regular.

*L*₂-mild normality does not imply to *L*-almost normality. Here is an example:

Example 3.5. *The irregular lattice topology* [21, Example 79], is a Hausdorff, Urysohn, countable, Lindelöf and second countable space, which is neither regular, normal, compact nor paracompact [21]. The irregular lattice topology is a mildly normal space, which is not partially normal [25]. Hence, it is not quasi normal. Thus, the given space is an L_2 -mildly normal and *C*-almost normal space which is neither almost normal, epi-quasi normal nor almost regular [4, 11]. Since *X* is a Lindelöf space, it is neither *L*-almost normal, *C*-regular, *C*-normal nor *C*-Tychonoff. Therefore, the irregular lattice topology is an epi-mildly normal, *C*-almost normal and L_2 -mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal and *L*₂-mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal and *L*₂-mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal and *L*₂-mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal and *L*₂-mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal and *L*₂-mildly normal space which is neither quasi normal, regular, *C*-regular, epi-quasi normal nor *L*-regular.

Here is an example of an *L*-normal and *L*-mildly normal space that is neither C_2 -mildly normal nor epi-mildly normal.

Example 3.6. *The integer broom topology* [21, Example 121], is a T_0 , normal, semi normal, compact, Lindelöf, separable, countable and paracompact space, which is neither T_1 , regular, completely regular nor semi regular [21]. Thus, X is an *L*-mildly normal space. Since X is a compact Lindelöf normal non Hausdorff space, it is an *L*-normal space, which is neither *L*-regular, epi-mildly normal nor C_2 -mildly normal.

Note that: every *L*-mildly normal first countable T_0 -space is not necessary to be T_1 and any *L*-normal space cannot be L_2 -mildly normal as shown by the next example:

Example 3.7. *The odd-even topology* [21, Example 6], is a regular, completely regular, normal, Lindelöf and locally compact, but it is neither T_0 , compact nor semi regular [21]. The space X is an *L*-completely regular, *L*-normal and *L*-mildly normal space, which is neither epi-mildly normal, *C*-Tychonoff, see [4, Example 16]. Also, the space X is not L_2 -mildly normal. Therefore, the odd-even topology is an *L*-normal, *L*-regular and *L*-mildly normal space, which is neither C_2 -mildly normal, L_2 -mildly normal nor *C*-Tychonoff.

Let *M* be a non-empty subset of a space (X, \mathcal{T}) . Define a topology $\mathcal{T}_{(M)}$ on *X* as follows: $\mathcal{T}_{(M)} = \{U \cup K : K \subseteq X \setminus M\}$. Then, $(X, \mathcal{T}_{(M)})$ is called a discrete extension of (X, \mathcal{T}) denoted by X_M , where $\mathcal{T}_d \subseteq \mathcal{T} \subseteq \mathcal{T}_{(M)}$, see [26].

The following problems are still open: Is there an example of an epi-mildly normal (resp. Hausdorff locally compact) space, which is not *L*-mildly normal?. Is there an example of an L_2 -mildly normal space, which is neither *L*-normal nor Hausdorff?. Is *L*-mild normality preserved by the discrete extension?.

4. CONCLUSION

New topological properties called *L*-mild normality and L_2 -mild normality, have been studied. Some results, properties, relationships and counterexamples have been given and discussed. **Conflicts of Interest:** The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- S. Alzahrani, L. Kalantan, C-Normal Topological Property, Filomat 31 (2017), 407–411. https://www.jstor.org/stable/ 24899549.
- [2] L. Kalantan, M. Saeed, L-Normality, Topol. Proc. 50 (2017), 141–149.
- [3] A. Al-Awadi, L. Kalantan, S. Thabit, C-κ-Normal and C-Mild Normality Topological Properties, J. Adv. Math. Stud. 16 (2023), 15–21.
- W. Alqurashi, S. Thabit, C-Almost Normality and L-Almost Normality, Eur. J. Pure Appl. Math. 15 (2022), 1760–1782. https://doi.org/10.29020/nybg.ejpam.v15i4.4570.
- [5] S. Thabit, W. Alqurashi, CC-Tychonoffness, CCT₃ and CC-Almost Regularity, Eur. J. Pure Appl. Math. 16 (2023), 1260–1273. https://doi.org/10.29020/nybg.ejpam.v16i2.4776.
- [6] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- [7] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [8] C.W. Patty, Foundation of Topology, PWS-KENT Publishing Company, Boston, 1993.
- [9] C. Kuratowski, Topology I, Hafner, New York, 1958.
- [10] M. Mršević, I.L. Reilly, M. Vamanamurthy, On Semi Regularization Topologies, J. Aust. Math. Soc. (Ser. A) 38 (1985), 40–54.
- [11] S.A. Thabit, I. Alshammari, W. Alqurashi, Epi-Quasi Normality, Open Math. 19 (2021), 1755–1770. https://doi.org/ 10.1515/math-2021-0121.
- [12] M.K. Singal, A.R. Singal, Mildly Normal Spaces, Kyungpook Math. J. 13 (1973), 27-31.
- [13] S. Alzahrani, C-Regular Topological Spaces, J. Math. Anal. 9 (2018), 141-149.
- [14] S. ALZahrani, C-Tychonoff and L-Tychonoff Topological Spaces, Eur. J. Pure Appl. Math. 11 (2018), 882–892. https://doi.org/10.29020/nybg.ejpam.v11i3.3253.
- [15] L. Kalantan, M. Alhomieyed, CC-Normal Topological Spaces, Turk. J. Math. 41 (2017), 749–755. https://doi.org/10. 3906/mat-1604-3.
- [16] L. Kalantan, S. Alzahrani, Epinormality, J. Nonlinear Sci. Appl. 9 (2016), 5398-5402.
- [17] L. Kalantan, I. Alshammari, Epi-Mild Normality, Open Math. 16 (2018), 1170–1175. https://doi.org/10.1515/ math-2018-0099.
- [18] I. Alshammari, Epi-Almost Normality, J. Math. Anal. 11 (2020), 52-57.
- [19] S.A. AlZahrani, Epiregular Topological Spaces, Afr. Mat. 29 (2018), 803–808. https://doi.org/10.1007/ s13370-018-0577-1.
- [20] L. Kalantan, M. Alhomieyed, S-Normality, J. Math. Anal. 9 (2018), 48-54.
- [21] A.L. Steen, J.A. Seebach, Counterexamples in Topology, Dover Publications, INC., New York, 1995.
- [22] M.M. Saeed, L. Kalantan, H. Alzumi, C-Paracompactness and C2-Paracompactness, Turk. J. Math. 43 (2019), 9–20.
- [23] S. Ali Thabit, A. Al-Awadi, C₂-Mildly Normal Topological Spaces, J. Math. Anal. 15 (2024), 43–54. https://doi.org/ 10.54379/jma-2024-5-3.
- [24] D. Abuzaid, S. Al-Qarhi, L. Kalantan, Closed Extension Topological Spaces, Eur. J. Pure Appl. Math. 15 (2022), 672–680.
- [25] I. Alshammari, L. Kalantan, S.A. Thabit, Partial Normality, J. Math. Anal. 10 (2019), 1-8.
- [26] A. Alawadi, L. Kalantan, M.M. Saeed, On the Discrete Extension Spaces, J. Math. Anal. 9 (2018), 150–157.